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Abstract 

Since the advent of digital data capture and the development of quick and accurate numerical 
methods for data processing, the use of rate measurements (dcr/dt) for kinetic analysis of 
solid-state reactions has gained in popularity. Rate measurements may readily be obtained 
through use of isothermal derivative thermogravimetry (DTG), or from isothermal differential 
scanning calorimetry (DSC) (on the assumption that the evolution or absorption of heat may be 
used to measure the extent of reaction, a). In this paper, the feasibility and desirability of using 
plots of experimental dcr/dt values against the derivative functions for the various models for 
solid-state reactions is considered critically and discussed quantitatively. 
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1. Introduction 

Kinetic measurements are perhaps most frequently undertaken to obtain informa- 
tion concerning the mechanism of a specified reaction. Such investigations may include 
the characterisation of reaction stoichiometry, particularly product compositions 
where mixtures are formed and the identification of intermediates. This information 
can be of value in contributing towards the theoretical development of the subject 
generally, by identifying the factors that control reactivity and by understanding the 
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significance of participating steps. Empirical measurements of reaction rates may also 
be of value in the development of industrial processes where the principal objective 
may be to establish the most effective and efficient conditions that can be exploited in 
production so that costs, waste and pollution are minimised. 

The kinetic equations used to express quantitatively the systematic variations in the 
extent of chemical change with time during many solid-state reactions are formulated 
through consideration of the changing geometry of an advancing reactant/product 
interface. This is the active zone within which the chemical changes occur. The theory 
of the formulation of these rate equations has been given in the literature [l-5]. 
These kinetic equations are frequently and conveniently expressed in the form, 
g(cr) = k(t - to) (see Table l), where o! is the fractional extent of reaction. Most experi- 
mental techniques provide direct measurements of ~1, e.g. measurements of loss of mass 
with time during decomposition as in isothermal thermogravimetry (TG). Such 
isothermal TG data can of course be differentiated with respect to time to give 
derivative TG (DTG) curves which are directly related to rate (V = dcr/d+time curves. 
Other techniques such as isothermal differential scanning calorimetry (DSC), produce 
a record of the rate of heat evolution or absorption (dq/dt) with time which again can 
be related to the curve of dcr/dt against time if the mechanism of reaction does not 
change with time. Ideally, both isothermal DSC and DTG results, recorded under 
closely similar conditions, should be compared to confirm the kinetic behaviour. 
Improvements in instrumental techniques now permit the collection of sufficiently 
accurate data for kinetic analyses to be based on rate/time or rate/cc measurements with 
the advantages of improved discrimination. 

In this article, we are specifically concerned with identifying methods for deciding 
which of the available rate equations describes, with greatest precision, a set of mea- 
sured a-time values. If the experimental data fit a rate expression accurately, then the 
reaction may proceed by the geometric model assumed in the derivation of that 
expression. Thus, in solid-state kinetic analysis the conclusions are used to identify 
spatial development of the reaction interface, in contrast with homogeneous kinetic 
observations which give the reaction order (based on concentration terms) and possibly 
enable the molecularity to be determined. 

Criteria for the excellence of kinetic fits reported in research publications are not 
always specified and, in practice, identification of the preferred rate equation may be 
a personal decision by the research workers concerned based on undisclosed reasons. 
A discussion of distinguishability of rate equations has been given [6]. The present 
paper further develops and extends aspects of the same problem leading to improved 
interpretation of the more accurate yield/time data now available from experiment. 

Most of the rate equations applied to solid-state reactions are based on theory that 
was developed from microscopic observations [7] of patterns of interface development, 
usually through the generation [S] and subsequent growth [9] of nuclei. 

The participation of melting, which may be local and/or temporary, is an important 
possibility in the thermal reactions of many initially solid reactants. The detailed 
kinetic characteristics in reaction systems of this type have not yet been investigated. 
The unambiguous demonstration of the occurrence or of the absence of melting during 
a reaction is not always easily achieved [lo]. 
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The decomposition of solids are often studied using rising temperature measure- 
ments (TG, DTA, DSC). Kinetic analyses of (fractional reaction M, time, temperature) 
data enable (in principle) the rate equation (g(a) = kt), the activation energy E and the 
pre-exponential term A to be determined [4], sometimes even from a single experiment, 
for each reactant. Various different mathematical approaches have been used in the 
calculation of these parameters [4], although the applications of the different calcula- 
tions do not always lead to the same rate functions (g(a) = kt), or magnitudes of A and 
E [9]. We have decided to confine our coverage to isothermal kinetics only, because 
this treatment requires fewer assumptions and results appear to be more consistent and 
reliable. The points made, however, may also be applicable to non-isothermal kinetic 
measurements. 

2. Testing a kinetic fit 

Before deciding which rate expression [4,6] most accurately describes a set 
of measured a-time values, the following aspects of the kinetic analysis must be 
addressed. 

2.1. u-Range of jit 

There is always the possibility of deviation of experimental data from theoretical 
values at the extremities of reaction. Special consideration should be given to the 
influence of limiting data (at both low and high a values) on the calculation of the 
regression line and criteria used to measure excellence of fit. At low ~1, a separate initial 
rate process may contribute to product yields. This could result from decomposition of 
an impurity in the reactant, or from the processes that culminate in the appearance of 
growth nuclei [9]. When recognised and characterised, this contribution to the product 
yield-time curve can be subtracted out and the kinetic analysis focused on the 
dominant reaction alone. Unless recognised and separated, the initial deviation may 
result in a less precise kinetic fit. 

Deviations at high tl are usually less easily identified. An unusually slow completion 
of reaction may be due to a very slow contribution from a later and different rate 
process, for example the onset of product breakdown or a chemical change of an 
impurity. Incorrect measurement of the yield corresponding to completion of the 
specific reaction of interest introduces uncertainty into kinetic analyses. It was shown 
[l l] in studies of dehydration of Li,SO,.H,O that a 10% variation in the final mea- 
sured yield of water vapor changed the apparent kinetic behaviour from contracting- 
volume [4] to first-order. 

If various calculated g(cl) values for a given reaction are plotted against time, the 
intercept corresponds to the induction period (including reactant warm-up time, slow 
initial nucleation, etc.). If, however, early TV values include a contribution from an initial 
reaction, completed at C(~, a plot of g(a’ + txi) (where Co refers to the dominant rate 
process) against time may not intercept the time axis on completion of the ‘true’ 
induction period. Distortion will be greatest at low ~1’ values (~1’ z ai). 
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2.2. Reactant particle shapes and sizes 

Kinetic behaviour is often sensitive both to shapes and absolute sizes of particles and 
to the relative size distributions. In some reactions of powders it has been shown [ 121 
that nucleus growth can extend beyond the crystallite in which reaction has started, the 
active interface crossing interparticulate contacts. However, in comparing reaction 
kinetics between individual single crystals from the same preparation, x-time relation- 
ships may be sensitive to the shape of each particular crystal studied [ 111. When the 
three edge-dimensions of a rectangular crystal are approximately equal, the rate 
expression is close to the contracting-cube equation. For crystals that are more 
asymmetric, the fit is closer to the contracting-area expression. This aspect of kinetic 
behaviour is discussed by Delmon [3]. 

2.3. Variation of kinetic characteristics with temperature 

Any change in the reaction mechanism, or the factors controlling reaction 
rate, is expected to influence overall kinetic behaviour. For example, activation 
energies for nucleation and for growth steps may be different and thus it must 
follow that the precise shape of the a-time curve will vary with temperature. A 
different, but important, influence of temperature appears in reversible dissociations 
where the contribution from the reverse process increases with the prevailing 
pressure of product gas, but this effect decreases with increasing reactant temperature 
[13]. The influence of water vapour on dehydration kinetics can be complicated 
p4j. 

2.4. Ambiguities in geometric interpretation 

The recognition of the best, or, perhaps more realistically, an acceptable kinetic 
fit does not necessarily mean that the reaction geometry has been fully characterised. 
Interpretation of the significance of the rate equation must include the consideration 
of the possibility that alternative reaction models may operate (see, for example, 
Ref. [4], p. 84, where several distinct patterns of geometric behaviour give a zero- 
order reaction). Here, as in other aspects of solid-state chemistry, microscopic 
observations can provide information that is essential for the formulation of reaction 
mechanisms. 

3. Methods of testing kinetic fit (see Ref. [4], p. 77) 

Methods of testing kinetic fit can be classified as follows: 

1. Methods requiring measurements of CI and t. 
2. Methods requiring measurements of duJd t and t. 
3. Methods requiring measurements of da/d t, a and t. 
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3.1. Methods requiring measurements of c( and t 

3.1.1. Linearity of plots of g (a) against time 
The linearity of plots of calculated g(a) values against time is often used to identify 

the kinetic expression which most satisfactorily represents the reaction. This can 
include consideration of fractional values of the exponents, for example in the 
Avrami-Erofe’ev equation, (An, Table 1) [4,15]. There are no agreed criteria for the 
recognition of the ‘best fit’ (for example: range of a applicable, statistical measurements 
of deviation, behaviour at limits, etc.). The slopes of these plots give the rate constants. 

For reactions in which experimental a-time data points show systematic variations 
from fit to a particular rate equation, this pattern of deviation may be used to identify 
a more satisfactory kinetic relationship. This was discussed in our earlier article [6] and 
will not be further considered here. 

3.1.2. Comparisons of the shapes of plots of c1 against reduced-time 
Plots of sets of measured a values for different reactions against reduced-time, i.e. 

a time scale based on a single central scaling point, such as CL = 0.50 when t, = 1.00 [ 161, 
so that t, = tlto.50, enable the shapes of curves to be compared with each other and with 
theoretical expectation for appropriate rate equations [17]. This method is especially 
useful for the identification of an influence of temperature on curve shape. 

3.2. Methods requiring measurements of da/d t and t 

3.2.1. Comparisons of curves of (da/d t) against time with master plots 
This approach [l&19] permits discrimination between alternative rate equations 

without the requirement of measuring a. Both the rates and the times may be scaled to 
give plots of reduced-rate against reduced-time (RRRT) [20]. 

3.3. Methods requiring measurements of dajdt, a and t 

3.3.1. Comparisons of curves of (dafdt) against a with master plots 
The comparison of shapes of plots of (da/dt) against a with master curves has been 

recommended by Delmon [3]. Only the first-order rate equation, Fl in Table 1, gives 
a linear relationship. (A zero-order equation would give a horizontal plot.) 

3.3.2. Plots of (daldt) against the derivative function f(a) (Table 1) 
The present paper investigates this method of kinetic analysis. This approach could 

only be considered worthy of recommendation if it could provide improved distin- 
guishability of measured data (sets of a, da/d t and t values) between the possible rate 
equations listed in Table 1. The functions f(a) are obtained from the relationship 

f(a)= (l/f(a))da=kt 
s 

or 

da/dt=kf(a) (1) 
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Where the yield-time data are accurately represented by a particular function 
f(a), a plot of the experimental dcc/dt values against the values of f(a) cal- 
culated for each corresponding value of u will be linear, with slope k (the rate 
coefficient). 

Alternatively, values of (da/d t)/f(cl) will be constant when plotted against either time 
of LX 

This method of kinetic analysis assumes that a given set of dcr/dt data can be best 
described by a function fl(~) and a rate coefficient k,. If, however, an incorrect 
expression, f2(tl), has been selected, the plot is that of k, fl(a) against fi(c(). If both 
functions are of the form (1 - a)“, then when c( is small distinguishability will be poor. At 
higher values of c(, k, appears to be dependent upon (1 - a)(nl-nz). In more general 
terms, several of the functions in Table 1 can be described [21] in terms of expressions 
of the form c(“( 1 - LX)” with various values of p and q, so that k 1 could be dependent upon 

Table 1 
Integral and derivative functions for models used in solid state kinetics 

Model g(a)=kt k ref 
(CT = 0.98 at t = 100) 

a = g(t) 

An 

Bl 
Fl 
F2 
Fn 
R2 
R3 
Dl 
D2 
D3 
D4 

[-ln(1 -a)]“” A2 = 0.01978 - exp( - (k t)“) 
A3 = 0.01576 
A4 = 0.01406 

lnW(1 -Co) 0.03892 l/(1 + exp( - k t)) 
-ln(l -a) 0.03912 1-exp(-kt) 
(1-q-l 0.50000 1 -(l/(kt + 1)) 
(l/(n- 1){(1 -a)(‘-“)- 1) 1 - {l/((n- 1)kt + l)}‘“‘“-‘” 
1 -(1-a)‘iz 0.008586 1 -(l -kt)2 
1 - (1 - uy 0.007286 1 -(l -kt)3 
a2 0.009604 (k t)l’* 
(l-~()ln(l-a)+~ 0.009018 (Reverse talc.) 
[l -(l -ayq2 0.005308 1 -(1 -(kt)1’2)3 
1 - 2a/3 - (1 - a)2’3 0.002730 (Reverse talc) 

Model u/k = (l/k)(da/dt) =f(a) u = f(t) 

An n(1 -a)(-ln(1 -~))(“~l)‘” 
Bl a(1 -a) 
Fl (l-Go 
F2 (1 - a)2 
R2 2(1 -L-q’2 
R3 3(1 - c(y 
Dl 1/2a 
D2 (-ln(1 -_Go)-l 
D3 3(1 - @‘3/[2(1 - (1 - a)““)] 
D4 3/[2((1 - a)- 1’3 - 1)] 

a Calculated values of time at set values of 0~. 

nk”t”-‘exp(-(kt)“) 
kexp(-kt)(l-exp(-kt))-* 
kexp(-kt) 
(kt)-’ 
2k(l - kt) 
3k(l- kt)’ 
1’Z(k/t)1’2 
(Reverse talc.) 
3[(k/t)“Z(1 - (kt)“z)‘/2 
(Reverse talc.) 
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dl(PI-Pl)(l _(.#r’“) or an even more complex function. Another way of stating this is 
that if fi(a) can be written as fI(tl)f3(~), then k, will be a function off,(a), which may 
be recognisable by its characteristic shape. This characteristic deviation from linearity, 
through the systematic comparisons shown below, may be used to identify the most 
closely applicable kinetic equation. 
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Fig. 1. Rate-rate plots: 
(a) f(a) function of A3 model against f(a) function of A2 model; 
(b) f(a) function of A4 model against f(a) function of A2 model; 
(c) f(m) function of A4 model against J(U) function of A3 model. 

It is convenient to consider types of kinetic behaviour in three groups, based on 
the overall shape of the a-time curve: sigmoid, deceleratory (geometric control) and 
deceleratory (geometric and diffusion controls). 

4. Results and discussion of theoretical kinetic analysis 

4.1. Sigmoid cc-time curves 

This set of equations (An, Table 1) has been associated with the names Avrami, 
Erofe’ev, Johnson, Kohlmogorov, Mampel and Mehl 

Our present analysis has been concerned with values of n = 2,3 and 4, which are those 
most frequently encountered in reactions of solids [4]; n = 1 is the first-order equa- 
tion (Fl). The approach is also readily extended to fractional or higher values of n. 

The Prout-Tompkins model (Bl) can be expressed as: 

f(~) = v/k = ~$1 -u) 
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Autocatalytic behaviour cannot apply from a = 0 [22,23] and the rate equation must 
incorporate an additional term (or terms). For example 

u=k,(l -cl)“+k,a(l -tl) 

with k, >> k,. 
In Fig. 1, f(a) values for the three main An models (A2, A3 and A4, Table 1) are 

plotted against each other in pairs. The graphs shown identify the form of the deviation 
when an incorrect rate expression has been selected. A correct kinetic fit will appear as 
a linear array of points on this derivative plot or, more realistically, including some 
random scatter, determined by the accuracy of the measurements, about a straight line. 
The curves have characteristic loops arising from the systematically different shapes of 
the acceleratory and deceleratory rates for the different values of a. This mismatch is 
greatest for the A4/A2 comparison and least for the A4/A3 pair, but is clearly apparent 
in all of the combinations. 

In Fig. 2, f(a) values for the models A2, A3 and A4 are plotted against f(a) for the Bl 
model. The A2/Bl models are the most easily distinguished. The approximate linearity 
and the decreased separation of the rising and decreasing arms of the loop for the 
A3/Bl combination indicate the difficulty of distinguishing these models [6]. The 
A4/Bl combination is slightly more distinguishable. It is of interest that the high c( and 
low LY arms of the loops interchange from the A3/Bl combination (Fig. 2(b)) to the 
A4/Bl combination (Fig. 2(c)). 

In Fig. 3, the ratios of f(cc) values for combinations of pairs of the models Bl, A2, A3 
and A4 are plotted against cc. Identification of the correct model under these idealised 
conditions would result in a horizontal line at an ordinate value of 1.00. In real analyses, 
the ordinate value would be the rate coefficient, k,, at that isothermal temperature. 
Fig. 3(a) shows the very characteristic shapes for “incorrect” combinations of the data 
for the Bl model with the An models, with the symmetry changing with the value of n. 
Fig. 3(b) shows the very different patterns for selection of the wrong value of n in the 
combinations of An models. The importance of obtaining accurate values for c( during 
the initial and final stages of reactions which yield sigmoid curves is apparent. It is also 
evident from the ordinates that a large distortion of the numerical value of k, occurs 
on use of even the closest “incorrect” model. This distortion should not greatly affect 
the value of the activation energy determined, but will affect the value of the pre- 
exponential factor A. 

4.2. Deceleratory geometric kinetic models 

The first-order rate equation, Fl 

j-(x) = v/k = (1 - CI) 

has found frequent application to solid-state reactions. It is of particular interest here 
because of the difficulty in distinguishing it [6] from the contracting-volume, R3 [ 1 l] 

f(cr) = u/k = 3( 1 - ~1)~‘~ 

and the contracting-area, R2, equations 

f(a) = u/k = 2(1 - ~1)~‘~ 
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Occasionally a second-order rate equation, F2 (Table 1) 

f(a) = u/k = (1 - ~1)’ 

has found use in heterogeneous kinetics [24], particularly for reactions involving melts 
or non-crystalline polymers, where conditions may approach those applying during 
homogeneous reactions in solution. 
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Fig. 2. Rate-rate plots: 
(a) f(a) function of A2 model against f(a) function of Bl model; 
(b) f(a) function of A3 model against f(a) function of Bl model; 
(c) f(a) function of A4 model against f(a) function of Bl model. 

In Fig. 4, f(a) values for the rate equations R2, R3, Fl and F2 are plotted against each 
other in pairs. At low u values, all of the f(a) expressions in this group give plots which 
are approximately linear and distinguishability is poor. The combination R3/R2 is the 
most difficult to distinguish [6]. In the graphs in Fig. 4, the regions near the origin, 
corresponding to high values of o! and low reaction rates, show the greatest deviation 
from linearity. This o! range is most important in the kinetic analysis and confirms the 
need [l l] to obtain accurate values of the measured yield corresponding to completion 
of the reaction being studied. Previous work [11] showed that a 10% change 
(diminution) in the final product gas pressure used in the calculation of ~1, changed the 
apparent kinetic fit from that of the first-order equation to the contracting-volume 
equation. The first-order expression predicts completion of reaction only after infinite 
time, whereas the contracting-volume expression results in cessation of reaction when 
the reaction interface reaches the crystallite centre. Kinetic behaviour is, therefore, 
most sensitive to characterization of the correct rate equation during the final stages of 
the rate process. 

The above conclusions are demonstrated even more clearly in Fig. 5, where the ratios 
off(a) values for combinations of pairs of the R2, R3 and Fl models are plotted against 
~1. The deviations from constancy over the full range of CI, increasing further at high a, 
are apparent. 
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Fig. 3. Ratios of f(a) plots against a: 
(a) (i) (f(a) function of Bl model/f(a) function of A2 model) against a; 

(ii) (j(a) function of Bl model/f(a) function of A3 model) against a; 
(iii) (f(a) function of Bl model/f( a ) f unction of A4 model) against a. 

(b) (i) (J(a) function of A2 model/f(a) function of A3 model) against a; 
(ii) (f(a) function of A2 model/f(a) function of A4 model) against a; 
(iii) (f(a) function of A3 model/f(a) function of A4 model) against a; 
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Fig. 4. Rate-rate plots: 
(a) (i) /(a) function of R3 model against /(a) functon of Fl model; 

(ii) f(a) function of R2 model against f(a) function of Fl model; 
(iii) f(a) function of F2 model against f(a) function of Fl model. 

(b) (i) f(a) function of R3 model against f(a) function of F2 model; 
(ii) f(a) function of R2 model against f(a) function of F2 model; 

(iii) /(a) function of Fl model against f(a) function of F2 model. 
(c) (i) /(a) function of R3 model against f(a) function of R2 model; 

(ii) S(a) function of F2 model against f(a) function of R2 model; 
(iii) J(a) function of Fl model against f(a) function of R2 model. 
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Fig. 4. (Continued) 

0.7 __________-- 

0.6 - 

0 0.2 0.4 0.6 0.6 1 

ALPHA 

Fig. 5. Ratios of g(u) plots against CL 
(i) (f(u) function of Fl model/f( a ) f unction of R2 model) against a; 

(ii) (f(u) function of Fl model/f( a ) f unction of R3 model) against cc; 
(iii) (J(M) function of R2 model/f( a ) f unction of R3 model) against a; 
(iv) (f(m) function of F2 model/f(N) function of R3 model) against tl. 
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In the early stages of reaction, any rate equation based upon an expression of the 
form f(a) = v/k = N( 1 - LX)“, where N is a numerical constant, will not be very sensitive 
to the value of n, whether it is an integer or a fractional value. Plots of rate (da/dt) 
against LX also enable the rate equation to be identified reliably. These rate equations are 
discussed further below in relation to their distinguishability from the following group 
of diffusion-based equations. 

4.3. Decelerator-y dljiision and geometric kinetic models 

When this method of analysis is applied to the diffusion models Dl, D2, D3 and D4 
in the various binary combinations, the distinguishability is apparently extremely poor 
and all of the plots (not shown) appear to be linear. When individual points are plotted, 
it is seen that the majority of the points are clustered near the origin (high a and low 
rates). All of the f(m) expressions (Table 1) tend towards infinity at low values of c1 and 
to zero as u tends to 1. 

Plots of the ratios of values of f(a) for pairs, selected from the Dl, D2, D3 and D4 
models, against CI are shown in Fig. 6. Deviation from expected constancy is apparent, 
especially at high u, making this form of examination more effective. 

In a further attempt to improve distinguishability, In-ln plots were examined. The 
results are shown in Fig. 7. These plots give approximately parallel straight lines at low 
c1 values, with curvature developing towards the origin at (0,O). A useful indication of 
the correct choice of rate equation is that the In-ln plot should be linear and 
pass through the origin. Distinguishability is best at high values of c( in the region where 
the In values become negative, and the curvature, and hence the value of the intercept 
on the y-axis when x = 0, is a guide to the direction in which kinetic analysis should 
continue. If the intercept is positive, models higher in the sequence Dl, D2, D3, D4 
should be tested, and if the intercept is negative, models earlier in the sequence are 
indicated. 

In addition to distinguishing amongst the Dl, D2, D3 and D4 models, it is necessary 
to examine the distinguishability of this group of models from the deceleratory 
geometric models (Fl, R2, R3 and even second-order behaviour, F2). Since the In-ln 
plots described above have shown promise, such plots were prepared for the Fl, F2, R2 
and R3 equations and are shown in Fig. 8. All of the plots shown are linear with 
different slopes, and points are clustered at low values of c1. This is the opposite situation 
to that in the rate-rate plots for the diffusion models (Fig. 6). 

Further In-ln plots for the combinations of the four Dl, D2, D3 and D4 rate 
equations in turn with each of the group Fl, F2, R2 and R3 are shown in Fig. 9. All the 
plots are strongly curved and the linear plots obtained for the “correct” choices are 
shown for comparison. 

As a further way of examining the constancy of the rate coefficient k, for the 
diffusion models, plots of the differences between lnf(a) values for pairs of models 
against c1 are shown in Fig. 10. Such plots should in general give horizontal lines with 
ordinate equal to Ink,, and in these representations the ordinate is equal to zero since 
k, = 1. 
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Fig. 6. Ratios of f(a) plots against a: 
(a) (f(a) function of Dl model/f(a) function of D2 model) against a; 
(b) (f(a) function of Dl model/f(a) function of D3 model) against a; 
(c) (j(a) function of Dl model/f(u) function of D4 model) against a; 
(d) (f(a) function of D2 model/f(a) function of D3 model) against a; 
(e) (j(a) function of D2 model/f(a) function of D4 model) against a; 
(f) (f(a) function of D3 model/f(u) function of D4 model) against a. 
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Fig. 7. Ln-ln plots. 
(a) Ln(f(a) function of Dn model) against In(f(a) function of Dl model): 
??, In D 1; +, ln D2; o, ln D3; A, In D4. 

(b) LnCf(a) function of Dn model) against lnCf(a) function of D2 model): 
??, lnD1; +, lnD2; o, hD3; A, InD4. 

(c) Ln( f (a) function of Dn model) against ln(f(a) function of D3 model): 
0, In Dl; +, ln D2; o, ln D3; A, ln D4. 

(d) Ln(f(a) function of Dn model) against InCf(a) function of D4 model): 
0, In Dl; +, In D2; o, ln D3; A, ln D4. 

7 



20 A. K. Galwey, M.E. BrownJThermochimica Acta 2691270 (1995) 1-25 

(4 g 
8 A 

+ 
0 

A 

A 
+ 

s 
_C 

-5 -3 -1 1 3 5 7 9 

In D3 
0 In Dl + In D2 0 In D3 A In D4 

(4 ’ 1 

8-I A 
7 + 

6 0 
A 

5 A 
+ 

4 
A 

3 

s 2 
5 

1 

0 

-1 

-2 

-3 

-3 -1 1 3 5 7 9 

In D4 
0 In Dl + In D2 0 In D3 A In D4 

Fig. 7. (Continued) 



A. K. Galwey, M.E. BrownlThermochimica Acta 2691270 (1995) 1-25 21 

-2 - 

-3 -O 

-4 - 

-5 - 

-6 - 

-7 -0 

-a - 

-9 - 

-10 - 

-11 - 

-12 - 

-13 - 

+ 
+ 

+ 

+ 

-7 -5 -3 -1 

LN Fl 
0 LN Fl + LN F2 0 LN R2 A LN R3 

Fig. 8. Ln-ln plots. Ln(f(cc) functions of Fl, F2, R2 and R3 models) against InCf(a) function of Fl model): 
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5. Discussion and conclusions 

For a method which requires measurements of dcr/d t, c1 and t to have any advantage, 
the method would have to provide improved distinguishability amongst the model 
expressions. In common with other methods of kinetic analysis, the diffusion group of 
models presents problems. To improve distinguishability within this group, use may be 
made of In-ln plots, i.e. plots of In (experimental rate data) against ln(f(cc) values for the 
model being tested). 

From the plots shown in Figs. l-10, the following conclusions can be reached. 

’ 1. Plots of rate against f(m) will be linear if: 
(a) the correct rate equation has been applied in the analysis of the experimental 

data, or 
(b) the “correct” rate equation is one of the group Dl, D2, D3 or D4, and one of 

these rate equations has been applied in the analysis of the experimental data. 
2. Plots of ln(rate) against ln(f(cc)) will be linear if: 

(a) the correct rate equation from the group Dl, D2, D3 or D4, has been applied in 
the analysis of the experimental data, or 

(b) the “correct” rate equation is one of the group Fl, F2, R2 or R3 and one of these 
four rate equations has been used in the analysis. 

3. Examinations of plots of ratios of [experimental rates/calculated f(a)] (for a selected 
model) against CL for constancy provide the most useful information in that they 
immediately identify the region of tl where deviation is greatest. 
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Fig. 9. Ln-In plots. 
(a) Ln({(a) function of Dn model) aganist ln(S(a) function of Fl model): 

0, In Dl; +, In D2; 0, In D3; a, In D4. 
(b) Ln(f(a) function of Dn model) against In(/(a) function of F2 model): 

??, In Dl; +, In D2; o, In D3; a, In D4. 
(c) Ln (f(a) function of Dn model) against ln(f(a) function of R2 model): 

0, In Dl; +, In D2; 0, In D3; a, In D4. 
(d) Ln(f(a) function of Dn model) against ln(f(a) function of R3 model): 
??, In Dl; +, In D2; O, In D3; A, In D4. 
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From the scatter and deviations of the experimentally measured data on these 
graphs the accuracy and reliability of the values of the rate coefficients can be 
estimated. Where appropriate, this uncertainty can be included in the calculation of 
the activation energy. 
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Fig. 10. Ln (rate) - ln(j(a)) plots against a: 
v, In(j(cc) function of Dl model) - ln(j(a) function of D2 model) against a; 
x , In(j(a) function of Dl model) - ln(j(cc) function of D3 model) against a; 

a, ln(j(a) function of Dl model) - In(j(a) function of D4 model) against a; 
o, ln(j(a) function of D2 model) + In(j( c( ) f unction of D3 model) against a; 
+ , In( j(a) function of D2 model) - In( j/a) fnction of D4 model) against a; 
0, In(j(a) function of D3 model - ln(j(a) function of D4 model) against a. 

This approach is also only of value where the kinetic data are of sufficient accuracy to 
enable differential measurements to be used. Distinguishability amongst the models 
considered here in the sigmoid group is good and is promising in the deceleratory 
geometrical group. 

An experimental technique which provides a derivative output which can usually be 
directly related to da/dt via the enthalpy of reaction, is isothermal DSC [20]. Such 
derivative measurements do, however, have to be distinguishable from the baseline 
(usually stable) and hence the method is not suitable for very slow processes. Self- 
heating or self-cooling of reactant crystallites may also impose restrictions on the 
highest reaction rates that may be measured. The difficulties with slow processes do not 
apply to isothermal DTG. The DSC signal may be masked to some extent by the 
characteristic instrument responses to changes from rapid heating to isothermal 
conditions. It is possible to eliminate the instrument responses by repeating the heating 
procedure on the “dead” sample and subtracting this record from that for the kinetic 
measurements. 

Advances in the accuracy of rate measurements require improved methods of kinetic 
analysis. Comparisons of rates of reaction, rather than yield-time data, with theoretical 
expectation provide a method of improved discrimination. The present analysis 
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identifies the patterns of deviation arising from an incorrect selection of rate expression 
which may be useful in identifying the equation most closely describing the rate process 
being investigated. The conclusions of kinetic analysis must, as always, be supported by 
other experimental observations, notably microscopy. 
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