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Abstract 

The macromolecular system where denaturation takes place, is considered from a molec- 
ular thermodynamic point of view as a convolution of a grand canonical ensemble, gee and 
a canonical ensemble ce. The former corresponds to the solute, the latter to the solvent. 

The properties of this system can be represented by a convoluted partition function 
obtained by the product of a grand canonical partition function Z,, and a canonical 

partition function, [w. If the experimental equilibrium constant, Kden = [ Dhyd] /[N] is substi- 

tuted for Z, and [vnw for iw, the convoluted partition function is K, = Kden [Wlnw, where 

[W] is the concentration of the solvent in the bulk and n, is the number of water molecules 

involved in the reaction. According to this model, by calculating the derivative d In Kden/ 
a( l/T), values of the denaturation enthalpy AHden should be obtained which are a linear 
function of the absolute temperature. The slope of the straight line AH,,, =f(T) is 
dependent upon n,. The experimental equilibrium constant conforms to the model. 

The apparent isobaric heat capacity, Cp,app of the solute is calculated by double mixed 
derivation of In Z, with respect to In[W] -“W and In T. By integration between two 
temperatures, as in DSC experiments, the apparent isobaric heat capacity yields the apparent 

enthalpy AHden of the denaturation process. The enthalpy thus calculated AH*,,, should be 

a linear function of the denaturation temperature T,,, in agreement with the denaturation 
enthalpy obtained by deriving the logarithm of the denaturation equilibrium constant. In fact, 
the heat supplied is comprehensive of the enthalpy due to the change of the conformation of 
the protein from native to denatured AH,,,r, of the hydration enthalpy, AH,,,, and of a term, 
n C w p,w T,, due to the heat absorbed by n, water molecules involved in the reaction 

AHden = AH,,ni + AH,,, + *w C,.w T, 

The hen egg white lysozyme (mol. wt. 14 100 Da) changes the denaturation enthalpy, and 
correspondingly the denaturation temperature T, by changing the pH or the concentration 
of denaturant. The influence of pH is related to changes in the structure of the solvent rather 
than to an actual reaction process. In accordance with this hypothesis, the dependence of 
the denaturation enthalpy either from In T or from pH or from denaturant concentration 
follows the same law. Values of AHden for hen egg white lysozyme plotted as the function of 
temperature give a unique straight line with slope corresponding to n, = 88.9 water molecules. 

The same treatment has been applied to the denaturation enthalpy for wild lysozyme of 
the bacteriophage T4 (mol. wt. 18 700 Da), as determined in DSC experiments. The slope of 
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the line yields nw = 122.0 water molecules. The difference in the number of water molecules 

is related to the different size of the macromolecules and probably to the proportional 
number of hydrophobic residues. The number of water molecules changes with different 
substituents. Mutants of wild lysozyme appear to involve n, = 131.4 and 139.8 for T157A 
and R96H, respectively. These numbers are in agreement with the increased hydrophobic 
character of the entering groups. 

The process seems to be related to the formation of a cage of water molecules around the 
denatured protein. 
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ii canonical partition function of species i 
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INTRODUCTION 

In previous articles [ 1- 141, we have analysed the application of the 
partition function method to the study of multiple equilibria in solutions of 
macromolecules. The equilibrium concentrations can be determined by 
potentiometry, dialysis, spectrophotometry, calorimetry, etc., under differ- 
ent ligand/macromolecule ratios. Alternatively, calorimetric determinations 
by isothermal, isoperibol, or differential scanning calorimetry, produce 
further thermodynamic information such as enthalpy and heat capacity of 
the system in equilibrium. 

It has been shown [9, lo] how every enthalpy change is paralleled by an 
equivalent entropy change whereby the former can be evaluated and vice 
versa. The van? Hoff equation exploits this equivalence to get information 
concerning the enthalpy change of a reaction from the equilibrium concen- 
trations of the same reaction at different temperatures, without any direct 
calorimetric determination whatsoever. 

The chemical systems are considered in general as the tokens in the 
experimental field, of grand canonical ensembles, gee of statistical thermo- 
dynamics, open to the exchange of heat and matter. If no chemical reaction 
is taking place, however, the system can be represented by a canonical 
ensemble, ce open to exchange of heat and invariant with respect to the 
concentration. The properties of each ensemble are represented by means of 
the corresponding partition function. 

The systems where the reaction is taking place in the presence of excess 
of solvent can be referred to as a convoluted ensemble, (gc*c)e resulting 
from the convolution of a grand canonical ensemble, representing the 
reaction with a canonical ensemble, ce representing the solvent. The thermo- 
dynamic properties of the convoluted ensemble are expressed by the product 
of grand canonical and canonical partition functions. The denaturation of 
proteins takes place in the presence of excess of solvent. Therefore, the 
description of the denaturation process by means of convoluted partition 
functions seems appropriate. 

The treatment will be applied to the analysis of the denaturation of 
different types of lysozyme for which a linear dependence of the denaturation 
enthalpy AHden upon the denaturation temperature T, has been found 
[ 15-201. Further developments of the model are needed to cope with systems 
where the function AHden =f(T,,,) is not linear as for example in hen egg 
white lysozyme in the presence of sarcosine [20] or where the behaviour is 
pH dependent as in chymotropysinogen or in ribonuclease [21-231. 
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Fig. 1. Enthalpy levels H, and enthalpy sublevels H, in grand canonical ensemble. The same 
distribution as for sublevel j holds for a canonical ensemble. 

PARTITION FUNCTIONS AND ENSEMBLES 

The partition function method consists in fi:nding the relationship of the 
experimental measurements of concentrations, dilution and heat to the 
probability of occurrence of a chemical or physicochemical process. Follow- 
ing Poland [24], the process is seen with reference to a quantized energy 
level model (Fig. 1) representing the molecular element of a molar statistical 
ensemble. Each level of the model corresponds to a single complex MAj, or 
MH,, AHi, XAi, etc., that can be transformed into another one MHi, , , or 
MHi+,,AH,+,,XAi,,, etc., by changing either the ligand concentration or 
the tempera&e. 

Within each level i, the complex occupies sets of sublevels j and the 
redistribution among these sublevels takes place only by addition or sub- 
traction of heat. 

The distribution of the species among the different levels i of gee is 
calculated by means of the excess grand canonical partition function, Z, or 
the grand canonical partition function, & = [ M]ZM. Each level is charac- 
terized by a number of cells. The number of cells (or states) represents the 
degeneracy of the level and corresponds to dilution or equivalent dilution in 
the experimental chemical domain [lo]. 

Any level i is separated from the fundamental level by the enthalpy 
difference AHi. The number of accessible cells (or states) within each level 
is related to the entropy of the level (Fig. 2). The number of the accessible 
(empty) cells can be varied by changing the dilution [lo]. Starting from an 
initial state where free M and free A are mixed (Fig. 2(a)), the binding of 
M and A to form MA is equivalent to increasing the number of the empty 
accessible cells, and hence to dilute free A (Fig. 2(b)). This yields an 
increase of the entropy of the system. The increase of the number of empty 
cells is proportional to the enthalpy difference AHi. Actually, a further 
increase or decrease of the number of empty cells takes place due to the 
intrinsic entropy difference of the reaction, ASi. On the whole, the total 
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Fig. 2. Enthalpy levels and dilution of ligand: (a) free A is added to the solution occupying 
the upper level; (b) excess of A is bound to M, thus diluting A. 

dilution of the ligand is proportional to the affinity of the ligand A for the 
receptor M and is comprehensive of both enthalpy and entropy contribu- 
tions. 

The probability of transitions between levels is expressed by the joint 
probability 

exp( - AGi /R T) = exp( - AHi /RT) exp( ASi /R) (1) 

The distribution of the population among the whole set of levels is given 
by the excess partition function 

-G = c PNl/[Xl (2) 

where the free receptor concentration [X] is taken as the normalizing 
reference state and A is a ligand. 

The model is well suited to describe the effect either of concentration or 
temperature on the distribution of the species. The various mathematical 
expressions of the logarithms of partition functions Z,, or equilibrium 
constants or kinetic constants as the function of concentration or tempera- 
ture or reciprocal temperature are connected to the partition of species over 
the different levels of the model. The mathematical expressions depend on 
the partition function appropriate to the system. The experimental observa- 
tions corresponding in general to derivatives of the functions represent 
evaluations of changes in the partition of the species. 
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0 

Fig. 3. Probability space. E( ) stands for exp( ), for the sake of brevity. K is 
equilibrium constant, d is the dilution. 

the 

The partition function is related to the probability of transition and to 
the standard free energy change by 

2; = exp( - AG”IRT) (3) 

which can be factorized into enthalpy probability and entropy probability 

exp( - AG”/RT) = exp( - AH”/RT) exp( AS”/R) (4) 

The joined probability can be represented in the probability space where 
the axes are x = exp(AS/R) and y = exp( - AH/RT) (Fig. 3). The joined 
probability z* = exp( - AG”/RT) is represented in the auxiliary coplanar 
axis z*. The starred coordinate indicates that for geometrical conditions of 
the axes in one plane, the scale along the auxiliary axis is multiplied by 
1.414 = 2 cos 45”. 

The geometrical representation is useful to put in evidence several rela- 
tionships between thermodynamic functions and experimental observations. 
A useful step has been the identification of x = exp(AS/R) with the dilution 
axis related to the number of accessible cells of the level model (see Fig. 2). 
Partition functions and equilibrium constants are also evaluated along x. 
It is important to note that the enthalpy factor exp( - AHe/RT) along 
the y axis can be evaluated as a corresponding equivalent entropy factor 
exp( ASH/R) along the x axis. In the probability space in fact, the equivalent 
entropy factor is the hyperbolic projection onto x of exp( - AH/RT). The 
equilibrium constant is evaluated along x as the hyperbolic projection of 
exp( - AG”/RT) onto x. Thus the equilibrium constant K or the partition 
function Z$ comes out to be a total entropic quantity, obtained as the 
product of the standard entropy factor exp(AS”/R) and the equivalent 
entropy factor exp( AS, /R). 
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The partition function depends on the formation constants of the species 
included in the function itself. In the simple case of the equilibrium 
M + A = MA, the partition function is 

ZM= 1 +K[A] (5) 

Even the equilibrium constant K by itself can be identified with a saturation 
partition function giving the ratio between the probability of binding A to 
form MA and the probability of dissociating it [4, 61. The partition function 
and the equilibrium constant can be considered as dilutions or reciprocal 
concentrations and read on the diagrams of the probability space. In this 
space, the x axis is parallel to the dilution axis, xl/ d. 

The probability space can be transformed into the affinity thermody- 
namic space by taking the logarithms of the probabilities of the eqns. (l-5). 
In affinity thermodynamic space, the axis representing In K, In ZM, and In d 
is parallel to the x axis (entropy axis). 

The thermodynamic space is useful to represent the relations of the 
thermodynamic functions with the experimental domains of calorimetry and 
potentiometry. The basic relationship of classical thermodynamics 

-AGilRT= -AHiIRT+ ASilR (6) 

can be represented by vectors in the thermodynamic space, where the scale 
factor for the starred axis z* is 0.707 = cos 45” (Fig. 4). An endothermic 
reaction is represented in this diagram. The equivalent entropy component, 
ASH/R is obtained as orthogonal projection of the enthalpy component 
- AH/RT onto the x axis. Regions of the thermodynamic space where the 
processes are enthalpy-driven or entropy-driven are clearly identified in this 
diagram. 

It is worth noting that also the Bjerrum formation function or binding 
isotherm (n) giving the average number of ligand bound per mole of 
receptor 

(n) = d In ZM/8 ln[A] = A&/R (7) 

represents an evaluation of the relative dilution of the ligand and as such 
can be identified with an entropy change, A&/R and evaluated along x of 
the thermodynamic space [ 111. 

CONVOLUTED ENSEMBLES 

In general the stability constants in solution are determined in the 
presence of excess of solvent whose concentration is assumed to be constant 
even if it takes part in the chemical reaction as a ligand. We have shown 
[ 121 how in the protonation equilibria of carboxylic acids in aqueous 
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Entropy driven Enthalpy driven 

Fig. 4. Thermodynamic space. Enthalpy- and entropy-driven fields. The represented reaction 
is endothermic and entropy-driven. 

solution, the protonation constant lg K determined experimentally is only an 
apparent constant because it does not include the concentration of water 
molecules [Wj involved in the reaction. 

The solvent in these systems can be represented as a canonical ensemble, 
ce whose properties are described by a canonical partition function [i which 
is independent from the concentration. For ce, only moments of the 
partition function with respect to the variable temperature T or to the 
variable reciprocal or logarithmic temperature can be measured. The solute 
in its different species forms a grand canonical ensemble gee. 

The properties of the ensembles gee and ce are related to the previously 
mentioned models consisting of sets of quantized energy levels. The ensem- 
bles gee and ce differ from one another for the extent of the interlevel energy 
separation. The ensemble gee is characterized by enthalpy differences AHi 
between levels i significantly higher than the differences AHj between 
sublevels j. The ensemble ce consists of a unique level which is the mean 
of several sublevels j with differences AHj between sublevels. The set of 
enthalpy levels is similar to that of the sublevels Hi in a single level i (see 
Fig. 1). A specific partition function can be associated with each component 
ensemble, namely a grand canonical partition function Z, with gee and a 
canonical partition function ii with ce, respectively. 
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The protonated and unprotonated species of carboxylic acid in aqueous 
solution have been represented [ 121 as a convoluted ensemble (gc*c)e. The 
protonation process has been described on the basis of a convoluted 
partition function, Zg = Z,& obtained as the product of a grand canonical 
partition function and a canonical partition function, the last one corre- 
sponding to the solvent. The same convolution of partition functions is 
suited to the interpretation of the solubility of noble gases [ 131. 

The protonation process in the carboxylic acids follows the same scheme 
in all the acids examined so far. The reaction enthalpy can be decomposed 
into an exothermic contribution AH0 = -45.6 f 3.6 kJ mol-’ and an en- 
dothermic contribution AH, which depends on the number of water 
molecules involved in the reaction. The latter contribution AH, = nw C,,, T 
is a linear function of the temperature. C,,, is the molar isobaric heat 
capacity of water and n w is the number of water molecules involved in the 
reaction. The number n, comes out to be constant (nw = 2.11) in all the 
acids examined. 

The solubility of noble gases is similarly explained by considering the n, 
water molecules involved in the formation of a cage around the gas atom. 
The number of water molecules entering the cage is proportional to the size 
of the central atom. The number n w ranges from 1.6 for helium to 3.2 for 
xenon and to 3.9 for radon. 

DENATURATION AND van? HOFF EQUATION 

The criteria derived from the equivalence of chemical and thermal 
dilution of the free solvent W and applied to the analysis of the protonation 
of carboxylic acids or to the solubility of noble gases in water, can be 
applied to the interpretation of the denaturation of proteins as well. A two 
step process is assumed [ 191. 

The equilibrium between native N and denatured D states of a protein 
can be decomposed into two processes. The first process is the conforma- 
tional transition from N to D state with constant 

K conf = PI /WI (8) 

This is a highly cooperative process and from a thermodynamic point of 
view consists in a supply of energy (enthalpy) to the N state which is then 
transferred as kinetic energy (entropy) to the D state. 

The second process is the hydration of the denatured state via the 
formation of a cavity in the bulk of solvent molecules 

D + XW = DW+_,) + nwW (9) 

with equilibrium constant 

Khyd = [Dtqdl[WlnW/[Dl (10) 
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where [Dhyd] >> [D] is the concentration of hydrated denatured molecules 

DW(x-nWj, and [W’j is the concentration of water molecules in the bulk. nw 
is the number of water molecules of the bulk expelled by D to form a cavity. 
By substitution of eqn. (8) into eqn. (lo), one obtains 

(11) 
The denaturation constant Kden is 

&en = P~yd/Wl (12) 
and then by introducing eqns. (10) and (1 l), eqn. (12) yields 

&en = &FYI -“w (13) 

Kden is related to the grand canonical partition function Z, by eqn. (22). 
Kden itself can be considered as a grand canonical parition or saturation 
function [9]. [Wjnw is the canonical partition function cw for the solvent and 
K0 is the convoluted partition function. 

By taking the logarithms, eqn. ( 13) becomes 

In Kden = In K0 - nw ln[Wj (14) 

By differentiation with respect to l/T, one obtains 

a In Kden/a(i/q = a In Ko/a(i/T) - nwa ln[Wj/a( l/T) (15) 

By applying the van? Hoff equation to eqn. (15), the denaturation enthalpy 
AHden is obtained 

- AHden( l/R) = -A&( l/R) - nwd ln[Wj/d( l/T) (16) 

The last term of this equation can be transformed into the derivative with 
respect to In T 

- nwa ln[Wj/a( l/T) = nwTd ln[W]/a In T (17) 

In canonical ensembles [3], the following equality holds 

d ln[Wl/a In T = -C,,,/R (18) 

By introduction of the eqns. ( 17) and ( 18) and by division by - ( l/R), the 
denaturation enthalpy of eqn. ( 16) can be expressed as 

AHden = AH, + nw TC,,, (19) 

This means that by plotting the denaturation enthalpy against T, a straight 
line should be obtained, which is exactly what has been found in the cases 
examined so far. 

DENATURATION FRACTIONS AT DIFFERENT TEMPERATURES 

If the concentration of the denatured protein in statistical equilibrium is 
[Dhyd] >> [D], then the total protein is [P] = [N] + [Dhyd] and the fractions 
of native and denatured protein, respectively are given by 
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EN = WI/(~NI + PtJ) 
and 

(20) 

aD = PIJ/(WI + Phyd (21) 
The partition function referred to N as the receptor, can be written as 

2, = 1 + &[~-“w (22) 

and the fraction c(D 

a, = R,,[Wj -““I( 1 + &[W, -““) (23) 

can be obtained as derivative of Z, with respect to ln[Wj -“w 

8 ln Z,/a ln[W] -“w = ab (24) 

By considering that the molar fraction for a single step reaction is identical 
with the formation function or binding isotherm and by recalling eqn. (7), 
the molar fraction can be identified with a charge of entropy of the system, 
A&/R. The second derivative of In ZN with respect to In T is therefore a 
change of entropy with temperature and can be calculated as 

d2 In Z,/a(ln[W]-nw)d In T = dc$/d In T (25) 

The derivative of ED with respect to h-r T can be calculated explicitly 

dab/8 In T = ~(Ko[~-nw)/~ h-r T{l/( 1 + KO[W]-“w)2} 

= {[WI PnwXO/8 In T + K,lJ[Wj pnw/a In T} 

x {Ml + &wrw)2) (26) 

The derivative of KO with respect to In T is 

a&/a In T = &(AH,,/RT) (27) 

By recalling that the solvent is actually a canonical ensemble ce [ 121 for 
which eqn. ( 18) holds, the derivative of [W] -“w with respect to In T becomes 

a[w-nw/a In T = +[W]-“Wn,Cp,wIR (28) 

Equation (26) becomes 

dab/d ln T = &[w-“w(A&/RT + fl&,~/R){l/( 1 -I- &,[wP”w)2} 

= @.D( 1 - ED)(A%/RT + nwCp,wIR) (29) 

where the first term within parentheses AH,JRT refers to the convoluted 
ensemble (gc*c)e and the second term nwCp,,/R to ce of the solvent. 

The result of these calculations is that the molar fractions of native and 
denatured states of the macromolecule, respectively, obtained in DSC 
experiments are the functions of the same factor (AH,/RT + nw C,,,/R) 
affecting the denaturation enthalpy in eqn. (19) had been obtained from 
equilibrium determinations. 
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ISOBARIC HEAT CAPACITY 

The following equality can be set between molar fraction derivative and 
apparent isobaric heat capacity because both can be considered as entropy 
dispersions, 

lagDla ln TI = C,,,,,IR (30) 

The right hand side of eqn. (30) is by definition a positive quantity. 
The derivative at the left hand side of eqn. (30) is actually a mixed 

derivative [ 111. In fact, the factor c1,,( 1 - a,) in eqn. (29) can be identified 
with the buffer capacity of an isothermal titration curve aD =f(ln[W’j -nW)T 

a,( 1 - ED) = (aaD/ ln[~-“W)T (31) 

Equation (32) can be rewritten as a product of derivatives of implicit 
functions 

ww, l(dzl%J)x = - ($JJlW; 

(Am,/8 ln T>m = -(aaD/8 ln[W]-“W),(AH,/RT + nwCp,,/R), 

with variables ED, In T and [W] -nw bound by implicit relationship 

Cp,ap&D, In T, [WI -““) = 0 

(32) 

(33) 

Equation (30) yields the apparent isobaric heat capacity. We can recall 
that (see ref. 10, Table 3) the second derivative of the partition function 
with respect to In T is identified with the dispersion of entropy and 
experimentally measured by the heat capacity of the system. In the same 
way, the mixed derivative with respect to In T and ln[Wj -“w of eqn. (32) 
can be identified with dispersion of entropy over sites and over states and 
experimentally measured by the excess heat capacity of the solute [ 111. 

The application of the relation of implicit functions to the convoluted 
partition function confirms the validity of eqn. (32), introducing however 
new insights of the chemical interpretation of the mathematical expres- 
sions. In particular, it is important to note that eqn. (32) is coherent with 
the interpretation of the absolute temperature as a formal analogue of 
dilution. 

By applying the relation of the implicit functions, one can write 

(A%IRT + +&,,w /R)a = 8 ln[W] -“W/a In T (34) 

which is the explicit expression of the “warm” derivative for reaction (9) 
in a convoluted ensemble. The first term in parentheses concerns the 
convoluted ensemble, (gc*c)e and the second term the canonical ensemble 
ce. One can note that apart from the term nwCp,w/R, eqn. (34) is coinci- 
dent with 13( - AGeIRT)/a In T. 
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We note that by putting y = (AH,RT + nwC,,w/R) in eqn. (34) and by 
integration, one obtains 

K,[W-l -nW = KTY (35) 

where KO and K are dissociation constants. This means that we can assimi- 
late the temperature to a kind of reciprocal concentration or thermal 
equivalent dilution (TED). Under the condition that y = + 1, the “cold” 
molar fraction a,$ can be expressed as 

a c,D = {&[w -“w/( 1 + &[w -nW)T = KIT/( 1 + dT) (36) 

where K’ is similar to an equilibrium constant. The molar fractions can be 
represented in a Bjerrum plane as titration curves (Fig. 5). The different 
curves are parallel to each other for endothermic reactions, the displacement 
depending on both the value of the stability constant and concentration 
units (Fig. 5(a)). If y = - 1 (exothermic reactions), the slope of the curve is 
reversed. This means that by differentiation of eqn. (36) with respect to the 
absissa (ln[Wl -“w and In T, respectively) equal or opposite values of the 
slopes are obtained. 

a) endothemic 

-IWl In7 IMY 

3) 

b) exothermic 

a!LJacfq acm 
-InWl InT InTY 

1) 2) 3) 

InT 

4) 

cb 

I: 1 
It-J 

4) 

Fig. 5. Molar fraction and derivatives with respect to -In[W], In T, and In Ty, respectively 
for (a) endothermic and (b) exothermic reaction. In any case, the resulting molar fraction 
change with the temperature is the same either in endo- or exothermic reactions. 
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In fact, in endothermic reactions, the “cold” molar fraction 
= d In 2,/a ln[Wj +W (Fig. 5 (a, 1)) can be transformed into the “cold” 

zzvative (8 In 2,/a ln[Wl +“)/(a ln[w-“w/a In T) (Fig. 5(a, 2)) with 
(8 ln[Wj -“w/a In T) = + 1. In exothermic reactions, the “cold” derivative is 
reversed (Fig. 5(b, 2)) with [a ln[W] -“w/a In 7’) = - 1. The equality be- 
tween “cold” derivatives is thus established 

acc.,D/a ln[W] -nw = fa,,D/a In T (37) 

where the plus sign holds for endothermic reactions and the minus sign for 
exothermic reactions. 

By contrast, the “warm” molar fraction ED can be calculated from eqn. 

(38) 

c(,,= KT~/( l+ JcT~) (38) 

This equation, if differentiated with respect to In TY, produces the same 
slope as eqn. (37) 

&D/d ln Ty = +&&b/d ln T (39) 

where the plus sign holds for endothermic reactions (Fig. 5(a, 3)) and the 
minus sign for exothermic reactions (Fig. 5( b, 3)). (From eqn. (39) one obtains 

yaac,D/a h T = f&,/d h T (40) 

where y > 0 and plus hold for endothermic reactions ((Fig. 5(a, 4)) and 
y < 0 and minus hold for endothermic reactions (Fig. 5( b, 4)). From the 
equality of the slopes of the diagrams in Fig. 5(a, 4) and 5( b, 4), one can 
deduce that endothermic and exothermic reactions give rise to correspond- 
ing buffer capacity curves. The right hand side eqn. (40) is equal to the left 
hand side eqn. (32). 

The right hand side of eqn. (40) for an exothermic reaction can be 
introduced into eqn. (32) modified according to eqn. (37), to make the 
whole right hand side dependent upon the temperature 

c,,,,,/R = -&$,/a In T = (aa,,,la In T)(AH,IRT + n,C,,,/R) (41) 

This equation can be combined with eqn. (34) to show how C,,+,,,, is actually 
a mixed second moment of the distribution 

C,,,,,/R =(&,,,/i? In T)(a ln[w-“w/a In T) (42) 

obtained by double derivation, the former “cold” the latter “warm”. 
Equation (42) confirms that the isobaric heat capacity is an evaluation of 
the dispersion of entropy due to both chemical and thermal dilution. 

CALORIMETRIC DENATURATION ENTHALPY 

The right hand side of eqn. (41) can be multiplied by R, transformed to 
the derivatives with respect to dT and integrated 
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s T2 

A&en = Cp,app dT 

7-l 

= ( + AHo + nw C,,w Tnd 

s 

T2 (&cc,JaT) dT (43) 
TI 

where T, and T2 are the temperatures at which the transformation begins 
and ends, respectively. T,,, is the temperature at which the buffer capacity is 
at a maximum and corresponds to the midpoint of the transformation. The 
result of the integration is 

(44) 

which corresponds to eqn. (19) if T, is substituted for T. 
The value of the denaturation enthalpy, AHden is usually calculated by 

integrating the area below the thermal profile between two temperatures and 
is equal to the total enthalpy of eqn. (44) (Fig. 6). This means that by 
plotting the apparent enthalpy AHden measured at each temperature against 
T,, one should obtain a straight line, in accordance also with eqn. (19) 
obtained for the equilibrium experiments performed at constant tempera- 
ture. This result is in general found in many cases experimentally examined, 

I I I I I I I 
303 323 343 363 

T/K 

Fig. 6. Denaturation peak in DSC experiment. 
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Q IC :f(GuHCI), n DSC:f(l&, 

l IC :f(p+ ADSC:~Q~ 

Fig. 7. Denaturation enthalpy of hen egg white lysozyme vs. temperature. IC, isothermal 
calorimetry; DSC, differential scanning calorimetry. Data from Privalov [ 161. 

as is shown in the example of Fig. 7 where values obtained either by 
equilibrium or calorimetric experiments are plotted. This proves the validity 
of eqns. ( 19) and (44) for a two step denaturation process. 

A possible molecular mechanism in accordance with the thermodynamic 
result is drawn in Fig. 8. 

EFFECTS OF DENATURANT AND ACIDITY 

The denaturation process occurs at different temperatures depending on 
the pH, and on the addition of denaturants. It has been found [ 15-201 that 
the enthalpy, AH,,, at different temperatures (obtained by changing pH or 
denaturant concentration) plotted against the temperature T produces a 
straight line (see Fig. 7). 

According to eqn. (36) the slope of the straight line is equal to nwCp,W 
with nw = 89.9 water molecules per mole in hen egg white lysozyme. The 
influence of the water molecules on the denaturation of proteins can be 
explained on the grounds of the previously mentioned equations. The 
contribution of the water molecules to the apparent isobaric heat capacity 
derives from eqn. (19) which is based on the equality between the entropy 
changes due to temperature and dilution. The slope nwCp,W is therefore an 
entropy term AS, 

AS, = nw C,,, (45) 

The action of the denaturants, which are substances that produce at some 
concentration level the transition N --) D can also be explained on the basis 
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Fig. 8. Proposed molecular model of the denaturation process: N, native protein; D, 
denatured protein; DW,, hydrated denatured protein; W,: portion of bulk water; nw, water 
molecules set free in the denaturation process. 

of the model adopted here. The effect of denaturants upon denaturation has 
been analysed by Hade and Tanford [25], Lee and Timasheff [26] and by 
Schellman [ 271 amongst others. 

One of the most active denaturants is guanidium chloride GuHCl. These 
substances could exert their action by subtracting water molecules from the 
sheath of the hydrophobic moiety. In such a way, the denaturants produce 
dilution of the water molecules of the sheath thus changing the dilution 
according to eqn. (19). In fact, one can write 

a[W]-flw/a In T = a[W]-nw/a ln[GuHCl] = -[FV-WZ~C,,~/R (46) 

which shows how a change of denaturant concentration is exactly equivalent 
to a change of the temperature. This is the reason why the points obtained 
by changing the concentration of denaturant at constant T fall on the same 
line as the points obtained at constant [GuHCl] by changing the tempera- 
ture. The term AS, is the one changing in eqns. ( 19) and (44). 

On the same grounds, the effect of pH on the denaturation of proteins 
can be explained by putting the equality 

a[~-“~/3 In T = 13[w-“~/apH = -[?V-“wnwCp,wIR (47) 
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and again the points obtained by changing the temperature at constant pH 
fall on the same line as the points obtained by changing pH at constant T. 
Again, the term AS, is that which changes in eqns. (46) and (47). 

Similar behaviour is presented by other macromolecules, e.g. by phenyl- 
alanine specific tRNA which has been studied as the function of tempera- 
ture and Mg2+ concentration by Biltonen and co-workers [28, 291. 

ANALYSIS OF EXPERIMENTAL DATA 

The DSC microcalorimeter has been used by several authors [ 15- 191 to 
study the equilibrium between native and denatured conformations of 
macromolecules. 

The first set of data analysed in the light of the model proposed here is 
the set of data given by Privalov [ 161; the calorimetric traces obtained for 
hen egg white lysozyme under different conditions of pH either by isother- 
mal (IC) or differential scanning (DSC) calorimetry are shown in Fig. 9. 

4.5 

2.0 

I 

30 

I I I I I I 

50 70 90 

TemperaturePC 

Fig. 9. DSC curves for the denaturation of a protein at different pH values. Reproduced 
from Privalov [ 161. 
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The values of the total enthalpy have been evaluated from the graph and are 
reported in Fig. 7. The number of water molecules obtained from the slope 
of the line in this diagram is nw = 88.9. 

Another set of data concerning various types of lysozyme has been 
obtained by Sturtevant [ 301. The data refer to a wild type of lysozyme from 
bacteriophage T4 and its R96H and T157A mutants. The different types of 
lysozyme have been supplied to Professor Sturtevant by Brian Matthews of 
the University of Oregon. The wild T4 lysozyme has a sequence of 164 
residues against 126 of hen egg white lysozyme. The molecular weight of T4 
lysozyme is 18 700 Da against 14 100 Da for hen egg white lysozyme. The 
molecule of T4 lysozyme is larger than the molecule of hen egg white 
lysozyme and very probably presents a number of hydrophobic residues 
which is roughly proportional to the molecular size. 

The data of the enthalpies for T4 lysozyme and its mutants are reported 
in Table 1. The temperatures listed are the temperatures of half completion 
of the transitions. Several different batches of proteins were used in each 
case and this could be the cause of the considerable scattering in the data. 
The temperature of denaturation was varied by varying the pH over the 
range 1.8 to 3.1. 

The denaturation enthalpies are plotted against Tin Fig. 10. The different 
mutants produce lines with different slopes corresponding to n, = 122 (wild 
T4 lysozyme), nw = 131.4 (for Thr157Ala), n,= 139.8 (for Arg96His), 
respectively. 

The changes in the number of water molecules n, is coherent with the 
molecular features of the types of lysozyme (see Table 2). The variation 
between hen egg white and T4 lysozymes is related to the size of the 
molecules and is probably proportional to the number of hydrophobic 
residues. The changes of nw between wild T4 lysozyme and its mutants are 
justified by the increased hydrophobic character of the substituents. Alanine 
is more hydrophobic than threonine and histidine more hydrophobic than 
arginine, respectively. 

CONCLUSIONS 

The enthalpy value AH0 obtained by extrapolation of AHden to T = 0 is 
the net enthalpy change of the reaction between protein and water. At 
T = 0, the water molecules released by the reaction do not absorb heat. 

The extrapolated values, AH0 for the different types of lysozyme are 
themselves a function of n, (Fig. 11). The straight line 

AH0 = Ah, + Ahw = t209 - 22.1 In, kJ mol-’ (48) 

fits the data. The enthalpy change Ahw = - 22.1 In, kJ per mol n, is the 
enthalpy change per water molecule for the hydration of the protein while 
Ah, = + 209 kJ mol- ’ is the conformational enthalpy change at denaturation. 
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TABLE 1 

151 

Calorimetric determination of denaturation enthalpy and denaturation temperature in wild 

T4 lysozyme and its mutants 

T157A R96H Wild 

T/K AH/kJ mol-’ T/K AH/kJ mol-’ T/K AH/kJ mol-’ 

303.24 

304.44 
307.23 
307.25 
307.51 
311.02 
311.13 
31 1.19 
31 1.51 
31 1.63 
31 1.73 
31 1.74 
31 1.87 
31 2.23 
314.04 

313.94 

315.98 

316.23 
316.69 
320.28 

320.62 

323.00 
323.24 

323.26 

323.65 

295.8 
311.3 
362.3 
344.3 
348.1 
360.7 
348.9 
395.8 
392.0 
370.7 
364.4 
378.6 
395.0 
391.2 
402.9 
414.6 
460.2 
410.0 
478.2 
429.7 
487.4 
494.5 
497.4 
496.2 
510.0 

296.59 201.7 
296.27 223.7 
295.68 197.9 
296.82 250.2 
295.79 213.0 
296.64 237.7 
297.47 242.7 

297.46 225.9 
299.96 288.7 
300.10 295.8 
300.71 303.7 
302.50 270.7 
303.08 281.6 
303.98 316.7 
303.78 301.2 
304.47 305.0 
305.98 315.9 
306.45 331.8 
307.34 308.3 
310.14 399.1 
310.59 387.4 
310.56 387.4 
310.78 380.3 
311.00 389.5 
313.95 438.9 
314.23 409.2 
314.66 399.1 
314.46 399.1 

306.07 328.4 
308.66 347.3 
308.76 366.9 
308.65 366.1 
308.81 365.2 
308.87 367.8 
312.25 400.4 
311.50 412.1 
312.32 412.1 
311.04 389.5 
311.86 417.1 
312.37 405.4 
308.96 405.4 
313.70 426.3 
316.09 465.7 
316.65 478.2 
316.82 477.3 
317.08 478.2 
317.33 478.2 
318.07 473.2 
318.37 495.4 
318.31 475.7 
318.81 474.0 
321.52 490.4 
321.60 482.0 
321.80 488.3 
321.90 476.5 
322.05 463.2 
322.21 476.5 
324.9 1 516.3 
324.74 518.0 

The term corresponding to the effect of the n, water molecules can be 
represented as a vector AS; in the thermodynamic space (Fig. Al). The free 
energy change is positive and the corresponding vector AC& (Fig. Al(a)) 
is in the negative field, so is the denaturation (endothermic) enthalpy AHden. 
The entropy component AS,“,, is positive. 

AC:, = AHde,, + AS&, (49) 

The enthalpy component can be decomposed into an endothermic vector, 
AH,, which is in the positive field and a negative (endothermic) water 
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Fig. 10. Denaturation enthalpy as the function of absolute temperature T for different types 
of lysozyme obtained from bacteriophage T4. The mutants are T4 Ala = T157A and 
T4 His = R96H. 

enthalpy, AH, (Fig. Al(b)). In its turn AH,, is the sum of the hydration 
(exothermic) enthalpy AHhyd and of the endothermic conformational enthalpy 
AHconf . The entropy component is the sum of the water entropy AS; of the 
conformational entropy ASconf and of the hydration entropy AS;& (Fig. Al(c)) 

AG& = AH, + AH, + ASconf + AS; + AS” 

= - AHhycj + AH, + AHco,,f + ASconf + AS; + AS” (50) 
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TABLE 2 

Hydration numbers nw of different types of lysozyme 

Type Slope/J mol-’ Km’ nW AH”/kJ mol-’ T/K 

HEW a 6701 b 88.9 - 1764.8 263.4 

Wild T4 9199 c 122 - 2463.4 267.8 
T157A (T4) 9903 = 131.4 - 2701.7 272.8 
R96H (T4) 10539 c 139.8 - 2896.2 274.8 

a Hen egg white. b Fig. 7. ’ Fig. 10 

‘E; 
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Fig. 11. The extrapolated enthalpy AH0 for different types of lysozyme as the function of n, 
(see eqn. (48)). 

The combination of water enthalpy and of water entropy is null 

AH,+AS$=O (51) 

as is the combination of enthalpy and entropy for the conformational 
transition 

(52) 

and the denaturation free energy is the combination of 

AC& = AHhyd + AS&, (53) 

Thus, the denaturation enthalpy can be decomposed into three contribu- 
tions: (1) hydration of protein in a cavity in the solvent AHhyd; (2) 
conformation enthalpy AHc,,f; (3) heat absorbed by the water molecules 
released nw C,,, T. Contributions (2) and (3) are balanced by an opposing 
entropy contribution. Therefore, the resulting free energy charge for denat- 
uration is small and mainly governed by entropy-enthalpy compensation. 
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Fig. Al. Vector representation of the denaturation process. 

APPENDIX: VECTORS IN THERMODYNAMIC AFFINITY SPACE AND IN 

THERMODYNAMIC FREE ENERGY SPACE (Fig. Al) 

We define three coplanar vectors 

xi+yj=zk* (Al) 

where i,j, k* are unitary vectors of moduli [iI = l/R, I[= l/(M), 
Ik*l = 0.707/(RT), respectively. k* is the bisector of the angle between i and 

j. If we substitute AS, -AH, and - AG for x, y, z, respectively, we obtain 

A%+( -AHlj=(-AG)k* (AZ) 

which becomes in vector notation, in thermodynamic affinity space 

AS-AH= -AC* (A3) 

Note that yj = ( - AH)j = -AH (exothermic reaction) and the vector -AH 
is in the positive field (y > 0) in thermodynamic affinity space whereas 
-yj=(AH)j=AH( en o d th ermic reactions), and the vector AH is in the 
negative field (y < 0). The same rules hold for exoergonic reactions ( - AC) 
in the positive field (z * > 0) and endoergonic reactions (AC) in the negative 
field (z* < 0), respectively. 
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Alternatively, in thermodynamic free energy space we substitute AS, AH, 
and AG for X, y, z, respectively, and obtain 

AS = AHj = AGk* (A41 

The vector AHj = AH is in the positive upper field for endothermic reac- 
tions and the vector - AHj = -AH is in the negative lower field for 
exothermic reactions. Analogously, the vector AGk* = AC is in the positive 
(z * > 0) field for endoergonic reactions and the vector - AGk * = -AC is in 
the negative (z* < 0) field for exoergonic reactions. 

The thermodynamic affinity space is parallel to the probability space for 
transitions, whereas the thermodynamic free energy space is symmetrical to 
the probability space for transitions. 


