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Abstract 

A general study of the heat transfers inside the cell of a differential scanning calorimeter 
is presented. In Part 1 of this study, the crystallization of undercooled droplets of an 
emulsion is analysed. It is demonstrated that the classical assumption of a uniform tempera- 
ture in the cell cannot explain the shape of the thermogram. The model, which considers the 
local heating due to the exothermic transformations of the droplets and the erratic character 
of the crystallizations, shows, despite the small size of the cell, important temperature 
gradients and explains the shape of the thermogram upon cooling. The analysis indicates that 
the undercooling is well characterized by the beginning of the peak and not by the peak 
minimum as suggested before. 

LIST OF SYMBOLS 
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specific heat of the emulsion in J K-’ kg-’ 
specific latent heat of fusion ( ~0) in J kg-’ 
external exchange coefficient for the cell in W rnp2 s- ’ 

probability of crystallization of one droplet per unit time in ss’ 
heat conductivity of the emulsion in W m-’ K-’ 
number of crystallized droplets per unit volume in mp3 
total number of droplets per unit volume in rnp3 
mass fraction of the dispersed substance 
heat source in J mp3 ss’ 
radius in m 
inner radius of the cylinder in m 
time 
temperature at Y, z and t in “C 
melting temperature in “C 
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programmed temperature of the bath in “C 
initial temperature in “C 
gradient or divergence operator 

Greek letters 

diffusivity of the emulsion in m* ss’ 
cooling rate ( ~0) in “C h-’ 

cp(r, t) local proportion of the crystallized droplets 

P mass density of the emulsion in kg rnp3 

INTRODUCTION 

Many years ago, we presented [l] a study of the thermograms obtained 
through differential scanning calorimetry (DSC) for the steady cooling of an 
emulsion of a supercooled liquid. We used the classical assumptions to 
analyse these DSC curves, particularly the hypothesis of the uniformity of 
the temperature inside the cell. But recent experimental and theoretical 
studies [2, 31 have described in detail the kinetics of heat transfer inside an 
emulsion when the droplets crystallize or melt. These results predict signifi- 
cant temperature gradients, even with a small cell. 

In the present study, we describe models for the heat transfer in an 
emulsion where the droplets transform inside the DSC cells, and the 
consequences of these models for the interpretation of the thermograms. In 
fact, the models for cooling and heating are completely different because of 
the non-symmetry of the crystallization and melting due to the undercooling 
phenomenon, Therefore, the cooling experiments are presented in Part 1, 
whereas the heating experiments are presented in Part 2. 

UNDERCOOLING 

It is well known that on cooling liquids do not crystallize at the melting 
temperature TF but at a lower temperature T. The undercooling, defined as 
AT = TF - T, depends on different parameters [4], the most important of 
which being the volume of the investigated sample. The smaller the volume 
the larger AT. 

A good way to obtain the highest value of AT is to disperse the liquid 
within an appropriate emulsifying medium. The droplets obtained have a 
volume I 1 pm3 and the AT can be very large, for example, 38 K for water, 
more than 100 K for certain organic compounds, and more than 200 K for 
certain metals [4]. 

However, the main feature of undercooling is its erratic character, i.e. 
apparently identical samples do not crystallize at the same time or tempera- 
ture. Thus, it is only possible to determine, for a droplet, its probability of 
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Fig. 1. Experimental curve of the crystallization probability per unit time 2(T) versus 
temperature for hexadecane ( TF = 18°C). 

crystallization per unit time, y(T). As indicated by the theories of nucle- 
ation, e.g. ref. 5, y(T) can be practically zero over a large temperature 
range below TF and then increases sharply. This function can be determined 
experimentally [2]. Figure 1 shows an example for hexadecane (TF = 1 SC). 

Most of the earlier papers concerning the crystallization of dispersed 
droplets of emulsions present the results of DSC experiments during steady 
toolings. A typical thermogram is given schematically in Fig. 2. Its consid- 
erable breadth is explained by the erratic nature of the undercooling of the 
droplets. They do not crystallize at the same time: the crystallizations occur 
successively in the temperature range defined by the width of the peak. A 
“most probable temperature” [l] has been defined, given approximately by 
Tmin the peak minimum temperature. Crystallizations at this temperature 
are most numerous. 

But, as we will demonstrate later, when the kinetics of heat transfer inside 
the DSC cell are considered, the interpretation of the thermograms is quite 
different. However, first we must review the classical theory of differential 
scanning calorimetry in order to criticize its deficiencies. 
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Fig. 2. Schematic thermogram obtained for crystallization of the droplets of an emulsion 

being cooled steadily. 

CLASSICAL THEORY OF DIFFERENTIAL SCANNING CALORIMETRY 

The calorimeter concerned in this study is a Perkin-Elmer apparatus but 
the models can easily be applied to other calorimeters. 

The holder of the calorimeter (Fig. 3) consists of two plates: one 
supporting the cell containing the emulsion (active cell) and the other 
containing a reference cell (generally an empty cell). At each time, the 
apparatus imposes the same temperature at the two plates. Both sample 
holders are in permanent contact with a cold source and with the heaters 
which supply the required energy to control the temperature Tp. An 

\\\\\\\\\\\\\\\\\\\\\- 
\ \\\ 

Fig. 3. Scheme of the apparatus: Cs, total heat capacity of the sample; C,, total heat 
capacity of the reference (container empty); T,, uniform temperature of the sample; TR, 
temperature of the reference; Tp, temperature of both sample holders; R and R’, thermal 
resistances through which the thermal energy flows to or from the sample, or to or from the 
reference, respectively. 
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electronic control system imposes the equality of the temperature Tp of both 
holders. However the heaters work independently of each other; when there 
is a thermal phenomenon in the sample, the heaters provide different powers 
in order to maintain this equality in the temperatures of the holders. 

The thermogram is given by the power difference 

(1) 

According to the classical assumption that the temperature Ts inside the 
active cell is uniform, we can predict the thermogram for the crystallizations 
of the undercooled droplets dispersed within an emulsion as it is steadily 
cooled. 

If dh/dt is the amount of energy released per unit time by the emulsion, 
it is directly proportional to the latent heat of crystallization per unit mass, 
h,, ( >O) and to the number of droplets crystallizing per unit time dN/dt 

dh 
- = p. Vh,, z 
dt (2) 

where p. is the density of the droplet and I/ its volume (we assume that all 
droplets have the same volume). 

The number of droplets which crystallize per unit time is proportional to 
the probability of crystallization per unit time $(Ts) and to the number of 
droplets which remain unfrozen (Nt - N) 

where the total number of droplets is Nt = pPV/p, V, p being the density of 
the emulsion, P its mass fraction (the ratio between the mass of the 
dispersed liquid and the total mass of the emulsion), and V its volume. 

If we define cps = N/N, as the fraction of crystallized droplets, we have 

g = $(Ts)(l - cps> 

dh 
dt = pPhs,~Y(Ts)( 1 - CPS) 

Knowing that the two plates are steadily cooled at a cooling rate p ( CO), 
we have 

Tp = Pt + To (6) 

The conservation of the energy of the sample plate shows that the rate of 
the temperature change in the sample cell with respect to time is (see the 
legend of Fig. 3) 
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dTS ldh 1 -=-- 
dt C, dt + RC, 

-(TP - Ts) (7) 

We can also demonstrate [l-6] that the power exchanged at the reference 
plate is practically constant and equal to (dq/dt),r = PC,. So, to simplify 
the model we will omit this term from the calculation of dq/dt (equivalent 
to a shift of the baseline) which is reduced to 

dq TP - Ts 
dt= R 

At t = 0 we have 

Tp = Ts = To 

dh -0 
dt- 

(8) 

(9) 

(10) 

cps = 0 (11) 
From the initial conditions given by eqn. (9) and the boundary condition 

eqn. (6), qs is determined by eqn. (4), dh/dt by eqn. (5) Ts by eqn. (7) and 
finally the thermogram dq/dt is given by eqn. (8). 

But, as indicated in Fig. 4 for an emulsion of hexadecane, the model is 
not adequate because whatever the value of R (the thermal resistance 
between the active cell and the corresponding plate) the calculated ther- 
mogram does not have a shape similar to the experimental one. Thus, we 
now present a model that considers the heat transfers inside the active cell. 

A MODEL FOR COOLING TAKING INTO ACCOUNT THE HEAT TRANSFERS 

The model is based on the classical equation for the conduction of heat 
with a heat source 4 

dT 
- =aV2T+L 
at PC 

(12) 

where T is the local temperature, a = k/pc is the diffusivity, k the thermal 
conductivity of the emulsion, p its mass density and c its specific heat. The 
heat source 4 is the energy released by the crystallizations of the droplets, 
assumed instantaneous, per unit time and unit volume of emulsion. Similar 
to eqn. (5) we have 

4 = pf’hs,~(TXl - cp) (13) 

where cp is the local fraction of crystallized droplets given by cp = n/n,, n is 
the number of crystallized droplets per unit volume and n, is the total 
number of droplets per unit time. Similar to eqn. (4), we also have 

2 =%(Wl -cp> (14) 



J.P. Dumas et al.lThermochim. Acta 236 (1994) 227-237 233 

5 
8 

2 meal/s 

R=40- 

- experimental 

HEXADECANE 

P = 0.5 fl = -IO’C/min 

-R=IO 

I I I I I I I I w 

-10 -8 -6 -4 -2 0 2 4 6 

Temperature in “C 

Fig. 4. Calculated thermograms for different values of R in the uniform temperature model 
and comparison with the experimental curve (R in “C W-l). 

We have represented the active cell by a cylinder whose dimensions are: 
2& = 4.25 mm for the diameter, and 2 = 0.82 mm for the height of the 
emulsion (Fig. 5). T and q depend on the two space variables r and z and 
on the time t. The system to be solved is 

t’ 0 r 
c 

Fig. 5. Scheme of the cell. 
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dT d2T 1 dT a2T 
-=cI z+;z+p 
at ( > 

+ 
%I(; - cp) y(T) 

2 = Cl- cp)f(T) 

(15) 

(16) 

This is a non-linear system of partial differential equations as a result of 
the non-linearity of the function y(T). 

To take into account the air between the emulsion and the cover of the 
cell, we consider two different heat exchange coefficients h”“’ and h’ext (see 
Fig. 5). The boundary conditions take into account the cylindrical symmetry 

( > aT 0 - 1 

ar o 

= h’=‘( T - Tp) 

(17) 

(18) 

(19) 

(20) 

The initial conditions are 

T(r, z, 0) = Tp(0) = To cp(r, z, 0) = 0 (21) 

Because the thermal conductivity of the air is much smaller than that of 
the metal of the cell, we assume that all the energy is transmitted to the 
plate by the lower boundary of the cell. Moreover, we assume that all the 
parts of the cell are at the temperature of the plate Tp, given by eqn. (6); 
dq/dt is the sum of the thermal fluxes through the walls of the metallic cell 

dq 
dt= ; - 1 h;(T - Tp)ASi (22) 

where hi = h”“’ or h’ext, and AS, is the area of the different boundaries of the 

cell. 

RESULTS 

In the model, h”“’ and h’ext are adjustable parameters. The study of the 
influence of these two parameters has provided two values of heXt and h’ext 
that conform to the experimental thermogram (see Fig. 6). These values, 
found at - 5°C min-‘, also yield good agreement between the experimental 
and theoretical thermograms for all cooling rates /3. The height and width 
are reproduced: this is impossible with the assumption of a uniform 
temperature inside the cell. 
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Fig. 6. Calculated thermograms at different values of h”“’ and h”“‘. 

In Fig. 7 we present the values of T(r, z, t) and cp(r, z, t) during a steady 
cooling for different points inside the cell. The figure is given versus Tp, i.e. 
versus time (eqn. (6)). We also represent on the same scale the thermogram 
and the curve giving dh/dt = j 4 dV (the summation is for the whole 
volume V of the emulsion). 

From these curves, we can observe important temperature gradients in 
the cell that depend on the radius Y or the height z. Despite the smallness of 
the cell, we can observe up to 5°C difference (p = - 10°C min-‘) between 
the central region of the cell and the metallic boundary. There is a 
temperature plateau, more marked in the central region, which is a self 
regulation of the temperature due to local heating by the crystallizations of 
the droplets; this induces a decrease in the probability of crystallization of 
the other droplets [2, 31. 

The actual temperatures of the inflection points of the curves cp(r, z, t) 

giving the local fraction of crystallized droplets, defined as the most 
probable temperatures, corresponding to the temperature of the beginning 
of the peak where the probability y(T) increases sharply, and not to the 
temperature Tmin of the minimum of the thermogram, which is lower. If we 
consider that, physically, the nucleation phenomenon is characterized by the 
temperature range where the probability j(T) sharply increases, this tem- 
perature range is better located by the beginning of the peak (for example, 
the onset temperature) than by the minimum of the thermogram as sug- 
gested before [I]. 
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Fig. 7. Calculated values of T(r, z, t) and q(r, z, t) versus the programmed temperature T, 
for different points: (a) in a median horizontal plane; (b) on the axis; in comparison with (c) 
the thermogram, the curve giving dh/dt and the probability y(T). 
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However, in agreement with ref. 1, the curve dh/dt indicates that about 
50% of the droplets are crystallized when the minimum of the thermogram 
occurs, but if 100% of the droplets are crystallized in the periphery of the 
cell, only 25% are crystallized in the central region. The other droplets will 
only crystallize when the local temperature becomes sufficiently low. 

CONCLUSION 

In this paper, we have shown that the classical assumption of a uniform 
temperature inside the cell cannot explain the shape of the DSC ther- 
mogram obtained during a steady cooling for the crystallization of the 
undercooled droplets of an emulsion. This shape is better described with our 
model which takes into account the heat transfers through the emulsion. 

The analysis indicates the existence of large temperature gradients and 
that the crystallizations of the droplets locally stabilize the temperature at a 
value corresponding to that at which the probability of crystallization y(T) 
increases rapidly. This is close to the onset temperature. Therefore, this 
temperature is more characteristic of the undercooling breakdown than the 
minimum of the thermogram, as indicated in the past. 
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