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Abstract 

A method is established that uses only two characteristic points of a single non-isothermal 
DSC curve, (d/dT)(dcr/dt) = 0 and (d*/dT*)(da/dt) = 0, from the classic isothermal kinetic 
equation du/dt = Af(cz)e- E’RT Using this method, it is very easy to estimate the non-isother- . 
mal kinetic parameters of activation energy E and pre-exponential factor A and to select the 
most probable mechanism function from those commonly used; this may increase our 
understanding of the experimental phenomena. Two indexes of peak shape are defined for 
judging whether the peak is treatable or not. A typical calculation is given. The computed 
results for E and A coincide very well with those derived by commonly used methods; the 
selected mechanism function is also reasonable. 
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1. Introduction 

The mathematical treatment of experimental results of differential scanning 
calorimetric (DSC) or thermogravimetric (TG) analysis to estimate the kinetic 
parameters of a thermal decomposition is very tedious and time consuming. Many 
mathematical models have been developed to overcome these difficulties. The 
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commonly used models may be divided into two categories: differential methods 
and integration methods. All have their merits and drawbacks. The most frequently 
employed methods are briefly described below. 

The equation of Achar et al. [ 1] which uses a differential treatment, is as follows, 
where f(~) is the differential form of the mechanism function 

I-1 dct-I E 
ln[f-~-~ ~ ]  = In A - - -RT (1) 

This method has general applicability. It is clearly shown that there is a linear 
relationship between the logarithm of the factor [l[f(~)](dct/dt) and the reciprocal 
of the reaction temperature T. From a thermal analysis curve, we can obtain many 
sets of data of T, a and (da/dt), and then calculate the kinetic parameters A and E 
using linear regression for every trial of mechanism function f(ct). The E and A 
values obtained with the largest linear regression coefficient might be the chosen 
results and the corresponding mechanism function might be the most probable 
mechanism function. The initial data needed for the method must usually comprise 
more than ten sets to ensure calculation accuracy. The calculated results of the 
linear regression coefficient are nearly all greater than 0.99. Hence, it is very difficult 
to choose the most probable results from these calculations. 

The famous Kissinger method [2] is also a differential treatment 

RTm (2) 

This method assumes that the mechanism function f(~) is ( 1 -  ~)', that the 
reaction rate reaches its maximum at the peak summit, that n ( 1 -  ct)'-~ is not 
affected by the heating rate ~b, and that n ( 1 -  ~)n-~ ~ 1. From thermal analysis 
curves using different heating rates ~b;, we obtain their peak temperatures (Tin);, and 
then calculate the parameters A and E from Eq. (2) using a linear regression 
method. For any thermal analysis curves displaying peaks, the values of A and E 
can always be obtained. 

The commonly used integration methods are those of Ozawa [3] and Doyle [4], 
Setava and Sest~k [5], and MacCallum and Tanner [6]. 

The Ozawa [3] and Doyle [4] equation is as follows, where G(~) represents the 
integration form of the mechanism function 

A E  E 
lg ~b = lg RG(ct-----~ - 2.315 -- 0.4567 R T  (3) 

The mathematical model is irrelevant to the mechanism function for calculating 
E. Its linearity is better than that of the Kissinger equation. Therefore, this 
calculated value of E should always be used as a criterion for judging whether or 
not another method's results are correct. However, it cannot solve the value of A 
as well as select the mechanism function. 

The Satava-gest~tk equation [5] is 

1 A E  E 
lg G(ct) = g ~-~ -- 2.315 -- 0.4567 R~ (4) 
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The MacCallum-Tanner equation [6] is 

AE 
lg G(a) lg a - 0.4828E0.4357 - 

0.449 + 0.217E 1 

0.001 T 
(5) 

These two methods also need a lot of data to try every possible mechanism 
function G(a) with linear regression, and values of A and E with large regression 
coefficients can always be obtained regardless of whether the mechanism function is 
true or false for the reaction process. Therefore, it is very difficult to choose the 
most probable mechanism function and corresponding parameters of A and E from 
the calculated results. 

This article describes a method that uses fewer initial data to calculate the values 
of A and E, and selects the most probable mechanism function more easily. 

2. Theoretical 

The typical decomposition reaction equation may be expressed as 

4s) -+Ws) + C(g) (6) 

The classical isothermal reaction rate equation is expressed as 

g = kf(a) (7) 

where t is time in s, a is fraction of reacted sample, f(a) is the reaction mechanism 
function, and k is the reaction rate constant in s-‘. 

Assuming that the non-isothermal reaction is similar to an isothermal reaction in 
an infinitesimal time, the reaction rate equation of the non-isothermal reaction may 
also be expressed as Eq. (7), and the relationship between reaction rate constant 
and reaction temperature might be expressed in the Arrhenius equation 

k = Ae-.VRT (8) 

where A is the pre-exponential factor in s-‘, E is reaction activation energy in J 
mol-‘, R is the universal constant, 8.314 J mol-’ K-‘, and T is reaction tempera- 
ture in K. 

With a linear temperature increase 

T= To+& (9) 

where To is the initial temperature at which the peak on the DSC curve deviates 
from its baseline in K, I$ is heating rate in K min-‘, t is heating time in s-’ and T 
is the reaction temperature at time t in K. 

Combining Eqs. (7) -( 9) 

dcr A 
dT = Tf(ct)e-E’RT (10) 
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Eq. (10) describes a DSC curve with a linear heating rate 4. The inflections and 
maxima of the peaks can now be used to establish a kinetic equation. 

At the peak summit on a DSC curve, the reaction reaches its maximum, and the 
boundary conditions may be expressed as 

=o 
T=T,,a=a, 

(11) 

where T,,, is the summit temperature in K, and a, is the fraction of reacted sample 
from the beginning to the peak summit. 

Differentiating Eq. (10) with respect to T, and considering Eq. (9), we obtain 

(12) 
d dcr -- 

0 dT dt 
= Af(a)e-E’R 

Therefore, from Eqs. ( 11) and (12) 

A 
Tf’(cc,)e-E’RT- + & = 0 

m 
(13) 

At the peak inflection on the DSC curve, the boundary condition may be 
expressed 

d2 da -- 
( )I dT= dt 

=o 
T=Ti,a=ni 

(14) 

where Ti is the temperature at the peak inflection in K, and C(i is the fraction of 
reacted sample from the beginning to the inflection. 

Differentiating Eq. (12) with respect to T, Eq. (15) is established 

d= da -- 
0 dT= dt 

= Af(a)epEiRT 
i 
$f.i(U)e-‘NRT + J!!&(a)e-E/R’} 

+ Af(cc)e-“RT $r(u)f(cc)e-2E/RT + E2 i2yT} (15) 

Therefore, combining Eqs. (14) and (15), we obtain 

(16) 

Combining Eqs. (13) and ( 16), we obtain Eqs. ( 17) and ( 18) 

BEe2Eu + CEeEu + DEeZEU + 
E - 2RTi 

R=T! = 0 (17) 

A = _ E4eEiRTm 

RTiJ’(d 
(18) 
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where 

U= 
Ti - Tm 
RTi T, 

For DSC analysis, the following relations are true 
H 

m=-- 
HO 

(19) 

dcc I dH -=-- 
dt Ho dt 

(20) 

where Ho is the total reaction enthalpy in J, H is the reaction enthalpy from the 
beginning to time t in J, dH/dt is the exothermic rate (or endothermic rate for 
endothermic reactions) of the reaction in J s-‘. 

It is clear that Eq. (17) is only related to the reaction activation energy E and 
mechanism functionf(a), as well as to its first-order derivativef(cr) and second-order 
derivativef”(cc). For a measured DSC curve with heating rate 4, we can easily obtain 
values of cli and a, corresponding to the inflection temperature Ti and the summit 
temperature T,, respectively. In order to solve the equation, we try every possible 
mechanism function, except the first-order derivative f’(a) which equals zero, 
assuming E falls in the range 50-500 J mol-‘, which is suitable for most decompo- 
sition reactions. The calculation is carried out on a computer using a dichotomy 
method. After computing the value of E from Eq. (17), we can also easily calculate 
the value of A from Eq. (18). The calculated results show few similar values. 
Therefore, it is very straightforward to choose the most probable mechanism 
function and the corresponding values of A and E. The commonly used mechanism 
functions in non-isothermal reaction kinetics are summarized in Table 1. 

3. Indexes of peak shape 

Because the thermal behaviour of real samples is very complicated, their DSC 
curves might be very different. Not all measured curves are mathematically treat- 
able. Therefore, we define two indexes of peak shape for judging whether the peak 
is treatable or not 

H 
H,=!!?E 

wb 
(21) 

(22) 
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Table 1 

Commonly used mechanism functions for non-isothermal reaction kinetics 

No. Name 

1 Parabolic law 

2 Valensi eq. 

3 Jander eq. 

4 Jander eq 

5 G.-B. eq. a 

6 Anti-Jander eq. 

I Z.-L.-T. eq. b 

8 Avrami-Erofeev eq. 

9 P.-T. eq. c 

10 Mampel power law 

11 Chemical reaction 

12 Chemical reaction 

13 Chemical reaction 

14 Exponent law 

Mechanism f(m) Ref 

1-D diffusion 

2-D diffusion 

2-D diffusion 
n=f,2 

3-D diffusion 

n=;,2 

3-D diffusion 

3-D diffusion 

3-D diffusion 

Nucleation and 

growth, n = i, i, 2, 

;, 3, 2, 1, ;. 2, 3, 4 

n=l,2 

$-I I 

[-ln(1 -a)]-’ I 
f(1 -G()‘ia[J _(l -.)1/Z]‘-n 8 

i(l _@X[l _(, _d()r/s]l-n 9 

;[(l _ a))“’ _ 11-r I 

$( 1 + cc)Z”[( 1 + cd”3 - I] -’ I 
~(1-~)“‘3[(1-~)-“‘_1]~’ I 

:(I -a)[-ln(1 -a)]‘-” 10, 11 

a( 1 - a) IO 
;uI-n I 
A(1 -,)1-n I, IO, 1 

(1 -a)2 7, 8 
2( 1 - Q’2 I 

:wI 10 

a Ginsthng-Brounstein equation. b Zhuralev-Lesokin-Tempelman equation. c Prout-Tompkins 

equation. 

where H,,,,, is the peak height at its summit in mm, W,, is the peak width at half 
H max in mm, (dH/dt),,, is the exothermic rate at the peak summit on the DSC 
curve in mJ s-l, T, is the summit temperature in K, T,, is the initial temperature of 
the peak in K and A4 is the sample mass in g. 

Our results confirm that only when these indexes satisfy both the conditions 
0.13 I H, I 1.0 and 1.8 x 10m2 I r, I 9.7 x 10e2 is the peak treatable. 

4. Computed example 

4.1. Sample 

The hydrated copper salt of 3-nitro-1,2,4-triazol-5-one [Cu(NTO), 4H,O] was 
synthesized and purified just before use. 

4.2. Instruments and conditions 

In the present experiments, the initial data needed for calculating the kinetic 
parameters A and E were all obtained using a CDR-1 differential scanning 
calorimeter (Shanghai Tianping Instrument Factory, China) with an aluminium cell 
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(diameter 5 mm, height 3 mm), whose side is rolled up with a lid. The conditions 
of DSC analysis were: sample mass, less than 1 mg; heating rates, 2, 5, 10 and 20 
K min-‘, respectively; calorimetric sensitivity, + 10.5 mJ s-‘; the atmosphere was 
self-generating; reference sample, CI -Al, 0,. 

4.3. Initial data 

The DSC curve of Cu(NTO), .4H,O has a flat endothermic peak corresponding 
to its dehydration process. When the heating rate 4 is 5.1 K mini, H,,, equals 1.0, 
and r, equals 0.096 mJ (K s mg) -I. These index values confirm that this peak is 
mathematically treatable. 

The data needed for this method are: 4 = 5.1 K min’, c = 397.6 K, cli = 0.50, 
T, = 402.4 K, and ~1, = 0.75. 

The data needed for Ozawa’s method and Kissinger’s method are: 4, = 2.1 K 
min’, T,, = 390.2 K; 4Z = 5.1 K min-‘, Tmz = 402.7 K; & = 10.4 K min-‘, 
T,,,, = 410.2 K; 44 = 21.0 K min-‘, Tm4 = 414.4 K. 

The data needed for the equations of the differential and integration methods are 
summarized in Table 2. 

4.4. Calculation results 

The results obtained with our method, together with those calculated with the 
Ozawa equation, the Kissinger equation, the Achar-Brindley-Sharp equation, the 
Phadnis equation [lo], the MacCallum-Tanner equation, the Satava-Sestak equa- 
tion, the Agrawal equation [ 121, and the Universal equation [9] are all listed 
comparatively in Table 3. It is clear that the values of E and A, as well as the 

Table 2 

Data for equations of differential and integration methods 

Data No. 

i 
7; 

K 

(dHld0, 

mJ s-’ 

1 382.7 0.0676 1.255 
2 385.2 0.0915 1.757 
3 387.6 0.1392 2.510 
4 389.9 0.1968 3.213 
5 392.4 0.2883 4.033 
6 395.2 0.3852 4.770 
I 397.6 0.5030 5.255 
8 400.2 0.6243 5.690 
9 402.4 0.7515 5.891 

c) = 5.1 K min-’ 

r, = 368.2 K 
HO = 1262 mJ 
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Table 3 

Calculated results of kinetics 

Method Equation Mech. 

funct. no. 
El 
kJ mol-’ 

Jg A ra 

This one 8, n = 213 114.1 

Ozawa Ozawa 117.4 

Kissinger Kissinger 116.8 

Differential Achar et al. 8, n = 213 113.8 

Phadnis 8, n = 2/3 124.4 

Integration Satava et al. 8, n = 213 124.1 

MacCallum 8, n = 213 122.8 

Agrawal 8, n = 213 123.9 

Universal 8, n - 213 126.2 

a Linear regression coefficient. b Standard error. 

12.57 

- 0.984 

13.09 -0.982 

12.79 -0.997 

0.992 

14.11 - 0.999 

13.90 - 0.999 

17.66 - 0.999 

12.92 -0.999 

Sb 

0.095 

0.218 

0.024 

0.024 

0.012 

0.012 

0.027 

0.027 

mechanism function selected with our method are almost the same as those with the 
commonly used methods, but the initial amount of data required for our method is 
the lowest of all the methods. 

The results obtained indicate that the reaction mechanism of the dehydration 
process of Cu(NTO), .4H,O is classified as nucleation and growth, and the 
mechanism function is No. 8, the Avrami-Erofeev equation with n = 2/3. 

Substituting f(a) with 3/2( 1 - c()[ -ln( 1 - c()]‘/~, E with 114.1 kJ mol-‘, d, with 
5.1 K min-’ and A with 3.71 x lOI s-’ in Eq. (lo), we can now establish the 
kinetics equation of the dehydration process of Cu(NTO), . 4H,O as follows 

da 
dT = 6.56 x 1013( 1 - a)[ -ln( 1 - a)] 113ee’.37 ’ 1o4’T 
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