Calorimetric investigation of PrCl₃–NaCl and PrCl₃–KCl liquid mixtures

M. Gaune-Escard^{a,*}, L. Rycerz^b, W. Szczepaniak^b and A. Bogacz^b

^a IUSTI, UA 1168 CNRS, Université de Provence, Centre de St Jérôme, av. Escadrille Normandie Niemen, 13397 Marseille Cédex 20, France

^b Institute of Inorganic Chemistry and Metallurgy of Rare Elements, Technical University, Wybrzeze St. Wyspianskiego 27, 50 370 Wrocław, Poland

(Received 22 July 1993; accepted 25 August 1993)

Abstract

The present work is part of the thermodynamic research performed on the LnCl₃-MCl systems (where Ln is lanthanide and M is alkali metal). The molar enthalpies of mixing $\Delta_{\text{mix}} H_{\text{m}}$ in the NaCl-PrCl₃ and KCl-PrCl₃ liquid binary systems were measured at 1122 K over the whole composition range under argon at atmospheric pressure, with an accuracy of about 6%. The apparatus used was a Calvet-type high-temperature microcalorimeter and mixing of the two liquid components was obtained by the break-off ampoule technique. In the systems, the enthalpies of mixing values are negative, with a minimum value of about -7and -16 kJ mol^{-1} for NaCl-PrCl₃ and KCl-PrCl₃, respectively, at $x_{PrCl_3} \approx 0.4$. These values are very similar to those relative to the systems MCl-LnCl₃ previously investigated. The molar enthalpies of formation $\Delta_{\rm f} H_{\rm m}({\rm K}_3 {\rm PrCl}_6, {\rm l}, 1122 {\rm K})/{\rm kJ} {\rm mol}^{-1}$, $\Delta_{\rm f} H_{\rm m}({\rm Rb}_3 {\rm PrCl}_6, {\rm l}, {\rm rcl}_6, {\rm l}, {\rm rcl}_6, {\rm l}, {\rm rcl}_6, {\rm rcl}_$ $1122 \text{ K}/\text{kJ} \text{ mol}^{-1}$ and $\Delta_f H_m (Cs_3 \text{PrCl}_6, 1, 1122 \text{ K})/\text{kJ} \text{ mol}^{-1}$, according to the reaction $3MCl(1) + PrCl_3(1) = M_3PrCl_6(1)$, are equal to -55.9, -66.4, and -80.4 kJ mol⁻¹, respectively, and are almost identical (in the limits of experimental uncertainty) to those of the compounds M₃LnCl₆ (where M is K, Rb, Cs, and Ln is La, Ce, Nd) previously investigated. The least-squares coefficients A, B, C, D and E of the equation for the interaction parameter $\lambda = A + Bx + Cx^2 + Dx^3 + Ex^4$ (in kJ mol⁻¹) are presented.

INTRODUCTION

As part of a general research program on the thermodynamic properties and electrical conductivities of MCl–LnCl₃ liquid mixtures (where M is Li, Na, K, Rb, Cs, and Ln is La, Ce, Pr, Nd) [1, 2], the present work reports the experimental enthalpies of mixing of the NaCl–PrCl₃ and KCl–PrCl₃ liquid systems. A comparison with the analogous LaCl₃- [3], CeCl₃- [4] and NdCl₃-based mixtures [2] is also presented.

In addition, the enthalpies of formation for all the liquid $PrCl_3$ -MCl melts (where M is Li, Na, K, Rb, Cs) at the composition $x_{PrCl_3} = 0.25$ were determined.

^{*} Corresponding author.

EXPERIMENTAL

Chemicals

 $PrCl_3$ was synthesized from $Pr_4O_{11}(99.9\%)$ produced by Hydromet Co. (Kowary, Poland). The main steps of this synthesis are the same as for $NdCl_3$ which has been described in detail elsewhere [2]. The $PrCl_3$, obtained after successive distillations, was of high grade (min. 99.9%). The MCl alkali chlorides (where M is Li, Na, K, Rb, Cs) were Merck Suprapur reagents (min. 99.9%). Before their use in the calorimeter, the alkali chlorides were purified and treated by progressive heating to fusion under gaseous HCl atmosphere; excess HCl was removed from the melt by argon. The samples were stored in a glove-box.

Procedure

The mixing experiments were all of the simple liquid-liquid type under argon at atmospheric pressure. The calorimetric apparatus, a Calvet-type high-temperature microcalorimeter, the mixing devices used and the experimental methods adopted have all been described in some detail elsewhere [5]. The two salts were mixed by the break-off ampoule technique.

Calibration of the calorimeter was performed with NIST α -alumina [6]; known amounts of alumina were dropped directly into the melt. The surface of the thermograms was automatically integrated by a computer.

The experimental uncertainty on calibration was about 3%; the experimental uncertainty for the enthalpy of mixing data is estimated at 6%, because they were obtained from independent experiments.

RESULTS

Calorimetric experiments were carried out at 1122 K for both systems.

The experimental enthalpies of mixing $\Delta_{mix}H_m$ are given in Tables 1 and 2, and are plotted against composition in Figs. 1 and 2. In evaluating the

TABLE 1

Molar enthalpies of mixing $\Delta_{mix} H_m$ and interaction parameters λ of the NaCl-PrCl₃ liquid system at T = 1122 K

x_{PrCl_3}	$-\Delta_{\rm mix}H_{\rm m}/{\rm kJ}~{ m mol}^{-1}$	$\lambda/kJ mol^{-1}$	x_{PrCl_3}	$-\Delta_{\rm mix}H_{\rm m}/{\rm kJ}~{ m mol}^{-1}$	$\lambda/kJ mol^{-1}$
0.104	3.27	-35.10	0.599	6.66	-27.73
0.173	4.85	-33.90	0.675	5.37	-24.48
0.249	6.15	-32.89	0.751	4.50	-24.06
0.250	6.25	-33.33	0.800	3.59	-22.44
0.273	6.21	-31.29	0.856	2.83	-22.96
0.386	7.26	-30.63	0.900	2.02	-22.44
0.499	6.87	-27.48	0.953	0.800	-17.86

TABLE 2

Molar enthalpies of mixing $\Delta_{mix}H_m$ and interaction parameters λ of the KCl-PrCl₃ liquid system at T = 1122 K

x_{PrCl_3}	$-\Delta_{\rm mix}H_{\rm m}/{ m kJ}~{ m mol}^{-1}$	$\lambda/kJ \text{ mol}^{-1}$	x_{PrCl_3}	$-\Delta_{\rm mix}H_{\rm m}/{\rm kJ}~{\rm mol}^{-1}$	$\lambda/kJ \text{ mol}^{-1}$
0.947	2.01	-40.05	0.400	15.9	-66.35
0.897	1.23	-13.28	0.350	16.3	-71.52
0.850	3.79	-29.74	0.273	15.5	-78.22
0.801	6.49	-40.82	0.250	14.0	74.56
0.748	7.43	- 39.48	0.194	12.4	-79.00
0.711	9.74	-47.41	0.150	10.3	-81.14
0.659	12.1	-53.75	0.0896	7.89	-96.72
0.601	12.8	-53.45	0.0734	4.57	-67.19
0.548	14.3	-57.72	0.0397	2.75	-72.01
0.470	15.4	-61.80	0.0101	0.530	-53.01

results of our measurements, all experimentally uncertain data were disregarded, as when evaporation or poor homogeneity of the melt during mixing were noticed; moreover, in order to improve the overall accuracy, some experimental points were obtained as the average value of several runs.

Figures 3 and 4 indicate for both systems the composition dependence of the interaction parameter λ

$$(1-1)^{1/4}$$

 $\lambda = \Delta_{\rm mix} H_{\rm m} / x_{\rm MCl} x_{\rm PrCl_3}$

Fig. 1. Molar enthalpies of mixing $\Delta_{mix}H_m$ of the NaCl-PrCl₃ liquid system at T = 1122 K.

Fig. 2. Molar enthalpies of mixing $\Delta_{mix}H_m$ of the KCl-PrCl₃ liquid system at T = 1122 K.

which is representative of the energetic asymmetry in these melts. The corresponding values of λ are also given in Tables 1 and 2. For each system, the values of λ were fitted by the method of least squares to polynomials of x_{PrCl_3} ; the results are given in Table 3.

Fig. 3. Variation of the interaction parameter $\lambda = \Delta_{mix} H_m / x_{PrCl_3} (1 - x_{PrCl_3})$ with composition for the NaCl-PrCl₃ liquid system at T = 1122 K.

Fig. 4. Variation of the interaction parameter $\lambda = \Delta_{mix} H_m / x_{PrCl_3} (1 - x_{PrCl_3})$ with composition for the KCl-PrCl₃ liquid system at T = 1122 K.

TABLE 3

Least-squares coefficients for the equation of λ for the liquid alkali chloride-praseodymium chloride mixtures $\lambda = A + Bx + Cx^2 + Dx^3$ in kJ mol⁻¹

System	A	В	С	D	
NaCl-PrCl ₃	-37.143	17.865	-	_	
KCl–PrCl ₃	- 59.812	- 257.221	953.361	-1107.106	

TABLE 4

Molar enthalpies of formation $\Delta_f H_m(M_3 \text{LnCl}_6, l, T)/(kJ \text{mol}^{-1})$ of the liquid mixtures according to the reaction $3MCl(l) + \text{LnCl}_3 = "M_3 \text{LnCl}_6"(l)$ (where M is Li, Na, K, Rb, Cs; Ln is La, Ce, Pr, Nd)

	$\Delta_{\rm f} H_{\rm m}/{\rm kJ}~{\rm mol}^{-1}$	<i>r</i> _{M+} /pm ^e			
	LaCl ₃ ^a 1173 K	CeCl ₃ ^b 1118 K	NdCl ₃ ° 1122 K	PrCl ₃ ^d 1122 K	
LiCl	-6.7	-5.8	-6.9 (1065 K)	- 6.1	74
NaCl	-27.6	-26.7	-24.8	-25.0	102
KCl	-52.0	- 55.7	-55.2 (1065 K)	- 55.9	138
RbCl	-65.7	-68.2	-68.8	-66.4	149
CsCl	-83.7	-80.8	- 80.8	-80.4	170

^a Calculated from ref. 3. ^b Calculated from ref. 4. ^c Calculated from ref. 2. ^d This work. ^e From ref. 7.

Several experiments were also conducted in order to determine accurately the enthalpy of formation at $x_{PrCl_3} = 0.25$ for all the MCl–PrCl₃ systems (M is Li, Na, K, Rb, Cs), i.e. the enthalpy variation related to the reactions

$3MCl(1) + PrCl_3(1) \rightarrow "M_3PrCl_6"(1)$

The notation " M_3PrCl_6 " was adopted because there is no compound of the type M_3PrCl_6 with LiCl and NaCl.

The experimental values are reported in Table 4. The same table also includes analogous values obtained for the mixtures of alkali chlorides with $CeCl_3$ [4], $LaCl_3$ [3] and $NdCl_3$ [2]. The values of the ionic radii used are also indicated [7] in Table 4.

DISCUSSION

The melts investigated, namely NaCl-PrCl₃ and KCl-PrCl₃, are characterized by negative enthalpies of mixing. For both systems, the minimum of the enthalpy of mixing is shifted toward alkali-chloride-rich compositions and is located in the vicinity of $x_{PrCl_3} \approx 0.4$.

These results are almost identical, within experimental uncertainty, to those found previously for the NaCl–NdCl₃ and KCl–NdCl₃ molten salt mixtures [2]. They are also very similar to those obtained by Papatheodorou and Østvold [3] and Papatheodorou and Kleppa [4] for the analogous mixtures MCl–CeCl₃ and MCl–LaCl₃. This is not surprising in view of the great similarity between the physicochemical properties of LaCl₃, CeCl₃, PrCl₃ and NdCl₃.

However, our results were also compared with those obtained for the $KCl-PrCl_3$ system by Savin et al. [8]. The comparison is reported in Table 5: their enthalpy values obtained indirectly at 3 compositions by the drop method differ from ours by 10-15%.

The composition dependence of the interaction parameter λ for the NaCl-PrCl₃ system is almost linear. For the KCl-PrCl₃ system, the compo-

TABLE 5

Molar enthalpies of mixing $\Delta_{mix} H_m$ of the KCl-PrCl₃ system: comparison with the data of Savin et al. [8]

	$A H / k I mol^{-1}$	$-\Lambda - H / k I mol^{-1}$	
^A PrCl ₃	$-\Delta_{\rm mix} n_{\rm m}/{\rm KJ}$ more	$-\Delta_{\rm mix} n_{\rm m}/{\rm K}$ more	
	T = 1143 - 1163 K	T = 1122 K	
	Savin et al. [8] ^a	This work	
0.500	-13.6	- 15.1	
0.333	-13.9	-16.1	
0.250	-11.9	-14.0	

^a Data recalculated for one mole of mixture in kJ mol⁻¹.

Fig. 5. Dependence of the molar enthalpy of formation $\Delta_{f}H_{m}(M_{3}\text{LnCl}_{6}, l, T)/(kJ \text{ mol}^{-1})$ of the liquid mixtures $M_{3}\text{LnCl}_{6}$ on the alkali metal ionic radius $r_{M^{+}}$: \blacklozenge , LaCl_{3} -MCl at T = 1173 K; \blacksquare , CeCl_{3} -MCl at T = 1118 K; \blacklozenge , PrCl_{3} -MCl at T = 1122 K; \blacktriangle , NdCl_{3} -MCl at T = 1122 K and T = 1065 K (where M is Li, K).

sition dependence of λ is somewhat more complicated: a broad minimum appears to exist at $x_{PrCl_3} \approx 0.2-0.3$; the relative changes in λ are smaller in the alkali-chloride-rich region than in the praseodymium-chloride-rich region. Similar variations in λ were also observed for the corresponding MCl-LaCl₃, MCl-CeCl₃ and MCl-NdCl₃ mixtures; for all the KCl-LnCl₃ systems, the minimum in λ was attributed to the formation of LnCl₆³⁻ complexes in the alkali-chloride-rich mixtures.

The systems under investigation all exhibit different compounds in the solid state. For NaCl-PrCl₃, neither Novikov et al. [9] nor Shevtsova et al. [10] reported any compound; this was confirmed by Desyatnik et al. [11]. However, Mochinaga et al. [12] and Hattori et al. [13] found $3PrCl_3 \cdot NaCl$, which melts incongruently at 860 K. Seifert et al. [14] reported only the compound Na₃Pr₅Cl₁₈, with an incongruent melting at about 873 K.

Two or three compounds have been found in the KCl-PrCl₃ system: $3KCl \cdot 2PrCl_3$ which melts incongruently at 888 K [9]; $2KCl \cdot PrCl_3$ which melts incongruently at 893 K [9], 898 K [11], 890 K [14]; K₃PrCl₆ which melts congruently at 948 K [9], 963 K [11], 945 K [14]. According to ref. 14, solid K₃PrCl₆ only exists from 762 K (formation) up to 945 K (melting).

In spite of the above contradictions, the phase diagrams of the NaCl-PrCl₃ and KCl-PrCl₃ systems exhibit many similarities with the analogous NaCl-NdCl₃ and KCl-NdCl₃ systems.

 $PrCl_3$ and $NdCl_3$ are probably associated in the liquid state [15] and values of the equivalent electrical conductivity, at a fixed temperature, are very similar [16].

These results show that the systems under investigation behave like the analogous mixtures with NdCl₃. Figure 5, which displays the dependence of the enthalpy of formation $\Delta_f H_m(M_3 \text{LnCl}_6, l, T)$ on the ionic radius of the alkali metal r_{M^+} , clearly indicates that the same behaviour can be observed with the LaCl₃-MCl and CeCl₃-MCl systems.

The enthalpy of formation changes linearly with the ionic radius of the alkali metal and is the same for the four series of mixtures.

REFERENCES

- 1 M. Gaune-Escard, A. Bogacz, L. Rycerz and W. Szczepaniak, Mater. Sci. Forum, 73-75 (1991) 61.
- 2 M. Gaune-Escard, A. Bogacz, L. Rycerz and W. Szczepaniak, in preparation.
- 3 G.N. Papatheodorou and T. Østvold, J. Phys. Chem., 78 (1974) 181.
- 4 G.N. Papatheodorou and O.J. Kleppa, J. Phys. Chem., 78 (1974) 178.
- 5 M. Gaune-Escard, in R. Gale and D.G. Lovering (Eds.), Molten Salt Techniques, Plenum Press, New York, London, 1991, Chapt. 5.
- 6 K.K. Kelley, US Dept. of the Interior, Bureau of Mines, Washington D.C., Bull. 476, 1949.
- 7 A.G. Sharpe, Inoganic Chemistry, Longman, New York, 1986, p. 146 and 659.
- 8 V.D. Savin, N.P. Mikhailova and V.A. Morozova, Russ. J. Phys. Chem., 53 (1979) 797.
- 9 G.N. Novikov and A.K. Baev, Zh. Neorg. Khim., 6 (1961) 2610.
- 10 Z.N. Shevtsova, E.N. Korzina and B.G. Korshunov, Zh. Neorg. Khim., 7 (1962) 2596.
- 11 V.N. Desyatnik, I.I. Trifonov, T.A. Pobirchenko and G.A. Lebedev, Izv. Vyss. Uchebn. Zaved. Tsvetn. Metall., 1 (1987) 124.
- 12 J. Mochinaga, H. Othani and K. Igarashi, Denki Kagaku, 49 (1981) 19.
- 13 T. Hattori, H. Ikezawa, R. Hirano and J. Mochinaga, J. Chem. Soc. Jpn., 6 (1982) 952.
- 14 H.J. Seifert, J. Sandrock and J. Uebach, Z. Anorg. Chem., 555 (1987) 143.
- 15 J. Mochinaga, Y. Iwadate and K. Fukushima, Mater. Sci. Forum, 73-75 (1991) 61.
- 16 J. Mochinaga, Y. Iwadate and K. Igarashi, J. Electrochem. Soc., 138 (1991) 3588.