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Abstract 

Part 1 of this investigation describes a formula with two time constants and the methods 
used to determine these. The formula is used to transform the signal curve of a heat flux 
calorimeter into the curve of a reaction-induced source heat flux. Because a mathematically 
exact procedure must be reversible, Part 2 deals with the calculation of the signal curve as a 
response to an inconstant source heat flux. A mathematically exact solution is derived for the 
case of a source heat flux that is linearly variable with time. It is then shown how reaction- 
kinetic models can be verified by thermal analysis. 

INTRODUCTION 

Equation (l), which is widely known and which describes the signal curve 
as the response of a heat flux calorimeter to an infinitesimal heat impulse [l] 

x(t) = [Q/(zl - z,)](e-“‘1 - e-f/r2) 

can be taken as the solution of the linear second-order differential equation 

Q(t) = x(t) + (7, + 72) dx/dt + 71~2 d2X/dt2 (2) 

in the case when the source heat flux CD is zero for all finite times. Equation 
(2) can also be derived by analysis of the physical events in heat flux 
calorimeters [2-41; therefore, eqn. (2) can be used to transform the signal 
curve X(t) into the source flux curve Q(t), where D(t) is proportional to the 
conversion rate of a chemical reaction. 

It is not necessary to use a differential equation of a higher order in place 
of the second-order differential equation because practice has shown that its 
n time constants represent a rapidly decreasing sequence. Due to multiplica- 
tion by ever decreasing factors derived from time constants, after the first 
factor and with increasing degrees of derivation, the higher differential 
quotients become increasingly less significant so that only the second 
differential quotient will be considered. 
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In Part 1 of this investigation [5], eqn. (2) was integrated for the case of 
a source heat flux constant of between t = 0 and t = z,, so that it is possible 
to calculate the response curve to a rectangular impulse of finite duration. 
The calculation can be verified experimentally if the calorimeter has a 
controllable electric heating element for calibration purposes. 

An attempt is now made to calculate the signal curve x(t) as a response 
to a heat flux which is inconstant between the times t = 0 and t = z,. If this 
problem is solved, it would be possible to predetermine the signal curve for 
a chemical reaction, provided the time constants for the heat conduction 
calorimeter used and for the mean reaction temperature are known. 

When complex reactions are concerned, DSC experiments alone are not 
considered sufficient to find the reaction mechanism. It is advisable to use 
additional methods to obtain a model which reliably describes the kinetics 
in question [6]. This model could be verified by DSC by comparing the 
signal curve calculated on the basis of the model with the signal curve 
obtained by experiment. 

The mathematical basis of this will be developed. First, the signal curve 
x(t) from a source heat flux that is linearly variable with time will be 
considered. 

THE SIGNAL CURVE FROM A SOURCE HEAT FLUX THAT VARIES 

LINEARLY WITH TIME 

The case <D(z) = q + az is considered. In this case, z is the measure of time 
of @ and q is the initial value of @ for z = 0 (q has the dimension of 
heat/time). The coefficient a is the rate of increase of 0 with z, i.e. d@/dz. 
To avoid writing indices, h is set for r1 and k for z2. Integrating 

m,(z) = q + az = x(t) + (h + k) dx/dt + hk d2X/dt2 (3) 

with t 2 z and z E [0, z,] 

O(z) = q + az (4) 

the time z is subdivided into n sections AZ. For the ith section, eqn. (4) 
becomes 

Q(z) = q + aiAz (5) 

Following eqn. (10) in Part 1, the following response to the ith partial 
impulse is obtained 

xi = [(q + aiAz)Az/(h - k)]{exp{ - [t - (i - l)Az]/h} 

- exp{ - [t - (i - l)Az]/k)} 

As 

(6) 

lim i f(c + iAx)Ax = 
s 
<;f(x) dx Ax+0 

n-a j=, 
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with d = c + PAX, where c = -t, d = -(t - nAz), d = -(t -z>. Then 

anAz=a(-t+t+nAz)=at-a(t-nAz)=at-ax (8) 

Because of eqn. (7) the integral 

s 

-(1-Z) 

x(0 = K4 + at)/@ - k)l (e+ _ es/k) dx 
pf 

- [a/@ - k)l 
s 

-(t&z) 
x( exih - e”lk) dx 

is obtained from eqnsf (6) and (8). 
As a result, it follows from eqn. (9) that 

x(0 = [ 10 - k)l MC? + az - ah) exp[ - (t - z) /h] 

- k(q + az - ak) exp[ -(t - z)/k] - h(q - ah) exp( - t/h) 

(9) 

+ k(q - ak) exp( - t/k)} (10) 

In eqn. (lo), the time z of the source heat flux runs from 0 to z,. 
Furthermore, t 2 z is valid, i.e. in the range from z = 0 to z = z,, t can 
neither precede not fall behind z. 

Equation (10) is valid for both the case O(z) = q + az and the case 
Q(z) = constant, because for a = 0, it becomes identical with eqn. (13) of 
Part 1. The coefficient a can also, of course, be negative; (D(z) is then a 
linearly decreasing source heat flux. 

For t I zer t = z. For this time interval, eqn. (10) becomes 

x(z) = [l/P - k)l[h(q + az -ah) - k(q + az - ak) - h(q - ah)epZ’h 

+ k(q - ak)ep”k] (11) 

For t > z,, eqn. ( 10) becomes 

x(t) = [ l/(h - k)]{h(q + az - ah) exp[ -(t - z,)/h] 

- k(q + az - ak) exp[ - (t - z,)/k] - h(q - ah) exp( - t/h) 

+ k(q - ak) exp( - t/k)} (12) 

As expected, when eqn. (11) is differentiated once and then again, and when 
x(z), dX/dz and d2 /d x z2 are introduced into eqn. (2), 0(z) = q + az is 
obtained at any time t within the time interval from t = 0 to t = z, in which 
t =z. 

When the same operation is carried out with eqn. ( 12) and when x(t), 
dx/dt and d2X/dt2 are introduced into eqn. (2) the result Q(t) = 0 is 
obtained for t > z,. These two results are proof that eqn. ( 10) is the exact 
integration of eqn. (2) (in the form of eqn. (3)). 

Figure 1 shows the signal curve calculated as the response to a source 
heat flux lasting 4.5 units of time and increasing from 0 to 50 units 
(O(z) = 11.111 z with z E [0, 4.51, q here being 0). The time constants were 
assumed to have the values h = 0.5 and k = 0.25 units of time. 
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Fig. 1. The signal curve x(t) in response to the source heat flux a(z) = 11.11 lz of duration 
t = z,. In this example, the time constants are h = 0.5 and k = 0.25 units of time. 

Figure 2 shows the signal curve as a response to a source heat flux 
CD = 50 - 11.11 lz, linearly decreasing within 4.5 units of time from q = 50 
units to 0; q has the dimension heat/time, i.e. Q/t. Figure 2 shows that in 
this case the values of the two time constants h and k cannot be concluded 
as easily from this curve as was described in Part 1; this is, however, 
possible in the case represented in Fig. 1. 
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Fig. 2. The signal curve x(t) in response to the source heat flux (D(z) = 50 - 11.11 Iz of 
duration t = z,. Here again, h = 0.5 and k = 0.25. 
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In the case of a linearly increasing source heat flux, limited in time and 
of duration z, units of time (for example, according to Fig. l), the 
maximum of the signal curve x(t) is situated in or beyond z,. As a result, 
l,,,> z,. By differentiation of eqn. (12) and setting the derivative to zero 

t, = [hk/(h - k)]{ln[(q - ak) - (q + az, - ak) exp(z,/k)] 

- ln[(q - ah) - (q + az, - ah) exp(z,/h)]} (13) 

is obtained. The point of inflection is found by zeroing the second derivative 
of eqn. ( 12) 

t, = [hkl(h - k)l{W(q + az, - 4 ewk lk) - (4 - WI lk ) 

- ln{Kq + az, - ~4 evk /N - (4 - ~41 lh > (14) 

For the difference t, - t, the relation known from Part 1 results 

t, - t, = [hk/(h -k)] ln(h/k) (15) 

Equation (15) confirms the information furnished by both Fig. 1 and Part 
1; in the latter, it was demonstrated that under certain conditions the 
impulse-like source heat flux need not have an absolutely “rectangular” 
shape in order that the time constants h and k be determined from the signal 
curve. Caution is, however, to be exercised if the source heat flux decreases 
slowly, as in Fig. 2. 

Equations ( 13) and ( 14) will also be valid if a assumes a negative value, 
i.e. if a = --m. The information furnished by eqn. (15) will then only be 
valid if the duration z, of the decreasing heat flux is small compared with 
the greater time constant h. In the case of Fig. 2, however, z, is a multiple 
of h. When the data valid for this case are introduced into eqn. (13), this 
furnishes the result t, < z,. As t can never, however, be smaller than z, the 
result is an unreal one and does not describe the temporal position of the 
maximum of x(t). The true position is z, which is found by zeroing the first 
derivative of eqn. (11) and resolution with respect to z. This can also be 
seen directly in Fig. 2. Whether the methods to determine the time constants 
can be applied to a curve x(t) can also be checked by plotting ln[x(t)] against 
t for t > t,. If a straight line is obtained for only the smallest section of the 
descending branch of the signal curve, the curve will be unsuitable for 
determining h and k. 

THE COMPLEXLY VARIABLE HEAT FLUX 

In the preceding section, it was shown that it is possible to integrate 
exactly eqn. (2) or (3) for the linearly variable source heat flux in order to 
calculate the associated signal curve. The task of transforming the signal 
curve into the underlying source flux curve is, therefore, basically reversible. 
In the case of a source heat flux that is completely variable with time, the 
integration of eqn. (2) must, however, be replaced by a summation. 
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Any source heat flux 0 that is complexly variable with time can be sub- 
divided into temporal sections so that, in such a section AZ, a linear 
variation of the heat flux can be assumed to a good approximation. The 
total duration z, of the complex event is thus subdivided into y1 sections AZ, 
the number n being greater, the greater the variation of @ with the time z 

AZ = z,/n (16) 

Within the time interval AZ, the measure of time [ is introduced for which 

5 E [0, AZ] and 5, = AZ (17) 

are valid. Thus, according to eqn. (10) and on account of eqn. (4) @ = 
ql + a, [, the following is valid for the first section 

xl=~~l~~-~~l{~~~~+~~i-~,~~~~~~-~~-i~/~l 

-4h +d -44 exp[-(t 4)/M 

-&, -44 expF~P4 +4q, -a& exp(-t/k)} 
For the ith section, the following applies 

xi = [ l/(h - k)] {h(qi + ait - a,h) exp{ -[t - (i - 1)Az - Q/h} 

-k(qi+a,[-aik)exp{-[t-(i-l)Az-[l/k} 

- h(qi - a$~) exp{ -[t - (i - l)Az]/h} 

+ k(qi -a&) exp{ -[t - (i - l)Az]/k)) 

with t - (i - 1)Az 2 5. 
As a result by summing all the component curves 

(18) 

At> = i XiCt> 
i= I 

(19) 

is obtained as a response x(t) to a source heat flux that varies complexly 
with time and of duration z,. 

Figure 3 shows the retransformation of the source flux curve O(z) obtained 
from the signal curve x(t) for the thermal decomposition of magnesium 
hydroxide into the signal curve, as an example of the application of the 
method given by eqns. (18) and (19). In this case, the source heat flux is 
directed into the decomposing sample, which constitutes a heat sink. Figure 
3 illustrates that the reversal by subdivision of Q(z) into n = 35 temporal 
sections and application of the method to these has yielded satisfactory 
results. The accuracy can be arbitrarily increased by increasing n. 

USE OF THE SIGNAL CURVE CALCULATION FOR CHECKING A 
REACTION-KINETIC MODEL 

Heat flux calorimeters, particularly the DSC type, have, in many cases, 
been used successfully for reaction-kinetic investigations of relatively slow 
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Fig. 3. Retransformation of Q into xcalc with eqns. (18) and (19). Q had been obtained 
by transformation of xernp with eqn. (2). The signal curve 1 emp(t) had been plotted during 
the thermal decomposition of 7.33 mg Mg(OH), in the Netzsch DSC444 at a heating 
rate of 20 K min-‘. The time constants were h = 12.13 s and k = 0.483 s. The caloric 
sensitivity was E = 14.47 nV mW_‘, the thermopile gradient (T = 970 PV Km’ and the ther- 
mal conductivity resistance R, = 0.01492 K mW_‘. In this case, X/E is thus the effluent heat 
fhX. 

reactions proceeding according to a simple pattern. But errors are possible, 
all the same, when the equivocal concept of “slow” is defined too widely. As 
shown in Fig. 3, it will already be necessary to de-smear the signal curve 
(transform it into the source flux curve) if the half-time of the reaction 
is approximately 17 times greater than time constant h = rl. Not x but 
0 describes the reaction course correctly. A simple method for carrying 
out the transformation has been described in Part 1. But an analysis of the 
exactly determined source flux curve in order to clarify the reaction mecha- 
nism, can be very difficult or even impossible with complex reactions 
because too many quantities that vary in the course of the reaction are 
covered by a single curve. 

In the case of reactions with a complex course, other methods in addition 
to thermal analysis must be used to investigate the mechanism [6]. For this, 
classical chemical procedures and physical methods such as spectrometry 
are suitable. When the investigation results ultimately allow a reaction- 
kinetic model of the reaction course to be established, this can be checked 
by a test in the heat flux calorimeter; the model and eqns. (18) and (19) are 
used to calculate the signal curve which is compared with the curve found 
by experiment. This checking procedure is represented below. For the sake 
of simplicity, it will be assumed that the calorimeter emits x as the effluent 
heat flux. 
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As soon as a reaction-kinetic model is available, it is used to represent the 
reaction rate in the form of the rate of conversion in a formula. As a 
generalization, the rate of conversion Y = dcc/dt can be written 

Y = K( @)f(CX) (20) 

The particular form of f(a) is given by the mechanism. The so-called rate 
constant K(O) is a function of the temperature T which can, in turn, be a 
function of time due to the gradual heating by reaction heat and/or due to 
a superimposed variation in T with t, for example, when the calorimeter is 
used in the scanning mode, i.e. 0 = T(t). As c1 is also a function of the time 
t, the following is obtained for the variation of Y with time 

dr 4K(@)lf(cc) + K(O) W(41 da d[K( @>I 
dt= dt 

--_= 
da dt dt + M@)12 

(21) 

To adapt eqns. (20) and (21) to eqns. ( 18) and ( 19), t in eqns. (20) and 
(21) is replaced by z and [, respectively. As in the preceding sections, z is 
the measure of time for the source heat flux, and, hence, also for the 
reaction, [ is the measure of time within a time section AZ, and t is the time 
of observation which is identical with z during the reaction time but then 
extends beyond the latter. 

At the instant z, the reaction-induced source heat flux is 

O(z) = -Y(z)A,H (22) 

where A,H is the reaction enthalpy for the used mass which reacts until 
equilibrium is reached. To achieve a good fit of the calculated curve X(t) to 
the experimental curve x,_ (t), - A,H is taken from the graphical or 
numerical integration of xemp (t). It is necessary here to carry out the baseline 
correction which must also be considered in this investigation. 

The duration of the reaction is z,. Regarding the reaction rate Y(Z), the 
variable z is subdivided into IZ sections of duration AZ = z,/n, so that 
linearity in such a time section may be assumed, to a good approximation, 
for both T(Z) and 4(z) within these sections. In AZ, the measure of time c is 
introduced, which runs from 0 to c, = AZ. 

At the instant when the reaction starts, t = z = 0 and CI = 0; this does not, 
however, apply to r = da/dz and dr/dz. The degree of conversion CC(Z) to be 
entered into r(z) can be determined as follows 

Aia = [ri_ l + (dr/dz)i_,(A~/2)]A~ 

and 

(23) 

a(Z) = C Aia 
i= I 

(24) 
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where v are the steps selected between 0 and the instant z, i.e. vAz = z. The 
AZ selected must be so small that any additional reduction yields a result for 
CC(Z) that is practically identical with the result first calculated. 

When the Arrhenius formulation is used for the coefficient K( 0) in eqn. 
(20), K(0) = KT exp( -EA/RO), where 

ai-1 = Ti-1 +p[ (25) 

is set for 0, to a first approximation, and /I is the heating rate in the 
scanning operation. For i = 1, To = T(O), i.e. the temperature at the begin- 
ning of the reaction. With these specifications, the following is to be entered 
into eqn. (21) for d[K( @)]/dt 

d[K(@)l =K EAP -E+,/RO 
dt TRe (26) 

As Tip, is very great compared with PC, it is possible to consider 0 to be 
constant and to set 0 = Ti_ , + jAz/2 when AZ is small enough. This allows 
eqn. (21) to be evaluated from eqns. (23)-(26). 

With the specifications selected, 4(z) is also subdivided into n sections of 
duration AZ such that during AZ a linear development with the time c may 
be assumed. In the ith section, 4i([) = qi + ai(‘. 

According to eqn. (22) 

qi = -ri_ ,A,H 

and according to eqn. (21) 

(27) 

ai = -(dr/dz),_,A,H (28) 

Equation (27) is valid for the beginning of every time section AZ, where the 
temperature always has a fixed value. This value is Ti_ 1 (because of [ = 0) 
and is to be introduced into the Arrhenius formulation for the evaluation of 
eqn. (27). With the values calculated from eqns. (27) and (29, eqn. (18) is 
used to calculate xi. 

The first steps will be described briefly. First the component curve xl, 
which starts at the beginning of the reaction is obtained. At the point 
t = AZ, the ordinate of this point is read off from x,. This allows the 
difference AT between the temperature of the reacting sample and the 
temperature To imposed by the scanning to be determined, as x corresponds, 
or is proportional, to this temperature difference, i.e. AX = AT. Provided 
that the calorimeter outputs x as the temperature, the proportionality factor 
A is 1. If, however, x is output as effluent heat flux, as in this case, A is the 
thermal conductivity resistance Rn which is also a function of temperature 
and must be known as such. Now the temperature of the reacting sample at 
t = AZ can be estimated from 

Tl = To + PAZ + AXI (t = A4 
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for the calculation of Y] with K(T) and 

O1 = T, + PAZ/~ 

for the calculation of dr/dz. 

(29) 

For the second section, i.e. i = 2, T,, or rather 0,) is introduced into 
eqns. (26), (27) and (28), and with these, x2 is calculated using eqn. (18). 
Then x1 and x2 are added 

xs, = Xl + x2 

Now the ordinate is read off on xs, at the point t = 262 to estimate T2 for 
the calculation of x3 

T2 = To + 2/?Az + AX& = 2Az) 

O2 = T2 + PAZ/~ 

This pattern is followed further until the following intermediate stage is 
reached by summing the component curves x1 to xy: 

xs, = i xi (30) 
i=l 

The ordinate is picked off from xs,, at the point t = vAz in order to estimate 
TV according to 

T,. = To + $Az + AXs,,(t = VAZ) (31) 

The mean temperature within each interval AZ is larger by the term PAZ/~, 
i.e. here O,, = TV + PAZ/~. The result serves to calculate xv+, , etc. At the 
end, the final result is obtained 

XCt) = i Xi 
i= 1 

(32) 

When the signal curve x(t) calculated according to eqn. (32) agrees satisfac- 
torily with the X._,,,(t) found by experiment, the model being checked can be 
considered confirmed. 

CONCLUSION AND OUTLOOK 

The matematical handling of the events in heat Aux calorimeters shows 
how the signal from the calorimeter x(t) is associated with the source heat 
flux Q(t). The relation between O(t) and X(t) is described with sufficient 
accuracy by eqn. (2). The application of a differential equation of an order 
higher than second is therefore not required here, because the time con- 
stants represent a sequence which decreases so rapidly that the products of 
the higher differential quotients and the coefficients formed from the time 
constants would become practically insignificant. 
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Equation (2) contains two time constants. Part 1 of this investigation 
deals with the mathematical bases of the experimental determination of 
these constants. It is obvious that the more accurate the determination of 
the time constants, the more accurate the transformation of the signal curve 
x(t) into the source heat flux curve Q(t). Q(t) reflects the reaction event to be 
investigated, whereas x(t) is a “smeared” reflection. 

The time constants represent products of heat capacities and thermal 
conductivity resistances and are, therefore, temperature-dependent. To de- 
termine the dependence of the time constants on the temperature, these 
must be determined at several temperatures. There is also, however, an 
influence exerted by the kind and mass of the reactive substance to be 
examined in the heat conduction calorimeter, which chiefly affects the 
greater of the two time constants. Provided that this substance is very 
similar to the inert substance used for calibration in terms of thermal 
properties and mass, no problems arise. Otherwise, a correction must be 
applied to the greater of the two time constants. The higher the share of the 
calorimeter-specific heat conduction resistance and of the heat capacity in 
the total heat conduction resistance and in the total heat capacity, the 
smaller the correction necessary. Furthermore, the time constants will be 
influenced if flowing gases are used. The use of auxiliary gases must 
therefore be taken into account when the calibration is carried out. 

In the course of the reaction or of a phase transition, the thermal 
conductivity resistance in the substance being examined often changes. The 
influence of this phenomenon can be kept small when small layer thick- 
nesses are used. 

A mathematically exact procedure to transform x(t) into O(t) should be 
reversible, i.e. when Q(t) is given, it should be possible to calculate x(t). The 
reversion would offer the possibility of checking kinetic models for their 
correctness by using thermoanalytical measurements. 

For a source heat flux Q(z) that is linearly variable in the time interval 
from t = 0 to t = z,, the exact integration of eqn. (2) is possible in the form 
of eqn. (3). When the time constants h and k are known, this allows the 
signal curve x(t) as a response to m,(z) to be calculated. The integration 
result is given by eqn. (10). 

If the source heat flux Q(z) is a complex time function, the integration of 
eqn. (2) is replaced by the sum of a great number of partial integrals of the 
type of eqn. (10). By increasing the number n of the terms in the sum, the 
accuracy can be arbitrarily improved. The procedure is described by eqns. 
( 18) and ( 19). Figure 3 shows an example of the retransformation of the 
curve Q(t), obtained by transformation of x(r), into the original curve x(t) 

which was plotted for the thermal decomposition of magnesium hydroxide 
in the Netzsch-DSC 444. Here, n is 35. 

Finally, the application of the procedure defined by eqns. ( 18) and ( 19) 
to the examination of reaction-kinetic models is presented. These models 
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can be obtained by investigation of the reaction using several methods. 
Whether such a model describes the mechanism of a reaction formally and 
correctly can be checked thermoanalytically according to the pattern de- 
scribed above. The necessary experiment is carried out in a heat flux 
calorimeter in isoperibolic or scanning operation. The scanning mode allows 
a temperature variation to be increased in the course of the reaction. The 
principle of the model test consists of a comparison between the signal curve 
x(t), calculated on the basis of the model, and the curve I_,, obtained by 
experiment. The procedure for the calculation is based on the set of 
equations, eqns. (18) -( 32). 

It remains to examine the extent to which the calculation procedures 
developed for heat flux calorimeters can be applied to power-compensated 
differential scanning calorimeters. In these instruments, the calorimeter- 
specific thermal conductivity resistances and heat capacities are generally 
substantially smaller than those of heat flux calorimeters. As a result, the 
time constants are smaller than in heat flux calorimeters; therefore the 
influence of the mass and of the thermal properties of the substance under 
examination on the greater time constant, h = zl, is much more appreciable. 
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