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Abstract 

A model is presented to explain the shape of the thermogram obtained by differential 
scanning calorimetry of the melting of the crystallized droplets of an emulsion. This model 
is entirely different from the model presented in Part 1 of this study concerning the 
crystallization of undercooled liquid droplets. In spite of the purity of the dispersed 
substance, significant temperature gradients are found, in contrast to the classical assumption 
of a uniform melting temperature. The model also gives the kinetics of the melting of the 
droplets which depends on their location. 

LIST OF SYMBOLS 

specific heat of the emulsion in J K-’ kg-’ 
specific latent heat of fusion ( B-O) in J kg-’ 
exchange coefficient for the droplet in W me2 s-l 
external exchange coefficient for the cell in W m-* s-’ 
heat conductivity of the emulsion in W m-l K-’ 
total number of droplets per unit volume in me3 
mass fraction of the dispersed substance 
heat source in J rnp3 s-’ 
inner radius of the cylinder in m 
time 
temperature at r, z and t in “C 
melting temperature in “C 
programmed temperature of the bath in “C 
initial temperature in “C 
proportion of the droplet which is melted 
gradient or divergence operator 
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Greek letters 

diffusivity of the emulsion in m2 s-l 
heating rate ( >O) in “C h-’ 
mass density of the emulsion in kg rnp3 

INTRODUCTION 

In Part 1 of this work [ 11, we proposed a model describing the heat 
transfers during the crystallization of undercooled droplets of an emulsion 
in the small cell of a differential scanning calorimeter. This model described 
with accuracy the shape of the thermograms. It was also concluded that the 
classical assumption in differential scanning calorimetry (DSC), i.e. the uni- 
formity of the temperature inside the cell [2, 31, is not adequate to describe 
the DSC thermogram. 

This is also the case, upon heating, for melting of the crystallized 
droplets. For the melting of a pure substance, the classical assumption of 
the uniformity of the temperature in the cell gives the theoretical DSC 
thermogram in Fig. 1 [2,3]. The straight line at the beginning of the peak 
corresponds to the strictly constant melting temperature TF; the end of the 
peak has an exponential shape, characteristic of the return to equilibrium. 
But the experimental thermogram in Fig. 2 is significantly different. It 
detects a beginning of melting before the melting temperature TF. This 
could mainly be explained by the impurity of the dispersed substance, the 
surfactant that was chosen being soluble only in the emulsifying medium. 
We will not take into account this distortion, assuming in the model the 
perfect purity of the substance. Moreover, the top of the peak is rounded 
and its tail is quite different. For a long time it was suspected that this 
difference is due to heat transfers inside the cell. Therefore, the experimental 
estimation of these heat transfers by the “factors of form” was applied with 
success to determine the temperatures of the transformations. However no 
information is given on the detail of these transfers [4]. 

In this Part 2, we represent another description for the melting of the 
droplets of an emulsion. It is based on a model that takes into account the 
heat transfers applied to the small cell used in DSC [5]. 

MODEL FOR THE MELTING OF THE DROPLETS OF AN EMULSION 

As in the case of the crystallization, the model is based on the heat 
conduction equation. The difference is that the heat source 4 is endothermic, 
i.e. a heat sink 

dT 
- qV2T+q 
at PC 
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Fig. 1. Example of a thermogram predicted for the melting of a pure substance, under the 
uniform temperature assumption. 

where c( is the diffusivity of the emulsion, p its density, c its specific heat and 
where the sink 4 is given per unit time and unit volume. 

Each droplet is a sink of energy because there is a difference between Tg, 
the temperature of the inner part of the droplet, and T, the temperature of 
the emulsifying medium which surrounds it. This difference can be explained 
by the fact that each droplet is actually surrounded by a relatively thick 
layer of surfactant molecules. 

Except at the time of melting, the energy balance for each droplet is 
(Fig. 3) 
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Fig. 2. Example of an experimental thermogram. 



242 J.P. Dumas et al./Thermochim. Acta 236 (1994) 239-248 

63 h 

a 
Ts 

T 

h 

Fig. 3. Scheme of the droplet when not melting. 

p(J V-C, !$ = -h(T, - T)S (2) 

where V is the volume of the droplet, S its area, p. the density of the droplet 
and co its specific heat; h is an exchange coefficient characteristic of the 
thermal resistance due to the layer of surfactant. 

During the melting (Fig. 4), the energy balance is quite different because 
Tg = TF and the exchanged heat proceeds from the fraction of crystal which 
is melting 

p. Vh,, z = - h( TF - T)S (3) 

where h,, is the latent heat of fusion and X the proportion of droplet already 
melted. 

The droplet temperature remains constant at TF as long as 0 < X < 1, 
until the melting of the last part of the crystal (X = 1). 

Thus, for the unit volume, the energy sink is 

4 = -h(T, - T)Sn, 

where n, = pP/p, V is the total number of droplets per unit emulsion 
volume. P is the mass fraction of the emulsion defined as the ratio between 
the mass of the dispersed liquid and the mass of the emulsion. 

Finally, we have 

where a is the mean radius of the droplets; (T - Tg) is given either by eqn. 
(2) if X = 0 or X = 1, or by eqn. (3) (Tg = TF) if 0 <X < 1. 

melted proportion X 

h 

Fig. 4. Scheme of the droplet during melting. 
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Fig. 5. Scheme of the cell. 

STUDY OF THE DSC THERMOGRAMS 

The principle of differential scanning calorimetry was outlined in Part 1 
[ 11. The apparatus (Perkin-Elmer DSC4) gives dq/dt, the difference between 
the heat powers maintaining the plate supporting the active cell containing 
the emulsion and the plate supporting the reference cell 

g = (z)active cell - @Ire fer ence 

As indicated in Part 1 [I], the power exchanged at the reference plate is 
practically constant and equal to (dqldt),,, = &, /? being the heating rate. 
So, to simplify the model we will omit this term from the calculation of 
dq/dt (equivalent to a shift in the baseline). 

We have modelled the active cell with a cylinder whose dimensions are 
2R,, = 4.25 mm for the diameter and 2 = 0.82 mm for the height of the 
emulsion (Fig. 5). T, Tg and X depend on the two space variables r and z 
and on the time t. The systems to be solved are: 

(i) Before, Tg < TF (X = 0), or after, T, > TF (X = l), the melting 

__ EV- Tg) 

3h dT, 
dt -pocoa(T- TbJ 

(ii) During the melting: T 2 TF and 0 < X < 1 (T, = TF) 

_ -$(T- TF) (7) 

dX 3h 
~=p,h,,cr(T-T~) 

(5) 

To take into account the air between the emulsion and the cover of the 
cell, we consider two different heat exchange coefficients hext and h”“’ (Fig. 
5). So, the boundaries conditions are 
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fl= 2.5’C/mln 
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Fig. 6. Experimental thermogram for the melting of an emulsion of hexadecane compared to 
the calculated thermogram obtained with our model and to the calculated thermogram 
obtained with the classical assumption, at p = 2.5”C min-‘. 

(9) 

(10) 

(11) 

(12) 

where T,, the temperature of the plates, is programmed to be a linear 
function 

Tp = Pt + To (p > 0) 

At t = 0 the initial conditions are 

(13) 

T(r, z, 0) = Tg(r, z, 0) = Tp(0) = To and X(r, z, 0) = 0 (14) 

Because the thermal conductivity of air is very much smaller than that of 
the metal of the cell, we consider that all the energy is transmitted to the 
plate by the lower boundary of the cell. So, dq/dt is the sum of the thermal 
fluxes through the walls of the metallic cell 
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Fig. 7. Same curves as in Fig. 6, but at 10°C min-‘. 

dq 
dt= i -C hi(T - Tp)ASi (15) 

where hi = h”“’ or h’ext. 
To solve the equations and to determine T(r, z, t), T,(r, z, t) or X(r, z, t), 

we used an explicit finite differences method. 

RESULTS 

’ 

The present model depends on an adjustable parameter in addition to h’“’ 
or h’ext, also determined for the model concerning crystallization [ 11, which 
is the exchange coefficient h for the interface between the droplet and the 
emulsifying medium. It is possible to adjust h to have the best fit between 
the calculated and experimental thermograms, particularly for the slope of 
the straight part of the peak, its height or its width. Its value is about 
0.05 W mP2 K-‘. This low value can be explained by the relatively large 
thickness of the surfactant layer surrounding the droplet. 

Figure 6 shows an experimental thermogram for the melting of an 
emulsion of hexadecane (TF = 18.O”C), at 2.5”C min-‘, compared with the 
calculated thermogram obtained with our model, and with the calculated 
thermogram obtained with the classical assumption. We can see that the 
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latter thermogram does not fit at all with the experimental peak, in either 
height or width. Therefore, we definitively discard the interpretation of the 
melting peak by the classical assumption. 

The fit between the experimental and the calculated curves is relatively 
good: the rounded form of the top of the peak is reproduced and its width 
is the same. The height is slightly different, which can be explained by the 
impurities in the hexadecane which also cause the curved shape at the start 
of the peak, as already noticed. Figure 7 shows the same comparison for 
another heating rate (fl = 10°C min-‘) which confirms the good fit. 

Figure 8 presents the temperatures T and Tg at different points of the cell, 
and the corresponding melted fraction X plotted against Tp i.e. versus time, 
from the linear relationship ( 13). This figure also includes the corresponding 
calculated thermogram. Important temperature differences can be observed 
as a function of the radius or the height of the cell. These differences can 
reach 7°C (/I = 10°C min ‘) at certain points. There is a small difference 
between the temperature of the emulsifying medium T, and the inner 
temperature of the droplet T,. It reaches a maximum of about 1.5”C when 
the last part of the solid melts. Melting begins as soon as Tg = T, but it is 
very fast near the metallic boundaries and is slower in the central region. In 
the central region, the melting finishes after the instant of the peak maxi- 
mum, in opposition to the classical assumption which predicts that the end 
of the melting is exactly at the top of the peak. 

CONCLUSIONS 

The model we have developed for the melting of crystallized droplets of 
an emulsion, when it is applied to differential scanning calorimetry, explains 
the shape of the thermograms, whereas the classical hypothesis which 
assumes the uniformity of the temperature in the cell, most certainly does 
not. 

Despite the small dimensions of the cell, we have found important 
temperature gradients, responsible for the shape of the peaks. These gradi- 
ents become more and more important as the heating rate increases. The 
model also predicts the kinetics of the melting of the droplets which depends 
on their location. 
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