Note

DSC study of the thermal decomposition of 1-decene ozonide

M.P. Anachkov *, S.K. Rakovsky, R.K. Fotty and A.K. Stoyanov

Institute of Kinetics and Catalysis, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (Received 3 May 1993; accepted 12 September 1993)

Abstract

The kinetics of thermal decomposition of 1-decene ozonide has been studied by means of differential scanning calorimetry. It was found that the enthalpy of the reaction ΔH was $349 \pm 9 \text{ kJ mol}^{-1}$. Values of activation energy, kinetic order, and pre-exponential factor, determined from thermograms, give the following expression for the reaction rate constant: $k/(\text{s}^{-1}) = 1.66 \times 10^{15} \text{ exp}(-129000/RT)$.

INTRODUCTION

Ozonides are the basic product of the reaction of ozone with olefins [1]. In contrast with the thermal decomposition of a great number of organic peroxides, such as dialkyl peroxides [2], 1,2,4,5-tetraoxanes [3], and 1,2,4-trioxanes [4], this reaction has not been sufficiently studied in the case of 1,2,4-trioxolanes. There are considerable differences in the activation energy data E [5–7]. For this reason, there are two hypotheses concerning the rate-controlling step of the thermolysis, namely, the homolytic or heterolytic scission of the ozonide cycle [8–11]. Although thermal analysis methods offer great opportunities for the investigation of these types of reactions, no studies have been published so far for 1,2,4-trioxolanes. In this work we present an attempt to determine the activation parameters of the thermal decomposition of 1-decene ozonide by means of differential scanning calorimetry (DSC).

EXPERIMENTAL

The ozonolysis of 1-decene was performed by passing an ozone-oxygen gas mixture at a rate of $1.6 \times 10^{-3} \, 1 \, \text{s}^{-1}$ and ozone concentration of $1.1 \times 10^{-4} \, \text{mol} \, 1^{-1}$ through a bubbling reactor containing 10 ml of a 0.5 M solution of the respective olefin in hexane at -70° C. The ozonide was

^{*} Corresponding author.

Fig. 1. A DSC curve of 1-decene ozonide: mass, 2.1 mg; heating rate, 5°C min⁻¹; $\Delta H = 1854.04 \text{ J g}^{-1}$.

isolated by chromatographic separation (silica gel; *n*-hexane/diethyl ether 10:1). The structure and purity of the colourless liquid ozonide were confirmed by ¹H and ¹³C NMR, IR spectroscopy, and by elementary and mass spectral analyses.

Differential scanning calorimetry was carried out in a Mettler calorimeter Model FP 800, equipped with a computer. Samples (1.5-4.0 mg) were encapsulated in aluminium crucibles under argon. At least three measurements were performed at every heating rate.

RESULTS AND DISCUSSION

TABLE 1

A highly intense exothermic peak was present in the thermograms of 1-decene ozonide (Fig. 1). Data displayed in Table 1 show that the enthalpy ΔH of the reaction of thermal decomposition was 349 kJ mol⁻¹, which is about 62% higher than the respective value for dicumene peroxide ($\Delta H = 215$ kJ mol⁻¹) [12].

Heating rate/ °C min ⁻¹	$T_{\rm m}/{ m K}$	$\Delta H/kJ \text{ mol}^{-1}$	$E/kJ mol^{-1}$	n
3	384.4	341	129	1.02
5	390.0	349	127	0.98
10	396.0	353	131	1.01
15	401.0	345	129	0.99
20	403.0	347	128	0.98
Average values		349 ± 9	129 ± 4	1.00 ± 0.06

DSC analysis of the thermal decomposition of 1-decene ozonide

Compound	$E/kJ mol^{-1}$	lg A	Reference
RO-OR	155 ± 5	15.3 ± 0.5	17-20
Dicumyl peroxide	140 ± 8		12
Acetone diperoxide	153 ± 5	13.8 ± 1.1	3
Benzylketone diperoxide	128		3
Pinacolone diperoxide	128	12.6 ± 1.3	3
Ethylene ozonide	115.1	13.6	7
Hexene-1 ozonide	99.2	10.8	7
Heptene-1 ozonide	95.4	10.2	7

TABLE 2

Thermolysis of organic peroxides

Key: R is Me, Et, n-Pr, i-Pr, sec-Bu, t-Bu radicals.

The method of Ellerstein [13] was used to determine the values of the activation energy E and the kinetic order of the reaction n at different heating rates. Calculations were made according to the equation proposed by Crane et al. [14]

$$T^{2}(S/h) = (E/R) - nT^{2}(h/r)$$
(1)

where $S = dH^2/dT^2$, $h = (dH/\phi dt) = dH/dT$, $r = \Delta H - H_p(T)$, ΔH is the total enthalpy of the reaction, $H_p(T)$ is the partial enthalpy evolved up to temperature T (absolute temperature), t is reaction time, and $\phi = dT/dt$, the heating rate. A linear plot of the left-hand side of eqn. (1) against $T^2(h/r)$ yielded E/R as the intercept and n as the slope. Linear regression analysis of eqn. (1) for the data displayed in Table 1 resulted in correlation coefficients above 96%.

The Kissinger relationship between the peak maximum temperature T_m and E for data obtained at different heating rates was used as an alternative method to determine the value of E [14, 15]

$$d \ln \varphi / d(1/T_m) = -E/R - 2T_m$$
⁽²⁾

In this case, a plot of $\ln \varphi$ versus $1/T_m$ gives a straight line with slope -E/R when $E/R \gg 2T_m$. The value of E was 132 kJ mol^{-1} for a correlation coefficient in excess of 0.999.

Taking into account the first-order of the reaction, the pre-exponential factor A in the Arrhenius equation was calculated from the equation [16]

$$A = \frac{E\varphi(dT/dt)}{RT_{\rm m}^2} \exp(E/RT_{\rm m})$$
(3)

according to which $A \approx 1.66 \times 10^{15}$. On the basis of the values of *E*, *n*, and *A* thus determined, the following expression for the rate constant of the thermal decomposition of 1-decene ozonide can be written: $k/(s^{-1}) = 1.66 \times 10^{15} \exp(-129000/RT)$.

Scheme 1.

Kinetic data on the thermolysis of three different classes of peroxide compounds are collected in Table 2. It is well known that the rate-controlling step in the thermolysis of dialkyl peroxides and ketone diperoxides is the homolytic scission of the peroxide bond [2, 3, 12]. In the case of 1,2,4-trioxolanes, in addition to this (pathway A of Scheme 1), there is also another hypothesis, according to which this class of peroxide compounds is subjected to heterolytic cleavage by forming a carbonyl oxide intermediate and the respective carbonyl compound (pathway B of Scheme 1) [8, 9]. One of the important arguments for this suggestion are the lower E and A values obtained for the ozonides presented in Table 2. However, the proximity of the E and A values of 1-decene ozonide with those of the dialkyl peroxides and 1.2.4.5-tetraoxanes corroborate with the more widely accepted hypothesis of homolytic cleavage of the O-O bond. As far as the ozonide data mentioned in Table 2 are concerned, the lower E and A values in this case are probably a result of the applied method of investigation which is based on manometric measurements of the gaseous products of the ozonide decomposition.

ACKNOWLEDGEMENT

The authors are grateful to the National Research Foundation for financial support within the framework of Grant No. 101.

REFERENCES

- 1 P.S. Bailey, Ozonation in Organic Chemistry, Vol. 1, Academic Press, New York, 1978, Chaps. 5, 8; Vol. 2, 1982, Chaps. 11, 12.
- 2 A.C. Baldin, Thermochemistry of Peroxides, in S. Patai (Ed.), The Chemistry of Functional Groups, Peroxides, John Wiley, Chichester, UK, 1983, p. 97.
- 3 L.F.R. Cafferata, G.N. Eyler, E.L. Svartman, A.I. Canizo and E.J. Borkowski, J. Org. Chem., 55 (1990) 1058.
- 4 C.W. Jefford, A. Jaber, J. Boukouvalas and P. Tissot, Thermochim. Acta, 188 (1991) 337.
- 5 E. Bernatek and M. Hvatum, Acta Chem. Scand., 14 (1960) 836.
- 6 O.S. Privett and E.C. Nickel, J. Am. Oil. Chem. Soc., 43 (1966) 393.
- 7 N.I. Boldenkov and S.D. Razumovskii, Khim. Promst. (Moscow), 2 (1977) 100.

- 8 R. Criegee, A. Kerckow and H. Zinke, Chem. Ber., 88 (1955) 1878.
- 9 S.D. Razumovskii and Y.N. Yur'ev, Zh. Org. Khim., 3 (1967) 251; J. Org. Chem. USSR (Engl. Transl.), 3 (1967) 238.
- 10 P.R. Story, T.K. Hall, W.H. Morrison, III, and J.C. Farine, Tetrahedron Lett., (1968) 5397.
- 11 L.A. Hull, I.C. Hisatsune and J. Heicklen, J. Phys. Chem., 76 (1972) 2659.
- 12 D.W. Brazier and N.V. Schwartz, Thermochim. Acta, 39 (1980) 7.
- 13 S.M. Ellerstein, in R.S. Porter and J.O. Johnson (Eds.), Analytical Calorimetry, Plenum Press, New York, 1968, p. 279.
- 14 L.W. Crane, P.J. Dynes and D.H. Kaelble, J. Polym. Sci. Polym. Lett., 11 (1973) 533.
- 15 H. Kissinger, Anal. Chem., 21 (1957) 1702.
- 16 R.N. Rogers and L.C. Smith, Thermochim. Acta, 1 (1970) 1.
- 17 L. Batt and H.O. McCullough, Int. J. Chem. Kinet., 8 (1976) 911.
- 18 L. Batt, K. Christie, R.T. Milne and A.J. Summers, Int. J. Chem. Kinet., 6 (1974) 877.
- 19 R.F. Walker and L. Philips, J. Chem. Soc. A, (1968) 2103.
- 20 D.K. Lewis, Can. J. Chem., 54 (1976) 581.