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Abstract 

It is known that the order of the Verwey transition changes from first to second, and then 
to a higher order, as the value of 6 increases in magnetite, Fe,,, _6)04. The associated heat 
capacity anomaly changes its shape and size, and it eventually becomes a broad hump, i.e. 
a higher order transition. 

An attempt was made, with some success, at recovering the observed changes in heat 
capacity anomaly in terms of the two-state approximation, a generalized extension of the 
Striissler-Kittel treatment. By changing the adjustable parameters as a smooth linear 
function of 6, a qualitative trend of the observed changes in heat capacity anomaly was 
reproduced. 
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1. Introduction 

Although much research has been devoted to the Verwey transition of Fe,,, _6j04 
[l-8], understanding of the nature and mechanism of the transition is still limited. 
In particular, the charge distribution scheme of the low-temperature phase of 
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stoichiometric magnetite, 6 = 0, has not yet been determined. Yamada’s model [3,6] 
could explain only some of the superlattice reflections [9], and the charge-ordering 
schemes proposed by Mizoguchi [4] and Iida [5] are apparently debatable [lo]. 

An additional complication arises from non-stoichiometry in Fe,(, _ a,04. When 
the value of 6 increases from 0 to 0.0039, the Verwey transition remains a first-order 
transition with a progressively smaller latent heat, and the transition temperature 
decreases gradually to about 109 K. For 0.0039 < 6 < 0.012, the heat capacity 
anomaly becomes continuous and of a small hump type, indicating that the 
transition seems to change to second-order and then to higher order. The tempera- 
ture at the top of the heat capacity peak decreases further to approx. 80 K [9]. 

The present paper concerns the effect of non-stoichiometry on the shape of the 
heat capacity anomaly. In the absence of an exact charge-ordering scheme in the 
low-temperature phase of stoichiometric magnetite, an attempt at understanding 
the effect of non-stoichiometry will be quite general and elementary. A detailed 
interpretation requires a fuller understanding of the Verwey transition of stoichio- 
metric magnetite. 

An attempt has been made by Honig and coworkers [ 11,121 to interpret the effect 
of non-stoichiometry on the order of transition, based on the two-state approxima- 
tion formulated by Strbsler and Kittel [ 131. It should be pointed out that the 
condition imposed for the second-order transition to occur is too restrictive in the 
original work of Strlssler and Kittel. As a result, the interpretation of Honig and 
coworkers [ 11,12,14,15] is not free from such restriction. One of us has previously 
generalized the Strbssler-Kittel formulation [ 16,171. Thus, the conditions for the 
second and higher order transitions were relaxed and a variety of heat capacity 
anomalies were recovered. 

In this paper, we interpret the change in the nature of the Verwey transition 
induced by the change in the value of 6 in terms of the generalized two-state 
approximation [ 16,171. We emphasize that no new insight is expected for the nature 
of the transition. Rather, the change in the heat capacity anomalies is schematized 
in terms of a two-state approximation, in a more general form than in Ref. [ 121. 
This provides a basis for future theoretical development. 

2. Two-state approximation (general) 

Here, we briefly summarize the treatment reported in Ref. [ 171. The free energy 
per mole of a sub-system which is either in state A or state B is written as 

F,=(l -p)[.G+RTln(l -p)] +p[f~+RTlnp] +FE (1) 

where p = NB/(NA + N,) is the population density of state B, which serves as an 
order parameter, f i and fa are the molar free energies of state A and state B, 
respectively, and Fz is the excess molar free energy due to interaction among 
sub-systems. The mean field approximation is equivalent to 

FE = -0.5p2/1 (2) 
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where 1 is the mean field interaction parameter. Minimization of F,,, with respect to 
p yields 

(3) 

where 

f”B -fi = a0 - Ts” (4) 

Eqs. (1) -( 3) are identical to the formula given by Strassler and Kittel [ 131, with the 
identity 

so 
x = Mdg.4) 

where g, and g, are the degeneracy of states A and B respectively. 
Rewriting Eq. (3) 

ln[p/( 1 - p)] = (p - &“/A) + so/R 

Given so, 2 and so, the value of p can be obtained and the thermodynamics of the 
system fully described. In particular 

Em=EOp -;p2 
and 

C, = (dE,/dT) = (E’ - nlp)(cYp/iJT) (8) 

The solutions for p in Eq. (6) are the intersections of the following two curves in 
the p-z field, expressed as 

P z= ln- 
1-P 

(9) 

z =GT(p -&‘/A) +s”/R 

See Fig. 1. Given 2, e” and so/R, Eq. ( 10) is a straight line with slope 2/RT going 
through a fixed point W(E’/~,S’/R) on the p-z field. The conditions for first-order 
transition are equivalent to the case where the fixed point W(s”/~,so/R) is in the 
region above the line Qs which is the tangent to the curve of Eq. (9), at point 
Q(OS,O). At the specific temperature T,, the slope of the straight line, Eq. (lo), 
becomes such that the line goes through point Q(O.5,O). Therefore, at this tempera- 
ture, there are three points of intersection, at p = (0.5 - d), 0.5, and (0.5 + d). 

With Fk(O.5 - d) > 0, FA(O.5) < 0, and Fk(O.5 + d) > 0, the stable solutions 
are p = 0.5 + A, and thus at this temperature the value of p jumps from (0.5 - A) 
to (0.5 + A), i.e. the first-order phase transition. Hence, the temperature of the 
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P 

Fig. 1. Graphical solutions of p and the trace of point P with varying 6. Curve PR is the trace of point 

W satisfying the measured data, TV = 123.82 K, AtrsH = 762.4 J mol- ‘, for 6 = 0. Line Q,S represents 

the locus at which the second-order phase transition occurs. P’, P *, P3 and P5 are the possible loci of 

point P. 

Verwey transition TV is this temperature T,, i.e. TV = T,. The latent heat of 
transition can be calculated as 

At,,E = E,(O.5 + d) - E,,,(O.5 - d) (11) 

If the fixed point W(sO/&so/R) is on the line QS, the second-order transition 
occurs when the temperature becomes such that the straight line of Eq. (10) 
becomes identical to the line QS. With the single solution, p = 0.5, r; = Fz = 0 
and P > 0 are satisfied. The undue restriction in the original work by Strlissler and 
Kittel [ 131 was that &“/A = 0.5 and so/R = 0, i.e. the fixed point W is identical to 
point Q in Fig. 1. This was their oversight and it was carried over to the works of 
Honing and coworkers [ 11,12,14,15]. Having relaxed the restriction and allowing 
the fixed point W to be anywhere on the line QS, a new situation arises. 

When the fixed point W is located below the line QS (but above the abscissa), 
a higher order transition is manifested. Calculated heat capacity anomalies are 
shown below (in Fig. 4(a)) when the generalized two-state approximation is 
applied for Fe,(, _6j 0,. It should be noted, however, that the temperature of the 
maximum of the heat capacity hump is lower than the temperature T, at which the 
line of Eq. ( 10) goes through point Q in Fig. 1. From the experimental point of 
view, the locus of the maximum of the heat capacity hump is taken to be the 
transition temperature TV. Thus, TV/T, < 1 for a higher order transition. Fig. 4(b) 
shows this situation. This is in contrast to the first- and second-order transitions, 
where TV/T, = 1. 
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3. Application to heat capacity anomalies of Fe,(, _-6j0., 

Heat capacity data for stoichiometric and non-stoichiometric magnetites were 
obtained by a relaxation method [9,18]. For stoichiometric magnetite, the most 
reliable C, data were determined recently by adiabatic calorimetry [ 191, removing 
earlier confusions [20,21] regarding the shape of the C, anomaly at the Verwey 
transition. The transition temperature was found to be 123.82 K and the latent heat 
of the transition 762.4 J mol- ‘, with the additional contribution of the pre- and 
post-monitory C, tails being 218.4 J mol- ’ [ 181. In comparison with the data in Ref. 
[9], the transition temperature is a few degrees higher, and the latent heat a few 
percent larger. From the fact that the value of TV is the highest available, we believe 
that the sample used in Ref. [ 191 is the closest to the stoichiometry. We therefore 
use the data of Ref. [ 191 for stoichiometric magnetite, 6 = 0. For 6 # 0, data of Ref. 
[ 181 are used in this work as a general semi-qualitative trend. Because the reference 
made to the two-state approximation is rather crude and elementary, we only expect 
to determine a general trend in the changes in shape and location of the heat capacity 
anomaly as 6 increases. We expect, however, that the parameters in the two-state 
approximation, i.e. so/n and so/R, change as a smooth function of 6. This contrasts 
with the treatment by Aragon and Honig [ 121 in which so/R = ln(g,/gA) was fixed 
at In 2 for the first-order transitions, 6 < 0.0039, and then suddenly changed to In 
1 for 6 2 0.0039. The latter case is equivalent to having point W fixed at Q(O.50) 
in Fig. 1. For such a case, the heat capacity anomaly at the second-order transition 
takes the triangular shape shown in Fig. 2. There will be no possibility of recovering 
a heat capacity anomaly of a smooth hump type. It should be noted that for the 
second-order transitions, heat capacity anomalies of various shapes can be recovered 
within the two-state approximation when point W is moved on the line QS, for 
example to (0.6,0.4) and (1.5,4) as also shown in Fig. 2. 

3.1. F=O 

Because the pre- and post-monitory C,,, tails due to the two-state approach with 
the mean-field approximation are considerably overestimated [ 16,171, we take into 

Tl TV 
Fig. 2. Heat capacity anomalies due to generalized two-state approximations associated with the 

second-order transition. 
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account only the latent heat for the first-order transition. Due to Eq. (7) Eq. ( 11) 
is rewritten as 

A,,,E = 2A(c” -/I/2) (12) 

At the transition point, T,, (or T,), the slope is such that the line Eq. (10) goes 
through point Q(0.5, 0). Therefore 

SO/R I 
=-- 

E~/,I - 0.5 RT, 

Also, the slope coincides with that of line X,X, in Fig. 1. Namely 

;=ln(igg -ln(g$) 21n(g) 
RTv (OS+A)-(0.5-A) = 24 

(13) 

(14) 

Given Atr,E = 762.4 J mol-’ as Fe,O, and TV = 123.82 K for 6 = 0 [ 191, Eqs. (12) 
(13) and (14) yield the parameters &‘/A and so/R as a function of a possible value 
of A. In Fig. 1, the locus of W(E~/~,S”/R) is shown as a function of A. At point P, 

the value of A is 0.45, and as A decreases, W moves towards R. Given a value of 
A, point W is fixed on the curve PR in Fig. 1 and hence the parameters .a012 and 
so/R are fixed. As a result, all the thermodynamic properties can be calculated, 
including C,, by Eq. (8). Fig. 3 shows the shapes of C,,, with A as parameter. As 
is evident from Fig. 3, there is always a pre-monitory C,, tail present, but a 
post-monitory C, tail decreases from A = 0.45 and reaches zero at A z 0.3 where 
point W lies on the curve of Eq. (9). Thereupon, it increases again as A decreases. 
It was found experimentally [ 191 that the post-monitory C, tail was larger than the 
pre-monitory tail, reflecting the fact that a short-range order remains in the 
high-temperature phase [22]. The two-state approach with a mean-field approxima- 
tion is incapable of dealing with a short-range order, since the order parameter p in 
the theory is of a global, or a long-range, nature. Moreover, a mean-field approxi- 
mation inevitably overestimates pre- and post-monitory C, tails. Therefore, we have 
no a priori method with which to determine the value of A by comparing pre- and 
post-monitory C, tails with those observed. Nevertheless, it is clear Fig. 3 that when 
A decreases the size of pre- and post-monitory tails around the transition region 
becomes excessively large. Thus, we suggest tentatively that A = 0.45 is a likely 
value, i.e. point W is placed at P in Fig. 1 for a stoichiometric sample. 

3.2. 6 # 0 

We propose that the parameters .s”ln and so/R change as a smooth function of 6 
in such a way that point W(E~/&S~/R) moves towards line QS in Fig. 1, whereupon 
the transition becomes second order. As point W moves away below the line QS, 
the transition become higher order. Line PP’P’ in Fig. 1 is one possibility, i.e. so/R 

is kept constant. The range 0 < 6 < 0.0039 corresponds to line PP’, and 
0.0039 < 6 < 0.012 to P’P2. In the absence of a detailed thw, we assumed that W 
moves along the line PP’P2 linearly with 6. Hence PP’/PP2 = 0.0039/0.012. 
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Fig. 3. Heat capacity anomalies for the first-order transition with several d. As d decreases from 0.45. 
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Fig. 4(a) shows heat capacity anomalies as W moves from P to P2. Fig. 5 shows 
the peak position of the heat capacity anomaly. In the higher order region, 
6 > 0.0039, Tv decreases much faster than those observed. This may suggest that, 
rather than so/R staying constant, it increases in such a manner as depicted by the 
broken line P-P ‘- P3. The heat capacity anomaly for P3 is shown in Fig. 4(b) and 
the location of the peak in Fig. 5. Thus, the general trend of the heat capacity 
anomaly is qualitatively recovered if W moves from P to P2 (or P3) as 6 increases 
from 0 to 0.012. 

That the locus of W is P-P’-P2 (or P3) is only a possibility. Point W could be 
made to move vertically in Fig. 1, i.e. so/A is constant and so/R decreases. However, 
as long as the assumption is kept that point W moves linearly with 6, it moves 
below the abscissa in Fig. 1 for a larger value of A, and hence there will be no 
transition. Therefore, this case was not considered. However, we point out that 
point W could move much more slowly below the line QS. When W reaches P5 in 
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(4 TvIK (b) T/T, 

Fig. 4. Calculated heat capacity anomalies of magnetite. (a) For 6 = 0.0068, 0.0017, 0.0035, 0.0049, 

0.0068, 0.0096 and 0.0121, respectively on the line P-P’-P*; and (b) for these values of 6 at P*, P3 and 

P5. 

Fig. 5. TV vs. 6 plots: 0, Ref. [ 191; 0, Ref. [9]; solid line, this work. 

Fig. 1, for example, which is on the line QP’, the calculated heat capacity anomaly 
is shown in Fig. 4(b). 

Table 1 summarizes all the numerical results due to the present treatment 
together with those observed [ 18,191. The entropy of transition A,,$ was calculated 
by A,,,EIT, for the first-order regime 6 < 0.0039, and as @(C,,,/T) dT for 
6 2 0.0039. The values of At_S are much higher than those observed for 6 B 0.0039, 
while those for 6 -C 0.0039 are in reasonable agreement. This is due to the intrinsic 
weakness in the two-state approximation with mean field interactions, which 
overestimates the pre- and post-monitory contribution to the heat capacity 
anomaly. In particular, the heat capacity anomaly calculated by the two-state 
approximation contains the Schottky anomaly even if A = 0, which amounts to a 
substantial contribution towards Atr,S (R In 2, if so/R = 0). In the present treat- 
ment, two states exist from T = 0 on, and hence the contribution to the population 
of the upper state exists from T = 0. This results in overestimation of the pre- and 
post-monitory tails of the heat capacity anomalies. However, in a real phase 
transition, the system behaves as if the two state is suddenly “created” in the 
vicinity of the phase transition [ 16,171. 
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Table 1 
Observed and calculated Verwey transition temperature TV and transition entropy A,,,S. Observed data 
of stoichiometric and non-stoichiometric samples are taken from [ 181 and [ 171, respectively 

6 

1st order 
0 
0.00021 
0.00068 
0.0017 
0.0035 

2nd order 
0.0039 

Higher order 
0.0049 
0.0068 
0.0096 
0.0121 

Observed 

TV in K A,,,,9 in 
J K-’ mol-’ 

Calculated 

TV in K A& in 
J K-’ mol-’ 

123.82 6.16 123.82 6.16 
121.0 5.80 123.1 6.06 
119.4 5.61 121.4 5.81 
115.0 5.21 117.8 5.08 
109.7 4.0 111.5 2.56 

110.1 9.59 

97.5 1.73 104.1 9.87 
95.0 1.63 90.1 9.86 
89.0 1.78 12.6 9.84 
81.5 0.77 60.2 9.83 

Another important point to note is the relationship between the number 
of sub-systems and the formula unit of Fe,O,. The present treatment assumes 
they are equal, because we have no clear picture of state A or state B. But if 
the number of sub-systems is equal to 8 x Fe30, as a cubic unit cell or 32 x Fe,O, 
as a unit cell of a low-temperature phase, the values of the Verwey transition 
entropy Atr,S for the higher order regime, 6 > 0, may become closer to those 
observed. 

In summary, we point out that the original Strlssler and Kittel paper imposes too 
strict a condition for the second-order phase transition [ 131, and as a result, the 
interpretation for the Verwey transition of Fe,,, _6jO4 by Aragon and Honig is 
unduly limited. When generalized [ 16,171, however, the two-state approximation 
could reproduce qualitatively the changes in the heat capacity anomalies, their sizes 
and shapes, by changing parameters smoothly with 6. Thus we provide a convenient 
starting point for a future theoretical development. 
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