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Abstract 

For liquid crystalline pure compounds exhibiting re-entrant phenomena the chemical 
potential difference between two successive phases along the isotherm is supposed to have 
simple pressure dependence. For binary mixtures of such compounds the thermodynamic 
approach called equal Gibbs energy analysis is applied to the study of their pressure-compo- 
sition phase diagrams. Many types of isothermal phase diagrams which exhibit re-entrant 
phase behaviour can be predicted by assuming perfect or non-perfect nature (regular and 
non-zero excess molar volume) of the solutions. For the mesogenic system hexyloxy- 
octyloxy cyanobiphenyl, it is shown that the pressure-composition phase diagram is more 
successfully described with a regular solution hypothesis than with a perfect hypothesis. 
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1. Introduction 

For liquid crystals, mesophases are usually obtained from pure organic com- 
pounds (mesogens) with rod-like molecular structure which consist of a rigid 
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central core (mainly benzenic rings) extended by flexible parts such as aliphatic chains. 
Two main classes of this intermediate phase are the orientationally ordered nematic 
(N) phase with no long-range correlation between the mass centres of the molecules, 
and the layered phases (usually called smectic phases (S)) of which the common feature 
is the arrangement of the molecular centres in equidistant planes. We can distinguish 
mainly the smectic A (S,) and smectic C (So) phases where the molecular orientation 
is, respectively, perpendicular to the layers and tilted with respect to the layer normal. 

Usually, in phase transitions, the higher temperature phase is globally less ordered 
(more symmetric) than the lower temperature phase. This behaviour leads, for rod-like 
mesogens, to normal sequences such as KSNI where the symbols K and I denote 
crystalline and isotropic liquid phases. However, it is not a law of thermodynamics 
that symmetry and global order go hand in hand and, sometimes, a more symmetric 
phase reappears at a lower temperature than the less symmetric one, which leads to 
re-entrant sequences. Of the re-entrant mesophases the most common are the nematic, 
smectic A and smectic C phases [I] which have generally been exhibited by rod-like 
mesogens whose molecules possess a strongly polar end group [2]. 

A considerable amount of experimental work has been carried out for these 
mesogenic systems, in order to study the effect of thermodynamic parameters such 
as pressure, temperature and composition on re-entrant phenomena in their phase 
diagrams. Some efforts to give thermodynamic descriptions of such diagrams have 
been reported using macroscopic approaches for calculating both pressure-temper- 
ature phase diagrams for pure compounds and binary isobaric phase diagrams 
exhibiting one [ 3 - 51 and two [ 6,7] re-entrant mesophases. A variety of isobaric phase 
diagrams of binary mixtures exhibiting double re-entrances have also been treated 
by means of a microscopic approach [ 81, where many types of observed phase diagrams 
were described and new topologies were predicted. 

However, to our knowledge, for binary mesogenic mixtures no systematic studies 
have been undertaken to describe re-entrant phenomena in isothermal pressure-com- 
position phase diagrams. It is the purpose of this paper to present a theoretical study 
in order to predict the P-x curves of polar liquid crystalline mixtures exhibiting 
re-entrant behaviour. For calculating the pressure-composition equilibrium curves, 
the equal G analysis [9], which consists of setting equal the total Gibbs energies of 
two phases in equilibrium, seems to be suitable because of the missing or the 
narrowness of the biphasic regions in phase diagrams for re-entrant systems [ 5,101. 
This also considerably reduces the calculations. The mesomorphous solution hypoth- 
esis, which has already been used successfully [ 111, is retained in this study. 
Furthermore, re-entrant phase diagrams will be described thermodynamically in terms 
of ideal and non-ideal solutions. 

2. Equal G equation 

The general form of the total Gibbs energy for any phase of binary mixtures at 
pressure P and temperature T is 

G(T,P,x) = (1 - X)P, (TJ’J) + v~J’J) (1) 
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in which x is taken to be the mole fraction of component 2, and pi and pL2 are, 
respectively, the chemical potentials of components 1 and 2 in the phase of interest. 
Taking into account the usual expression for the chemical potential of component 

pi(T,P,X) =pT(T,P) +RTln(xi) +pF 

the total Gibbs energy can be written as 

(2) 

G(T,P,x) = (1 - x)pT + xpz + RT[( 10x) ln( 1 -x) + x In x] + GE (3) 

where p: and ,u; are the chemical potentials of pure components. The logarithmic 
term is the ideal Gibbs energy of mixing and the term GE is the excess Gibbs 
energy. Consider now, for a binary system, two phases a and jl the compositions of 
which are respectively xoL and xB. The equilibrium between c( and p, at given 
pressure and temperature, is defined by the criteria that the chemical potentials of 
each component in each phase are equal. However, for rod-like mesogens exhibiting 
re-entrant phenomena, since the enthalpy and volume changes associated with the 
transformations between the phases are very low (50 J mol-’ and 0.01 cm3 mol-’ 
respectively) [ 12,131, the equal G analysis can be used to describe the binary phase 
diagrams and hence leads to a good description of the equilibrium curves. Thus, by 
setting equal the total Gibbs energy (Eq. 3) for u and /? phases, the equal G 
equation is given by 

(1 - x)ApyuB(T,P) + xA/.@ + AGEUs(T,P,x) = 0 (4) 

This relation gives the isothermal or isobaric phase diagram consisting of the phase 
boundary line describing the equilibrium between CI and p phases. In order to 
calculate the isothermal pressure-composition curves, expressions for APT@ and 
AGE@, at a given temperature, are required. 

3. Chemical potential expressions of pure components 

Consider at first the chemical potential ~j+ of pure component i. Since 

and 

T=-XiVT (6) 

Then 

p?(P) - /LL: (Pgs) = v; (PTa)[P - P;q - IPifl ([flZiV: dP)dP (7) 

where P;p is an N-/J transition pressure at temperature T, and VT and xi are 
respectively molar volume and compressibility of pure component i. The difference 
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between the chemical potentials of two phases a and p as a function of pressure is 
then given by 

Ap:@(P) = p;@(P) - pTa(P) 

where Al’:@ is the molar volume change at the transition pressure P;p and noting 
here that /I is considered to be the lower pressure phase. The equilibrium between 
a and j3 will occur for each pressure P when the condition ApL’p(P) = 0 is 
satisfied. If only one possibility of a phase transition between a and /I phases 
exists (normal sequence), the effect of compressibility (which is described by the 
integral in Eq. (8)) can be neglected. However the expression for All:@(P) must 
include the compressibility term in order to take into account the reappearance, 
for pure component i, of the /I phase at higher pressure. This in fact requires that 
the slopes of the chemical potentials versus pressure of a and /I phases must be 
sufficiently different to ensure re-entrant behaviour; in other words the chemical 
potential curves of the two phases must cross twice at the two transition pressure 
Pyl and PTA (Fig. l(a)). For a pure component i to exhibit the re-entrant sequence 
/3-a-& at isotherm T (Fig. l(b)) we suppose in the first approximation a linear 
dependence on pressure of molar volume for each phase following these two 
relations 

V;“(P) = a”P + b” 

VyyP) = dP + bP 

Using Eq. (6) and carrying out the integration in Eq. (8) we obtain 

(94 

(9b) 

A,$=“fi(P) = A V:“P(Pi”BB)[P - P$] + ; [P - P;i12 

where c@ = uB - aa and P;P of Eq. (8) has been called P$, the lower phase 
transition pressure. The phase equilibrium condition A~~@(P$,) = 0 between a and 
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Fig. 1. (a) Chemical potential curves at temperature T of a and /3 phases versus pressure for a 

component exhibiting a P-U-& sequence. (b) Typical pressure-temperature phase diagram for a pure 

component which at temperature T exhibits the sequence &a-&. 
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/? at the higher transition P$, allows c”b to be determined and the expression of 
chemical potential difference can be deduced 

4. Isothermal phase diagrams for w-entrant binary mixtures 

To predict isothermal pressure-composition phase diagrams for re-entrant bi- 
nary mixtures, two hypotheses are considered according to the nature of solutions: 
(i) the perfect solution hypothesis; (ii) the non-perfect solution hypothesis. 

4.1. Perfect solution hypothesis 

With the perfect solution hypothesis, setting the excess Gibbs energies equal to 
zero in Eq. (4) gives 

(1 -x)ApT”fi+~A#=0 (11) 

In this case one should distinguish two situations. Either only one component in 
the mixture exhibits re-entrant behaviour, or both pure components of mixture 
show the same re-entrant sequence at a given temperature. 

In the first situation, for the non-re-entrant component, which we shall call 
component 2, we suppose that the p phase is more stable than the CI phase in the 
pressure range between the transition pressures P$, and P$ of the re-entrant 
component (component 1). The component 2 can, however, exhibit a real or virtual 
[ 1 l] c( phase. Assuming that there is no possibility of transition from the j3 to the 
CI phase for component 2, the following form of ApzUB can be used: 

A@ = AVTus(P - P;q (12) 

where P;fi and AVfj”fi are the pressure and the molar volume change at real or 
virtual transition of component 2. Eq. (11) can be solved, after replacing APT@ and 

AP fm8 by Eqs. (10) and (12), respectively to give the expression of composition as 
a function of pressure 

AVT”fl(P - P”;Q(P$?, -P) 

x = AV,‘T”“(P - P$)(P$ -P) - AV:“s(P - P2)(P”;$, - P$) 
(13) 

Eq. ( 13) allows the equilibrium curve in the isothermal pressure-composition phase 
diagram to be described when only one of the two mixing components exhibits 
re-entrant behaviour. The general form of the isothermal phase diagram likely to be 
experimentally observed in this case is shown in Fig. 2. It can be noted that the 
equilibrium curve of the two phases o! and p is situated entirely between the two 
transition pressures of the re-entrant component. 

In the second situation, where both components of the mixture exhibit the same 
re-entrant sequence the expressions of the chemical potential differences of compo- 
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Fig. 2. The calculated isothermal pressure-composition phase diagram obtained using the perfect 

solution hypothesis when only component 1 exhibits a re-entrant sequence. 

nents 1 and 2 are given by Eq. (10). After substituting Eq. (10) into Eq. (1 l), the 
equal G equation (Eq. (11)) can then be solved for composition as a function of 
pressure. 

This equation allows calculation of the equilibrium curve between c1 and /I phases 
in the pressure-composition phase diagram, when all characteristic quantities of 
pure components are known. Two types of isothermal phase diagrams for binary 
mixtures of re-entrant mesogens have been calculated using Eq. (14) and are 
presented in Fig. 3. If PC;{ < P,, ‘@ < P$, one a phase domain is obtained (Fig. 3(a)) 

and the P-N -fi,, sequence exists for all compositions. If, on the contrary, 
P$., > P$, two disjointed c( phase domains are obtained (Fig. 3(b)) and then the 
p-a-p,, sequence exists only for two finite composition ranges. 

4.2. Non-perfect solution hypothesis 

Here only the case where one component exhibits a re-entrant sequence is 
considered. For non-perfect solutions, the equal G equation (Eq. (4)) becomes in 
this case 

(1 - x) 
$_$_ - P 

AI’:@ (’ -$‘)(pp.B ) ) +xAV:“fl(P-PP,) +AGE”“=O (15) 
IH LB 1 



A. Daoudi et al.lThermochimica Acta 245 (1994) 219-229 225 

0 

0 .2 4 .6 .a 1 

(4 @ 
x 

0 W@ x 0 

Fig. 3. The calculated isothermal pressure-composition phase diagrams obtained using the perfect 

solution hypothesis when both components of the mixture exhibit the sequence ~-u-B~~: (a) 

P;{ < P$, < P;f,; (b) P;i > P;$. 

where the excess Gibbs energy term AGEuP shows the non-perfect nature of 
solutions and is generally dependent on pressure, temperature and composition. 
Several mathematical forms can be used as an expression for GE; that most usually 
used is the Redlich-Kister expression [9] 

~E=x(l -x) cA,(l -24-j (16) 

Taking into account only the first term in the expansion, the most simple form 

GE=Ax(l -x) (17) 

can be used for the excess Gibbs energy where A is the interaction parameter 
describing the intermolecular forces between the components of mixtures. In order 
to study the influence of the excess quantities upon the topology of isothermal 
phase diagrams for re-entrant systems two types of non-perfect solution have been 
considered: (1) regular solutions which require no dependence of GE on pressure 
and temperature [ 141; (2) non-zero excess molar volume solutions assuming a 
simple dependence of the excess Gibbs energy on pressure. 

4.2.1. Regular solutions 
In regular solution theory, the expression of the excess Gibbs energy for a binary 

mixture in phase c1 is written as 

GE”=Aax(l -x) (18) 

where the parameter A” is independent of pressure and temperature. Thus, the 
excess Gibbs energy difference between two phases c1 and /3 is given by 

AGE”B = (A fi - A “)x( 1 - x) (19) 
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Fig. 4. The calculated isothermal pressure-composition phase diagrams obtained using the regular 

solution hypothesis (solid line) when only component I exhibits a re-entrant sequence: (a) Afl- A” > 0; 
(b) AB - A” < 0. Broken lines are the calculated equilibrium curves obtained using the perfect solution 
hypothesis. 

Replacing Eq. ( 19) in the equal G equation (Eq. ( 15)) leads to the relation (20) that 
describes the equilibrium curves in pressure-composition phase diagrams when 
only one of the mixing components is re-entrant. 

(1 - x)AJ’:~~~P’[( 1 - x)AV:“fi(P$?, + P”;$) + xAY;@(PO;& - P”;{)]P 

- (Afi - A E)(Po;& - P”;{)x( 1 - x) = 0 (20) 

Using Eq. (20), two possible shapes of isothermal phase diagrams have been 
obtained according to the sign of the quantity (A” - A”); they are illustrated in Fig. 
4. For comparison, in each part of Fig. 4 the equilibrium curves (dashed lines) 
calculated by using the perfect solution approximation are shown. For Ab - A” > 0 

(Fig. 4(a)) the a phase domain tends to increase inducing a decrease of the /I phase 
domain and this is compared to the phase diagram obtained using the perfect 
solution hypothesis. Note that Eq. (20) can predict the isothermal phase diagrams 
exhibiting not only re-entrant behaviour but also a maximum (at P E 164.6 MPa 
and x = 0.41 in Fig. 4(a)). On the contrary for Ab - A” < 0, the b phase domain 

calculated using the regular solution hypothesis is more important than that 
calculated using the perfect solution hypothesis (Fig. 4(b)). This suggests that, when 
the mixed mesogens form regular solutions, the mixture favours the phase which 
has the smaller A parameter, i.e. the phase that exhibits the greater molecular 
affinity between the components. 

4.2.2. Non-zero excess molar volume solutions 
For the solutions exhibiting an excess molar volume due to the non-ideality of 

the mixed components, the excess Gibbs energy (Eq. ( 17)) is a function of pressure. 
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Thus, the excess molar volume is given by 

221 

(21) 

Assuming VE to be constant, the following expression of the excess Gibbs energy 
can easily be found: 

GE(P,x) = (A,, + PuE)x( 1 - x) (22) 

where A,, is the A(P) parameter value at atmospheric pressure (P = 0) and 
vE = dA(P)/aP. Thus the expression for AGE@’ is 

AGE”B=GEB-GE”=(AA;fl+AuEOLBP)~(l-x) (23) 

Using Eqs. ( 15) and (23) the relation (24) describing the equilibrium between a and 
B phases in the pressure-composition phase diagram can be derived: 

[( 1 - x)AVf”fl(P,& + P”;f,) + xAV;““(P$, - P;{) 

+ Au”“fl(P”;k - P”;i)x( 1 - x)]P + (1 - x)AVT’fiP$Pb;~ 

+ xAV,*~~(P$ - P”;fJP2 - (AB - A”)(Po;B, - P$)x( 1 -x) = 0 (24) 

Fig. 5 shows an example of the isothermal phase diagrams calculated using Eq. (24) 
for binary mixtures exhibiting excess molar volumes. Two different diagrams can be 
obtained according to the sign of the quantity AAf. The phase diagram presented 
in Fig. 5(a) well illustrates the influence of the additive energetic term in the 
expression for AG Elxfi (Eq. (23)) due to excess molar volumes; the CI phase is 
obtained for all compositions for which AA f is positive and the &cr-& sequence 
is then observed for almost all mixtures. However when AA j is negative (Fig. 5(b)) 
the /?-x-/I,, sequence is obtained only for mixtures rich (more than 80 mol%) in 
re-entrant component. 

0 .2 A .6 .a 

; 

0 .2 .4 .6 .0 1 

(4 0 x (b) @ x 0 

Fig. 5. The calculated isothermal pressure-composition phase diagrams obtained using the non-zero 
excess molar volume solution hypothesis when only component 1 exhibits a re-entrant sequence: (a) 
AAf>O; (b) AA;fl<O. 
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Fig. 6. The calculated isothermal phase diagrams (solid lines) for the re-entrant system 8 OCB + 6 OCB 

(see text) at T = 340.5 K: (a) perfect solution hypothesis; (b) regular solution hypothesis. H, Experimen- 

tal points (from Ref. [ 151). 

5. Application 

One experimental example has been found to illustrate this theoretical study. 
It concerns isothermal phase diagrams extracted from pressure-temperature 
diagrams of the re-entrant mesogenic system hexyloxycyanobiphenyl (6 OCB) 
and octyloxycyanobiphenyl (8 OCB) showing the sequence N-SA-N, [ 151. 
We have compared the calculated perfect and regular solution phase diagrams 
with the experimental phase diagram determined at T = 340.5 K. With the 
perfect solution hypothesis, A V, *‘A~ and P, parameters in Eq. (13) are found 
using the experimental data for xeoCB = 0.025, while in the regular solution 
hypothesis, the A VzS~N, P, and (AN - A “A) parameters in Eq. (20) are de- 
termined using experimental data for xGoCB = 0.025 and xeoCB = 0.078. In 
Fig. 6 the calculated isothermal phase diagrams and the experimental points 
are presented. The measured values are more successfully described by the 
regular solution hypothesis (Fig. 6(b)) than by the perfect solution hypothesis 
(Fig. 6(a)). 

6. Conclusions 

For binary mixtures of polar mesogens exhibiting re-entrant behaviour, several 
types of isothermal phase diagram have been predicted. The equilibrium curves 
in the pressure-composition diagram have been described in the framework 
of three different solution models: perfect, regular and non-zero excess molar 
volume solutions. Comparison between experimental and calculated data for 
the hexyloxy-octyloxycyanobiphenyl system gives evidence that the pressure- 
composition phase diagram is successfully described by the regular solution 
hypothesis. 
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