Thermochimica Acta, 237 (1994) 43-47 Elsevier Science B.V., Amsterdam *SSDZ* 0040-603 1(93)0163 1 -C

Excess enthalpies of 1-nonene-*n*-nonane, 1 -hexanol -2 -hexyn- 1 -ol, 1-nonene-2-hexyn-1-ol- n -nonane, and 1-hexanol-2-hexyn-1-ol-n-nonane at 298.15 K

L. Kudryavtseva * and E. Siimer

Institute of Chemistry, Estonian Academy of Sciences, Tallinn, Estonia (Received 7 June 1993; accepted 18 October 1993)

Abstract

Excess enthalpies for the two binary systems, I-nonene-n-nonane and I-hexanol-2 hexyn-1-ol, and the two ternary systems, n-nonane-1-hexanol-n-nonane and 1-hexanol-2hexyn-1-ol-n-nonane, at 298.15 K have been determined with a Calvet-type microcalorimeter. The experimental results of the binary systems have been fitted to Redlich-Kister equations. Some modified Redlich-Kister equations and the **UNIFAC** group contribution model have been applied in predicting ternary excess enthalpies.

INTRODUCTION

Continuing our studies of mixtures containing unsaturated organic compounds, we report here the experimental excess molar enthalpies H^E of the two ternary systems 1-nonene-2-hexyn-1-ol- n -nonane and 1-hexanol-2hexyn-1-ol-n-nonane, at 298.15 K. The aim of this work was to test the ability of some methods to predict H^E data of ternary systems using excess enthalpies of binary mixtures. Two binary systems, 1-nonene- n -nonane and 1-hexanol-2-hexyn-1-ol, were also investigated in this work: the H^E data for the other binary mixtures related to the ternary systems studied have already been reported $[1-3]$.

EXPERIMENTAL

A Calvet-type differential microcalorimeter was used for the measurements; the operational procedure has been described in detail [4]. The precision of H^E determined on the basis of the system benzene-cyclohexane [5], and the mole fraction x were estimated to be better than 2.0% and 1×10^{-3} , respectively.

^{*} Corresponding author.

2-Hexyn-l-01 was prepared in our laboratory [I]. It was fractionally distilled in the Teflon bristle-rotor 50-plate column, as were the I-nonene and 1-hexanol. Both the alcohols were stored in a dry box and were distilled before use. The n-nonane (puriss grade) obtained from Reakhim (Kharkov, Ukraine) was used without further purification. Analysis by capillary GLC showed that the purity of the hydrocarbons and alcohols was higher than 99.8 and 99.5 mol%, respectively. The densities of the final products, measured with an Ostwald pyknometer at 293.15 K, were (in kg m^{-3}) 725.3 for 1-nonene, 713.8 for n -nonane, 815.5 for 1-hexanol and 889.9 for 2-hexyn-1-ol.

RESULTS

The measured excess enthalpies of the binary systems are given in Table 1 together with the deviations Δ between the experimental H^E values and those calculated from the Redlich-Kister equation

$$
H^{E}/J \text{ mol}^{-1} = x_1(1-x_1) \sum_{i=0}^{2} A_i (2x_1 - 1)^i
$$
 (1)

fitted to each set of values by the method of unweighted least squares. Values of the coefficients A_i are presented in Table 2. The number of coefficients *m* was varied, and in each case the minimum number needed to

TABLE 1

Excess enthalpies H^E for 1-nonene(1)-n-nonane(2) and 1-hexanol(1)-2-hexyn-1-ol(2) at 298.15 K and deviations Δ between experimental H^E values and those calculated from eqn. (1)

x_1	H^E /J mol ⁻¹	Δ /J mol ⁻¹	x_1	H^E /J mol ⁻¹	Δ /J mol ⁻¹
	1-Nonene(1)- <i>n</i> -nonane(2)				
0.198	25.4	0.2	0.526	39.3	-0.8
0.287	32.0	-0.8	0.564	40.0	0.5
0.318	34.8	0.0	0.605	36.9	-1.3
0.425	39.1	-0.2	0.687	34.2	0.0
0.439	40.3	0.7	0.805	23.8	0.7
0.478	39.6	-0.5	0.824	23.3	0.7
0.495	40.5	0.3			
	1-Hexanol(1) -2 -hexyn-1-ol(2)				
0.126	81		0.556	186	2
0.344	161	-3	0.656	168	-3
0.346	166		0.783	135	3
0.464	183	$\bf{0}$	0.796	130	3
0.499	184	$\bf{0}$	0.863	92	$^{-2}$

TABLE 2

Coefficients A_i of eqn. (1) and standard deviations $\sigma(H^E)$ (in J mol⁻¹) for the binary systems 1-nonene-n-nonane and I-hexanol-2-hexyn-l-01

TABLE 3

Excess enthalpies H^E for the system 1-nonene(1)-2-hexyn-1-ol(2)-n-nonane(3) at 298.15 K

x_1	x_2	x_3	H^E /J mol ⁻¹	x_1	x_2	x_3	H^E /J mol ⁻¹	
$x_{12} = 1.020$ ^a				$x_{13} = 1.004$ ^a				
0.173	0.169	0.658	805	0.064	0.872	0.064	496	
0.255	0.250	0.495	945	0.129	0.743	0.128	759	
0.309	0.303	0.388	987	0.198	0.605	0.197	960	
0.420	0.411	0.169	986	0.357	0.288	0.355	997	
$x_{12} = 0.616$ ^a				0.367	0.267	0.366	967	
0.107	0.174	0.719	744	0.403	0.196	0.401	881	
	0.245	0.604	908	0.451	0.100	0.449	555	
0.151 0.274	0.445	0.281	1047	$x_{23} = 0.992$ ^a				
0.300	0.486	0.214	1007	0.167	0.415	0.419	1018	
	0.567	0.084	930	0.482	0.258	0.260	957	
0.349				0.631	0.184	0.185	875	
$x_{12} = 2.021$ ^a			0.779	0.110	0.111	689		
0.154	0.076	0.770	561					
0.178	0.088	0.735	632	$x_{23} = 0.965$ ^a				
0.541	0.268	0.191	927	0.441	0.275	0.284	970	
0.572	0.283	0.145	938	0.739	0.128	0.133	797	
$x_{13} = 0.729$ ^a				$x_{23} = 0.667$ ^a				
0.253	0.400	0.347	1038	0.200	0.320	0.480	1001	
0.285	0.325	0.390	1010	0.210	0.316	0.474	1002	
0.333	0.210	0.457	892	0.429	0.228	0.343	922	
0.349	0.170	0.480	829	0.797	0.081	0.122	670	
$x_{13} = 2.509$ ^a								
0.156	0.782	0.062	688					
0.191	0.733	0.076	743					
0.228	0.681	0.091	835					
0.376	0.474	0.150	1009					
0.564	0.211	0.225	935					
0.625	0.126	0.249	798					

^a Obtained by mixing the pure component *j* with the binary mixture $i + k$ in which the mole fraction ratio is $x_{ik} = x_i / x_k$.

represent the results (consisting of n experimental points) was found in order to obtain a minimum standard deviation according to

$$
\sigma(H^{E}) = \sum_{n} \left\{ (H_{\text{exp}}^{E} - H_{\text{calc}}^{E})^{2} / (n - m) \right\}^{1/2}
$$
 (2)

Values of $\sigma(H^E)$ for the best fit (for both the systems, *m* was equal to 3) are given in Table 2.

Tables 3 and 4 list the ternary experimental results for I-nonene-2 hexyn- 1 -ol- n -nonane and 1-hexanol-2-hexyn- 1 -ol- n -nonane, respectively.

The results are compared with those obtained using some of the modified Redlich-Kister equations recommended by Prchal et al. [6] for predicting

TABLE 4

Excess enthalpies H^E for the system 1-hexanol(1)-2-hexyn-1-ol(2)-n-nonane(3) at 298.15 K

x_1	x ₂	x_3	H^E /J mol ⁻¹	x_1	x_2	x_{3}	H^E /J mol ⁻¹	
$x_{12} = 0.976$ ^a			$x_{23} = 1.053$ ^a					
0.081	0.083	0.836	639	0.599	0.206	0.195	498	
0.258	0.264	0.477	825	0.748	0.129	0.123	327	
0.309 0.341	0.317 0.349	0.374 0.310	784 725	$x_{23} = 0.992$ ^a				
0.388 0.444	0.397 0.455	0.215 0.101	598 400	0.095 0.231 0.344	0.450 0.383 0.327	0.454 0.386 0.329	955 852 766	
$x_{13} = 0.996$ ^a			0.385	0.307	0.309	724		
0.135	0.729	0.136	483					
0.190	0.619	0.191	606					
0.359	0.281	0.360	756					
0.419	0.160	0.421	720					
0.430	0.138	0.432	712					
0.447	0.104	0.449	702					

^a Obtained by mixing the pure component *j* with the binary mixture $i + k$ in which the mole fraction ratio is $x_{ik} = x_i / x_k$.

TABLE 5

The mean percentage deviations $\delta(H^E)$ between the experimental binary excess enthalpies and those predicted by the original **UNIFAC** model [7] and its modification [9]

^a The group interaction parameters have been determined from binary H^E data [8].

Fig. 1. The isoenthalpic curves of the excess enthalpy (in $J \text{ mol}^{-1}$) at 298.15 K for the systems: (a) I-nonene-2-hexyn-1-ol-n-nonane; and (b) I-hexanol-2-hexyn-1-ol-n-nonane.

the excess enthalpy of ternary systems from binary data. The binary data correlations by eqn. (1) given here and those published earlier $[1-3]$ were used. The best prediction results (with mean percentage deviation, $\delta H^{E} = 1.8\%$) for the system 1-nonene-n-nonane-2-hexyn-1-ol (system I) were obtained by the modified Scatchard equation, and for the system 1-hexanol-2-hexyn-1-ol-n-nonane (system II) by that of Tsao $(\delta H^E =$ 4.1%). The deviations using the UNIFAC model fitted to binary H^E data appeared much higher: 9.0% and 15.2% for the systems I and II, respectively. It can be seen from Table 5 that this model and its modification [9] also give considerable deviations between the experimental and predicted results for all the binary systems considered, particularly for the mixtures of two alcohols.

The influence of the replacement of I-nonene by I-hexanol in the ternary system on the H^E values is shown in Fig. 1 where the curves of constant H^E values (lines of isoenthalpy) have been calculated by means of the modified Redlich–Kister equations which gave the best H^E prediction.

REFERENCES

- M. Kuus, H. Kirss, E. Siimer and L. Kudryavtseva, Proc. Estonian Acad. Sci. Chem., 41 (1992) 62.
- 2 H. Kirss, M. Kuus, E. Siimer and L. Kudryavtseva, Proc. Estonian Acad. Sci. Chem., 41 (1992) 105.
- J. Ortega, Int. Data Series, Set. Data Mixtures, Ser. A, 1990, 94.
- E. Otsa, V. Mihkelson and L. Kudryavtseva, J. Fiz. Khim., 53 (1979) 899.
- R.H. Stokes, K.V. Marsh and R.P. Tomlins, J. Chem. Thermodyn., 1 (1969) 211.
- 6 M. Prchal, V. Dohnal and F. Vesely, Coll. Czech. Chem. Commun., 48 (1983) 1104.
- Aa. Fredenslund, J. Gmehling and P. Rasmussen, Vapor-Liquid Equilibria Using **UNIFAC,** Elsevier, Amsterdam, 1977.
- E. Siimer, M. Kuus and L. Kudryavtseva, Thermochim. Acta, 209 (1992) 103.
- J. Gmehling, J. Li and M. Schiller, Ind. Eng. Chem. Res., 32(1) (1993) 178.