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Abstract 

The application of a Simon-type equation to the relationship between glass transition 
temperature and pressure for polymers is described. An equation of this form can be derived 
if it is assumed that one of the Ehrenfest relationships is valid and that the ratio AC, /( V.Aa) 
depends linearly on pressure. Data obtained by high-pressure DTA for polystyrene were 
analyzed and it was found that the Simon equation provided a better fit than did a quadratic 
equation. 

INTRODUCTION 

It has been known for many years that the relationship between the 
melting point T, and pressure P,,, along the melting curve can be empiri- 
cally expressed by the Simon equation 

(Pnl - Po)/a = (zn/~0)= - 1 (1) 

in which PO and T,, are the coordinates of the triple point of the given solid, 
and a and c are constants characteristic of the material. Because PO is 
usually much lower than Pm, the simpler equation 

PI& = (Cll/~rn,O)” - 1 (2) 

is widely used, where r,,O is the melting point at atmospheric pressure. The 
melting curve for many materials is well fitted by this equation [ 11. 

The Simon equation (2) has also been derived by Slater who made the 
assumption that the Griineisen equation of state and the Lindemann 
melting equation hold along the melting curve [2]. In this analysis, the 
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constant a was correlated with the internal pressure (aU/aV), at T, = 0, 
with the implicit assumption that the extrapolation of eqn. (2) to this limit 
is valid [2]. A phenomenological derivation of the Simon equation was also 
proposed by Voronel [3] which was based on the Clausius-Clapeyron 
equation and an assumption that the ratio of the heat of melting AH, to the 
volume change A’v, is a linear function of pressure, i.e. 

dP,/d(ln T,) = AH,,,/AV,,, = c(Pm + a) (3) 

A physical interpretation of the constants was also given in this contribution 

[31. 
An analogous argument may be applied to the relationship between the 

glass transition temperature Tg and pressure Pg. In the present paper, the 
validity of this application will be examined. 

ASSUMPTION AND DERIVATION OF Tg-P, RELATION 

In the case of the glass transition, rather than the Clausius-Clapeyron 
equation, it is appropriate to start with one of the Ehrenfest equations 

dT,/dP, = Tg VgAalACp (4) 

where V, is the volume at Tg, and Aa and AC, are the magnitudes of the 
discontinuities in the thermal expansion coefficient and the heat capacity at 
constant pressure at Tg and P,, respectively. In fact there is the conjugate 
equation 

dT,ldP, = Au/Au (5) 

where AK is the discontinuity in the isothermal compressibility at Tg, but 
only eqn. (4) has been experimentally proved to hold [4-71. The widely 
discussed relationship between the Prigogine-Defay ratio and the number 
of the order parameters required remains a matter of controversy [8- 151. In 
fact, eqn. (4) can be derived from’s consideration of the intersection of the 
entropy surfaces for the liquid and the glass as a function of T and P, 
whereas eqn. (5) is based on a consideration of the volume surface. From 
this standpoint alone, it seems somewhat inconsistent that the usual experi- 
mental verification of eqn. (4) based on the T,-P, relationships is deter- 
mined dilatometrically. In this contribution, we will not address this issue 
and merely assume the validity of eqn. (4). 

A further assumption is that AC,/( F/,Aa) is a linear function of pressure, 
i.e. 

AC, /( V,Aa) = c(P, + a) (6) 

Because this equals dP,/d(ln T,), integration results in 

KP, + a)/(P,,o + 41 = (Tg/Tg,dc (7) 
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where the integration constants are taken as the glass transition temperature 
7’,,0 at atmospheric pressure Pg,O. Because a is of the order of several 
hundreds of MPa, as will be shown later, the simplified equation of the 
Simon form for the glass transition temperature is obtained 

or 

G = T,,dP,la + I) uc 

(8) 

@a> 
Using an argument similar to that of Slater leads to 

Pg= -a (9) 

At Tg = 0 (assuming again that the extrapolation is valid). From the 
thermodynamic relation for internal pressure 

(au/al’), = T(aP/aT), -P (10) 

we have, at Tg = 0 

(11) 
and the relation 

a = (aU/aQgzO (12) 

The constant a may thus be correlated with an internal pressure. Also, we 
find that 

ac = [AC, /(~,A410 (13) 

where the sufhx 0 refers to atmospheric pressure. 

EXPERIMENTAL DATA FOR MONODISPERSE POLYSTYRENE 

The glass transition temperature for an anionic polystyrene sample has 
been determined by high-pressure DTA. The details of the apparatus have 
been described in a previous paper [ 161, and the measurement of Tg is 
described in ref. 17. The specification of the sample (Toso Corporation F-2) 
was M, = 1.96 x lo4 and M,/M n z 1.01. The sample weight for the DTA 
measurements was about 5-6 mg. The sample was vitrified under selected 
pressure at a cooling rate of 20 K min-‘. Successive heating runs at the 
same rate were started from temperatures 60-70 K below the estimated Tg. 
The pressure during a DTA run was held constant by a manostat [ 161. The 
glass transition temperature was defined as that corresponding to the 
intersection of the glass and liquid enthalpy curves integrated from the DTA 
data. 

The data obtained are listed in Table 1. The Tg-Pg relation was fitted to 
a Simon equation, eqn. (8), and to the usual quadratic equation 
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TABLE 1 

Experimental data for PB and Tg for polystyrene and most probable values of y’ calculated 
from the Simon and quadratic equations a 

PJMPa T,lK T;‘W/K T:'(Q)/K 

25 378.0 379.5 382.0 
60 392.5 391.9 392.7 
80 402.0 398.5 398.7 

100 405.3 404.8 404.5 
130 414.1 413.8 413.1 
150 420.1 419.5 418.6 
200 431.8 432.9 431.9 
260 447.5 447.6 447.0 
300 455.3 456.7 456.4 
350 465.0 467.4 467.5 
400 476.0 477.5 477.9 
450 490.0 487.0 487.5 
500 495.8 496.0 496.4 
550 505.4 504.6 504.6 

(T, - T;‘)’ 310 440 

The third and fourth columns contain values calculated using the Simon and quadratic 
equations, respectively. 

Tg = Tg,o + a,P, + bzPa (14) 

The best fit was obtained by the least-squares method. The most probable 
values of the three constants in the Simon equation were calculated by using 
the linearized equation. Details of the calculation are given elsewhere [ 181. 

The most probable values for the Simon equation are Tg,o = 369.9 K, 
a = 246.1 MPa, and c = 3.78; for eqn. (14) the best-fit parameters are: 
Tg,o = 374.1 K, a2 = 0.319, and b2 = - 1.49 x low4 (P, in MPa). The sum of 
the residual squares are given in the last column in Table 1. As can be seen, 
the Simon equation provides the better fit, particularly in the low pressure 
region. Separate measurements by DSC and by dilatometry at atmospheric 
pressure gave Tg,o = 368.8-369.3 K for a polystyrene cooled at the rate of 
20 K min-’ [ 171. This result is in good agreement with the extrapolated 
value using the Simon equation. The present analysis leads to a relatively 
large difference in the initial pressure coefficient of Tg. The Simon equation 
gives (dT,/dP,), = Tg,o/ac = 39.8 K per 100 MPa, whereas the value ob- 
tained from the quadratic equation analysis is 31.9 K per 100 MPa. It 
should be noted that the value of this coefficient depends largely on the 
analytical form used to correlate the data. In this connection, it can be 
noted that a comparison of the values between the left and right sides of 
eqn. (4) is not an effective means for examining the validity of the Ehrenfest 
equation. The high-pressure DTA technique can easily provide Tg data over 
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a wide range as shown in Table 1. In these circumstances, the present 
analysis suggests that it is desirable to represent the data using the Simon 
equation. 

The internal pressure for polystyrene at 293 K has been reported to be 
460 MPa, and this slightly decreases with temperature [ 191. The constant a 
is expected to correlate with the internal pressure, as shown in eqn. (12), 
and its value is of the same order. It will, however, be necessary to analyze 
the experimental data for other polymers to discuss this issue in more detail. 

EXAMINATION OF THE ASSUMPTIONS 

The validity of the present derivation depends on the assumption con- 
tained in eqn. (6). The pressure dependence of the denominator V,Aa can, 
in principle, be obtained directly from available P - V- T data, whereas the 
experimental determination of AC, under high pressure has not been 
reported except for some studies of poly(viny1 acetate) using a transient 
hot-wire probe technique [20]. 

The value of C, at a pressure P can be calculated by using the thermody- 
namic relation from the value C,,O at atmospheric pressure 

C,(P) = C,,o + W, lap), dP (15) 

where the pressure coefficient of C, is obtained from the P- V-T relation 

by 

@C, /aP), = -T(d2V/dT2)p = -Tfl/[a2+(i7a/iYT),] (16) 

It would be appropriate to calculate C,(P) for the liquid by this proce- 
dure. Moreover, it seems that the pressure effect on the specific heat is 
relatively small. For glasses, however, we have to assume that any value for 
the temperature dependence of C’,, is valid beyond Tg,o. 

The heat capacity, CL,,, and C&, for polystyrene liquid and glass at 
atmospheric pressure over a wide range of temperature has been measured 
using a precise adiabatic calorimetric [21]. The relevant relations may be 
represented by 

C;,0 = 0.613 + 3.27 x 10-3T 

C;,O = -0.031 + 4.22 x 10-3T 

AC’,0 = 0.643 - 0.95 x 10-3T 

where C, is in J K-’ g-’ and T is in K. From this we can approximately 
estimate the dependence of AC, on pressure, because the second-order 
pressure correction can be neglected. AC, becomes smaller as Tg increases 
with increasing P. The ratio of AC, at 400 MPa to that at 0.1 MPa is 0.65. 
Abu-Isa and Dole also reported a AC,,o-T relation for polystyrene [22]. 
Their data result in a somewhat larger decrease in AC, with P and the 
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above ratio becomes 0.38. Such a large decrease seems to be inconsistent 
with our DTA results, though an exact quantitative relationship of the 
present pressure DTA is not yet established. 

The value of (X, /aP), under pressure can also be calculated from the 
Tait equation 

V(P, T) = VO(T)[ 1 - C ln( 1 - P/B(T))] (17) 

where V, is the volume at atmospheric pressure, and C = 0.0894. B(T) is a 
function of temperature only 

B(T) = a’ exp( -b’T) (18) 

in which a’ and b’ are constants. The respective values for polystyrene have 
been reported by Quach and Simha [23], although the upper pressure limit 
of their compression experiment was 200 MPa. It should be noted that their 
glass data was for “low-pressure” glasses formed by cooling at atmospheric 
pressure. The value of (d2V/8T2)p is of the order of lop7 cm3 g-’ K-* with 
a sign reversal at pressures below 100 MPa. On this point, Bridgman stated 
that such a reversal occurred at 300-400 MPa for ordinary liquids [24]. 
Using these data, the necessary correction was very small; for example, AC, 
at 200 MPa was larger by only 0.004 J K-’ g-’ than the uncorrected value 
of 0.234 J K-’ g-l. 

However, Oels and Rehage reported P - V- T data for a monodisperse 
polystyrene, with M, = 2.04 x lo4 and M,/M, z 1.06, up to 400 MPa [25]. 
Their data were obtained from isobaric cooling of its liquid at a rate of 
18 K h-l. The value of CI at each pressure was calculated as (aln V/dT), by 
using I/ read from their figure. In the correction of eqn. ( 16), the term 
(da/dT)p is omitted; in this case the sign reversal in the second derivative of 
V did not occur. This correction is larger than that calculated through the 
Tait equation, and AC, at 200 MPa is smaller by 0.010 J K-’ g-’ than the 
uncorrected value. 

In this contribution, the ratio AC, /( V,Aa) was finally calculated using the 
P- V-T data of Oels and Rehage [25] and the uncorrected AC,. The ratio 
is plotted against P in Fig. 1, and also the curve representing c(P, + a) is 
drawn. The ratio AC,/(V,Acc) is approximately linear in P, despite the fact 
that both the numerator and the denominator are expressed quadratically. 
Although the results for the left- and right-hand sides of eqn. (6) coincide 
at atmospheric pressure, they deviate as P increases. The values of the ratio 
calculated from several sets of data for AC,, V,, and Aa at atmospheric 
pressure are in the range of 905-963 MPa. The present value of 
UC = 931 MPa is thus reasonable. It is of course possible to force the 
c(P + a) and the AC,/( V,Aa) lines to coincide by adjusting a and c with the 
condition ac = constant. However, the different parameter set thus obtained 
could not accurately represent the T,-P, data. 
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Fig. 1. Comparison of the left- and right-hand sides of eqn. (6) as a function of P: 
0, AC, /( VsAcr), in which AC, was calculated from the relation cited in the text [21] without 
pressure correction and the V,Acc term was calculated from Oels and Rehage [25]; - - -, a 
linear fit of the data; -, the relation of c(P + a), where a = 246.1 MPa and c = 3.78. 

The discrepancy may arise from the assumption that the temperature 
dependence of C;,. can be extended beyond Tg,o. For poly(viny1 acetate), it 
is possible to compare the value of AC, determined by the transient hot-wire 
technique [ 2b] with that estimated from the AC,,o- T relation [ 261. Because 
the temperature range for the latter relation is narrow, the estimated values 
are relatively uncertain. Despite this, there is a large difference in the ratio 
of AC,(2OO)/AC,(O.l), in which the number indicates P in MPa: 0.91 by the 
direct measurement and 0.64 from the estimate. In this connection, the 
disagreement in Fig. 1 could be resolved by taking into account that the 
estimated pressure dependence of AC, was too large. 

CONCLUSION 

The relationship between Tg and P, can be expressed by a Simon-type 
equation in a similar manner as for the melting point. The equation can be 
obtained from the Ehrenfest equation by also assuming that the ratio 
AC, /(V,Aa) depends linearly on P. This assumption seems reasonable, 
although some uncertainty in a quantitative correlation remains. The fitting 
of the experimental Tg-Pg data for polystyrene to a Simon equation was 
found to be better than to a quadratic equation. An advantage of adopting 
the Simon equation is that the constant a in the equation has a physical 
meaning in terms of an internal pressure. 
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