

ELSEVIER Thermochimica Acta 246 (1994) I- 10

thermochimica acta

Heat capacity anomalies at the Verwey transition of $Fe_{3(1-\delta)}$ O_4

Shigeomi Takai¹, Tooru Atake, Yoshikata Koga*,²

Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 227, Japan

Abstract

It is known that the order of the Verwey transition changes from first to second, and then to a higher order, as the value of δ increases in magnetite, $Fe_{(1-\delta)}O_4$. The associated heat capacity anomaly changes its shape and size, and it eventually becomes a broad hump, i.e. a higher order transition.

An attempt was made, with some success, at recovering the observed changes in heat capacity anomaly in terms of the two-state approximation, a generalized extension of the Strässler-Kittel treatment. By changing the adjustable parameters as a smooth linear function of δ , a qualitative trend of the observed changes in heat capacity anomaly was reproduced.

Keywords: Heat capacity; Magnetite; Transition; Verwey transition

1. Introduction

Although much research has been devoted to the Verwey transition of $Fe_{3(1-\delta)}O_4$ [l-8], understanding of the nature and mechanism of the transition is still limited. In particular, the charge distribution scheme of the low-temperature phase of

0040-6031/94/\$07.00 © 1994 - Elsevier Science B.V. All rights reserved SSDI 0040-6031(94)01904-U

^{*} Corresponding author: The Department of Chemistry, The University of British Colombia, Vancouver, B.C., V6T 121, Canada.

^{&#}x27; Present address: Department of Materials Science, Faculty of Engineering, Tottori University, Koyama, Tottori 680, Japan.

^{&#}x27; On leave from: Department of Chemistry, The University of British Colombia, Vancouver, B.C. V6T 1Zl. Canada.

stoichiometric magnetite, $\delta = 0$, has not yet been determined. Yamada's model [3,6] could explain only some of the superlattice reflections [9], and the charge-ordering schemes proposed by Mizoguchi [4] and Iida [5] are apparently debatable [10].

An additional complication arises from non-stoichiometry in $Fe_{3(1-\delta)}O_4$. When the value of δ increases from 0 to 0.0039, the Verwey transition remains a first-order transition with a progressively smaller latent heat, and the transition temperature decreases gradually to about 109 K. For $0.0039 < \delta < 0.012$, the heat capacity anomaly becomes continuous and of a small hump type, indicating that the transition seems to change to second-order and then to higher order. The temperature at the top of the heat capacity peak decreases further to approx. 80 K [9].

The present paper concerns the effect of non-stoichiometry on the shape of the heat capacity anomaly. In the absence of an exact charge-ordering scheme in the low-temperature phase of stoichiometric magnetite, an attempt at understanding the effect of non-stoichiometry will be quite general and elementary. A detailed interpretation requires a fuller understanding of the Verwey transition of stoichiometric magnetite.

An attempt has been made by Honig and coworkers [11,12] to interpret the effect of non-stoichiometry on the order of transition, based on the two-state approximation formulated by Strässler and Kittel [13]. It should be pointed out that the condition imposed for the second-order transition to occur is too restrictive in the original work of Strässler and Kittel. As a result, the interpretation of Honig and coworkers [11,12,14,15] is not free from such restriction. One of us has previously generalized the Strässler-Kittel formulation [16,17]. Thus, the conditions for the second and higher order transitions were relaxed and a variety of heat capacity anomalies were recovered.

In this paper, we interpret the change in the nature of the Verwey transition induced by the change in the value of δ in terms of the generalized two-state approximation [16,171. We emphasize that no new insight is expected for the nature of the transition. Rather, the change in the heat capacity anomalies is schematized in terms of a two-state approximation, in a more general form than in Ref. [121. This provides a basis for future theoretical development.

2. **Two-state approximation (general)**

Here, we briefly summarize the treatment reported in Ref. [17]. The free energy per mole of a sub-system which is either in state A or state B is written as

$$
F_{\rm m} = (1 - \rho)[f_{\rm A}^{\circ} + RT \ln(1 - \rho)] + \rho[f_{\rm B}^{\circ} + RT \ln \rho] + F_{\rm m}^{\rm E}
$$
 (1)

where $p = N_B/(N_A + N_B)$ is the population density of state B, which serves as an order parameter, f_A° and f_B° are the molar free energies of state A and state B, respectively, and F_{m}^{E} is the excess molar free energy due to interaction among sub-systems. The mean field approximation is equivalent to

$$
F_{\rm m}^{\rm E} = -0.5\rho^2\lambda\tag{2}
$$

where λ is the mean field interaction parameter. Minimization of F_m with respect to ρ yields

$$
F'_{\mathbf{m}} = 0 = \varepsilon' - \lambda \rho - RT \left(\frac{s^{\circ}}{R} - \ln \frac{\rho}{1 - \rho} \right)
$$
 (3)

where

$$
f_{\mathbf{B}}^{\circ} - f_{\mathbf{A}}^{\circ} = \varepsilon^{\circ} - T s^{\circ} \tag{4}
$$

Eqs. (1) –(3) are identical to the formula given by Strässler and Kittel [13], with the identity

$$
\frac{s^{\circ}}{R} = \ln(g_B/g_A) \tag{5}
$$

where g_A and g_B are the degeneracy of states A and B respectively.

Rewriting Eq. (3)

$$
\ln[\rho/(1-\rho)] = \left(\frac{\lambda}{RT}\right)(\rho - \varepsilon^{\circ}/\lambda) + s^{\circ}/R \tag{6}
$$

Given ε° , λ and s° , the value of ρ can be obtained and the thermodynamics of the system fully described. In particular

$$
E_{\rm m} = \varepsilon^{\circ} \rho - \frac{\lambda}{2} \rho^2 \tag{7}
$$

and

$$
C_{\rm m} = (\partial E_{\rm m}/\partial T) = (\varepsilon^{\circ} - \lambda \rho)(\partial \rho/\partial T) \tag{8}
$$

The solutions for ρ in Eq. (6) are the intersections of the following two curves in the ρ -z field, expressed as

$$
z = \ln \frac{\rho}{1 - \rho} \tag{9}
$$

$$
z = \frac{\lambda}{RT} (\rho - \varepsilon^{\circ}/\lambda) + s^{\circ}/R \tag{10}
$$

See Fig. 1. Given λ , ε° and s°/R , Eq. (10) is a straight line with slope λ/RT going through a fixed point $W(\varepsilon^{\circ}/\lambda, s^{\circ}/R)$ on the $\rho-z$ field. The conditions for first-order transition are equivalent to the case where the fixed point $W(\varepsilon^{\circ}/\lambda, s^{\circ}/R)$ is in the region above the line QS which is the tangent to the curve of Eq. (9), at point $Q(0.5,0)$. At the specific temperature T_c , the slope of the straight line, Eq. (10), becomes such that the line goes through point $Q(0.5,0)$. Therefore, at this temperature, there are three points of intersection, at $\rho = (0.5 - \Delta)$, 0.5, and $(0.5 + \Delta)$.

With $F_{m}(0.5 - A) > 0$, $F_{m}'(0.5) < 0$, and $F_{m}'(0.5 + A) > 0$, the stable solutions are $\rho = 0.5 \pm A$, and thus at this temperature the value of ρ jumps from $(0.5 - A)$ to $(0.5 + A)$, i.e. the first-order phase transition. Hence, the temperature of the

Fig. 1. Graphical solutions of ρ and the trace of point *P* with varying δ . Curve *PR* is the trace of point W satisfying the measured data, $T_V = 123.82$ K, $\Lambda_{\text{trs}}H = 762.4$ J mol⁻¹, for $\delta = 0$. Line *QS* represents the locus at which the second-order phase transition occurs. $P¹$, $P²$, $P³$ and $P⁵$ are the possible loci of point *P.*

Verwey transition T_v is this temperature T_c , i.e. $T_v = T_c$. The latent heat of transition can be calculated as

$$
\Delta_{\text{trs}}E = E_{\text{m}}(0.5 + \varDelta) - E_{\text{m}}(0.5 - \varDelta) \tag{11}
$$

If the fixed point $W(\varepsilon^{\circ}/\lambda,s^{\circ}/R)$ is on the line OS, the second-order transition occurs when the temperature becomes such that the straight line of Eq. (10) becomes identical to the line QS. With the single solution, $\rho = 0.5$, $F_m'' = F_m''' = 0$ and $F^{IV} > 0$ are satisfied. The undue restriction in the original work by Strässler and Kittel [13] was that $\varepsilon^{\circ}/\lambda = 0.5$ and $s^{\circ}/R = 0$, i.e. the fixed point *W* is identical to point Q in Fig. 1. This was their oversight and it was carried over to the works of Honing and coworkers [11,12,14,15]. Having relaxed the restriction and allowing the fixed point W to be anywhere on the line QS , a new situation arises.

When the fixed point W is located below the line \overline{OS} (but above the abscissa), a higher order transition is manifested. Calculated heat capacity anomalies are shown below (in Fig. 4(a)) when the generalized two-state approximation is applied for $Fe_{3(1-\delta)}O_4$. It should be noted, however, that the temperature of the maximum of the heat capacity hump is lower than the temperature T_c at which the line of Eq. (10) goes through point Q in Fig. 1. From the experimental point of view, the locus of the maximum of the heat capacity hump is taken to be the transition temperature T_V . Thus, $T_V/T_c < 1$ for a higher order transition. Fig. 4(b) shows this situation. This is in contrast to the first- and second-order transitions, where $T_{\rm V}/T_{\rm c} = 1$.

3. Application to heat capacity anomalies of $Fe_{3(1-\delta)}O_4$ **.**

Heat capacity data for stoichiometric and non-stoichiometric magnetites were obtained by a relaxation method [9,18]. For stoichiometric magnetite, the most reliable C_p data were determined recently by adiabatic calorimetry [19], removing earlier confusions [20,21] regarding the shape of the C_p anomaly at the Verwey transition. The transition temperature was found to be 123.82 K and the latent heat of the transition 762.4 J mol⁻¹, with the additional contribution of the pre- and post-monitory C_p tails being 218.4 J mol⁻¹ [18]. In comparison with the data in Ref. [9], the transition temperature is a few degrees higher, and the latent heat a few percent larger. From the fact that the value of T_V is the highest available, we believe that the sample used in Ref. [191 is the closest to the stoichiometry. We therefore use the data of Ref. [19] for stoichiometric magnetite, $\delta = 0$. For $\delta \neq 0$, data of Ref. [181 are used in this work as a general semi-qualitative trend. Because the reference made to the two-state approximation is rather crude and elementary, we only expect to determine a general trend in the changes in shape and location of the heat capacity anomaly as δ increases. We expect, however, that the parameters in the two-state approximation, i.e. $\varepsilon^{\circ}/\lambda$ and s°/R , change as a smooth function of δ . This contrasts with the treatment by Aragon and Honig [12] in which $s^{\circ}/R = \ln(g_B/g_A)$ was fixed at ln 2 for the first-order transitions, δ < 0.0039, and then suddenly changed to ln 1 for $\delta \ge 0.0039$. The latter case is equivalent to having point *W* fixed at $O(0.5,0)$ in Fig. 1. For such a case, the heat capacity anomaly at the second-order transition takes the triangular shape shown in Fig. 2. There will be no possibility of recovering a heat capacity anomaly of a smooth hump type. It should be noted that for the second-order transitions, heat capacity anomalies of various shapes can be recovered within the two-state approximation when point W is moved on the line OS, for example to $(0.6, 0.4)$ and $(1.5, 4)$ as also shown in Fig. 2.

3.1. $\delta = 0$

Because the pre- and post-monitory C_m tails due to the two-state approach with the mean-field approximation are considerably overestimated [16,171, we take into

Fig. 2. Heat capacity anomalies due to generalized two-state approximations associated with the second-order transition.

account only the latent heat for the first-order transition. Due to Eq. (7) , Eq. (11) is rewritten as

$$
\Delta_{\text{trs}}E = 2\Delta(\varepsilon^{\circ} - \lambda/2) \tag{12}
$$

At the transition point, T_v (or T_c), the slope is such that the line Eq. (10) goes through point $Q(0.5, 0)$. Therefore

$$
\frac{s^{\circ}/R}{\varepsilon^{\circ}/\lambda - 0.5} = \frac{\lambda}{RT_{\rm V}}\tag{13}
$$

Also, the slope coincides with that of line X_1X_2 in Fig. 1. Namely

$$
\frac{\lambda}{RT_{\rm V}} = \frac{\ln\left(\frac{0.5+A}{0.5-A}\right) - \ln\left(\frac{0.5-A}{0.5+A}\right)}{(0.5+A) - (0.5-A)} = \frac{2\ln\left(\frac{0.5+A}{0.5-A}\right)}{2A} \tag{14}
$$

Given $\Delta_{\text{trs}}E = 762.4 \text{ J} \text{ mol}^{-1}$ as Fe₃O₄ and $T_V = 123.82 \text{ K}$ for $\delta = 0$ [19], Eqs. (12), (13) and (14) yield the parameters $\varepsilon^{\circ}/\lambda$ and s°/R as a function of a possible value of *A.* In Fig. 1, the locus of $W(\varepsilon^{\circ}/\lambda, s^{\circ}/R)$ is shown as a function of *A*. At point *P*, the value of Δ is 0.45, and as Δ decreases, *W* moves towards *R*. Given a value of *A*, point *W* is fixed on the curve *PR* in Fig. 1 and hence the parameters $\varepsilon^{\circ}/\lambda$ and s°/R are fixed. As a result, all the thermodynamic properties can be calculated, including C_m , by Eq. (8). Fig. 3 shows the shapes of C_m with *A* as parameter. As is evident from Fig. 3, there is always a pre-monitory C_p tail present, but a post-monitory C_p tail decreases from $A = 0.45$ and reaches zero at $A \approx 0.3$ where point *W* lies on the curve of Eq. (9). Thereupon, it increases again as Δ decreases. It was found experimentally [19] that the post-monitory C_p tail was larger than the pre-monitory tail, reflecting the fact that a short-range order remains in the high-temperature phase [22]. The two-state approach with a mean-field approximation is incapable of dealing with a short-range order, since the order parameter ρ in the theory is of a global, or a long-range, nature. Moreover, a mean-field approximation inevitably overestimates pre- and post-monitory C_p tails. Therefore, we have no a priori method with which to determine the value of *A* by comparing pre- and post-monitory C_p tails with those observed. Nevertheless, it is clear Fig. 3 that when *A* decreases the size of pre- and post-monitory tails around the transition region becomes excessively large. Thus, we suggest tentatively that $\Delta = 0.45$ is a likely value, i.e. point W is placed at P in Fig. 1 for a stoichiometric sample.

3.2. $\delta \neq 0$

We propose that the parameters $\varepsilon^{\circ}/\lambda$ and s°/R change as a smooth function of δ in such a way that point $W(\varepsilon^{\circ}/\lambda, s^{\circ}/R)$ moves towards line QS in Fig. 1, whereupon the transition becomes second order. As point W moves away below the line \mathcal{QS} , the transition become higher order. Line $PP¹P²$ in Fig. 1 is one possibility, i.e. $s[°]/R$ is kept constant. The range $0 < \delta < 0.0039$ corresponds to line $PP¹$, and $0.0039 < \delta < 0.012$ to P^1P^2 . In the absence of a detailed theory, we assumed that W moves along the line $PP^{1}P^{2}$ linearly with δ . Hence $\overline{PP^{1}/PP^{2}} = 0.0039/0.012$.

Fig. 3. Heat capacity anomalies for the first-order transition with several Δ . As Δ decreases from 0.45. point *W* moves from point *P* towards point *R* in Fig. 1.

Fig. 4(a) shows heat capacity anomalies as *W* moves from *P* to P^2 . Fig. 5 shows the peak position of the heat capacity anomaly. In the higher order region, $\delta > 0.0039$, T_v decreases much faster than those observed. This may suggest that, rather than s^o/R staying constant, it increases in such a manner as depicted by the broken line $P-P^1-P^3$. The heat capacity anomaly for P^3 is shown in Fig. 4(b) and the location of the peak in Fig. 5. Thus, the general trend of the heat capacity anomaly is qualitatively recovered if *W* moves from *P* to P^2 (or P^3) as δ increases from 0 to 0.012.

That the locus of *W* is $P-P^1-P^2$ (or P^3) is only a possibility. Point *W* could be made to move vertically in Fig. 1, i.e. $\varepsilon^{\circ}/\lambda$ is constant and s°/R decreases. However, as long as the assumption is kept that point *W* moves linearly with δ , it moves below the abscissa in Fig. 1 for a larger value of *A,* and hence there will be no transition. Therefore, this case was not considered. However, we point out that point *W* could move much more slowly below the line QS. When *W* reaches *P5* in

Fig. 4. Calculated heat capacity anomalies of magnetite. (a) For $\delta = 0.0068$, 0.0017, 0.0035, 0.0049, 0.0068, 0.0096 and 0.0121, respectively on the line $P-P^1-P^2$; and (b) for these values of δ at P^2 , P^3 and *P5.*

Fig. 5. T_v vs. δ plots: \Box , Ref. [19]; \bigcirc , Ref. [9]; solid line, this work.

Fig. 1, for example, which is on the line QP^2 , the calculated heat capacity anomaly is shown in Fig. 4(b).

Table 1 summarizes all the numerical results due to the present treatment together with those observed [18,19]. The entropy of transition $\Delta_{\text{trs}} S$ was calculated by $\Delta_{\text{trs}} E/T_{\text{V}}$ for the first-order regime $\delta < 0.0039$, and as $\int_0^{\infty} (C_m/T) dT$ for $\delta \ge 0.0039$. The values of $\Delta_{\text{trs}} S$ are much higher than those observed for $\delta \ge 0.0039$, while those for δ < 0.0039 are in reasonable agreement. This is due to the intrinsic weakness in the two-state approximation with mean field interactions, which overestimates the pre- and post-monitory contribution to the heat capacity anomaly. In particular, the heat capacity anomaly calculated by the two-state approximation contains the Schottky anomaly even if $\lambda = 0$, which amounts to a substantial contribution towards $\Delta_{\text{trs}} S$ (R ln 2, if $s^{\circ}/R = 0$). In the present treatment, two states exist from $T = 0$ on, and hence the contribution to the population of the upper state exists from $T = 0$. This results in overestimation of the pre- and post-monitory tails of the heat capacity anomalies. However, in a real phase transition, the system behaves as if the two state is suddenly "created" in the vicinity of the phase transition [16,17].

Table 1

Observed and calculated Verwey transition temperature T_V and transition entropy $\Delta_{\text{trs}} S$. Observed data of stoichiometric and non-stoichiometric samples are taken from [18] and [17], respectively

Another important point to note is the relationship between the number of sub-systems and the formula unit of $Fe₃O₄$. The present treatment assumes they are equal, because we have no clear picture of state A or state B. But if the number of sub-systems is equal to $8 \times Fe_3O_4$ as a cubic unit cell or $32 \times Fe_3O_4$ as a unit cell of a low-temperature phase, the values of the Verwey transition entropy $\Delta_{\text{trs}} S$ for the higher order regime, $\delta > 0$, may become closer to those observed.

In summary, we point out that the original Strässler and Kittel paper imposes too strict a condition for the second-order phase transition [131, and as a result, the interpretation for the Verwey transition of $Fe_{3(1-\delta)}O_4$ by Aragón and Honig is unduly limited. When generalized [16,171, however, the two-state approximation could reproduce qualitatively the changes in the heat capacity anomalies, their sizes and shapes, by changing parameters smoothly with δ . Thus we provide a convenient starting point for a future theoretical development.

Acknowledgement

This research was supported by the Ministry of Education, Science and Culture, Japan in the form of a Grant-in-Aid for Scientific Research for T.A. and Guest Professorship for Y.K. at the Center for Ceramics Research, Research Laboratory of Engineering Materials, Tokyo Institute of Technology.

References

- [1] E.J. Verwey, P.W. Haayman and F.C. Remijin, J. Chem. Phys., 15 (1947) 181.
- [2] P.W. Anderson, Phys. Rev. B, 38 (1956) 1008.
- [3] Y. Yamada, AIP Conf. Proc., 24 (1975) 79.
- [4] M. Mizoguchi, J. Phys. Soc. Jpn., 44 (1978) 1501, 1512.
- [5] S. Iida, Philos. Mag. B, 42 (1980) 349.
- [6] Y. Yamada, Philos. Mag. B, 42 (1980) 377.
- [7] E. Kita, Y. Tokuyama, A. Tasaki and K. Shiratori, J. Magn. Magn. Mater., 31-34 (1983) 787.
- [8] K. Chiba and S. Chikazumi, J. Magn. Magn. Mater., 31-34 (1983) 813.
- [9] J.P. Shepherd, J.W. Koenitzer, R. Aragón, J. Spalek and J.M. Honig, Phys. Rev. B, 43 (1991) 8461.
- [IO] M. Iizumi, T.F. Koetzle, G. Shirane, S. Chikazumi, M. Matsui and S. Todo, Acta Crystallogr. Sect. B, 38 (1982) 2121.
- [111 J.M. Honig and J. Spalek, J. Solid State Chem., 96 (1992) 115.
- [12] R. Aragón and M. Honig, Phys. Rev. B, 37 (1988) 209.
- [13] S. Strässler and C. Kittel, Phys. Rev., 139 (1965) A758.
- [14] J.M. Honig and J. Spalek, J. Less-Common. Met., 156 (1989) 423.
- [15] J.M. Honig and J. Spalek, J. Solid State Chem., 96 (1992) 115.
- [16] Y. Koga, Chem. Phys. Lett., 31 (1975) 571.
- [17] Y. Koga, Coll. Phenom., 3 (1978) 1.
- [181 R. Aragon, J.P. Shepherd, J.W. Koenitzer, D.J. Buttrey, R.J. Rasmussen and J.M. Honig, J. Appl. Phys., 57 (1985) 3221.
- [191 S. Takai, Y. Akishige, H. Kawaji, T. Atake and E. Sawaguchi, J. Chem. Thermodyn., in press,
- [20] E.F. Westrum, Jr. and F. Granvold, J. Chem. Thermodyn., 1 (1969) 543.
- [21] M. Matsui, S. Todo and S. Chikazumi, J. Phys. Soc. Jpn., 42 (1977) 1517.
- [22] S.M. Shapiro, M. Iizumi and G. Shirane, Phys. Rev. B, 14 (1976) 200.