

Thermochimica Acta 264 (1995) 105-112

thermochimica acta

Vapor-liquid equilibria in the ternary system 1-bromopropane + 1-chlorobutane + cyclohexane

Jaime Wisniak

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel

Received 3 January 1995; accepted 31 March 1995

Abstract

The vapor-liquid equilibrium at 101.3 kPa has been determined for the ternary system 1-bromopropane + 1-chlorobutane + cyclohexane. The data were correlated by the Redlich-Kister and Wisniak-Tamir equations and the appropriate parameters are reported. The activity coefficients of the ternary system can be predicted from those of the pertinent binary systems. No ternary azeotrope is present.

Keywords: Redlich-Kister equation; Ternary system; VLE; Wisniak-Tamir equation

List of symbols

A_i, B_i, C_i	Antoine constants, Eq. (3)
B_{ii}, B_{ij}	second molar virial coefficients, Eqs. (1) and (2)
b_{ii}, c_{ij}, d_{ii}	Redlich-Kister constants, Eq. (7)
$C_{\mathbf{k}}$	constants, Eq. (8)
ΔG^{E}	excess Gibbs function
N	number of measurements
P	total pressure
P_i^0 R	vapor pressure of pure component i
R	gas constant
rmsd(T)	root mean square deviation, $\left[\Sigma (T_{\text{expt}} - T_{\text{calc}})^2\right]^{0.5}/N$
rmsd (γ_i)	root mean square deviation, $[\Sigma(\gamma_{i,expt} - \gamma_{i,calc})^2]^{0.5}/N$
t, T	boiling temperature of a mixture
T_i^0	boiling temperature of pure component i
$T_i^0 \ v_i^{ m L}$	molar volume of liquid component i

 x_i, y_i mole fraction of component i in the liquid and vapor phases γ_i activity coefficient of component i molar virial coefficient parameter, Eq. (2)

Subscripts

expt experimental value calc calculated value *i* component *i*

1. Introduction

The present work was undertaken to measure vapor-liquid equilibria (VLE) data for the title system for which no isobaric data are available. This is part of a program to determine UNIFAC parameters for organic halides. Data for the three binary systems have already been reported [1-3]. The binary system 1-bromopropane + 1-chlorobutane behaves ideally while the two other binaries present strong deviations from ideal behavior and an azeotropic point.

2. Experimental

2.1. Purity of materials

1-Bromopropane (99.5 mol% +) was purchased from Aldrich, 1-chlorobutane (99.5 mol% +) from Merck and cyclohexane (99.5 mol% +) from Riedel de Haen. The reagents were used without further purification after gas chromatography failed to show any significant impurities. Properties and purity (as determined by GLC) of the pure components appear in Table 1.

Table 1 Mol% GLC purities, refractive index n_D at the Na D line, and normal boiling points T of the pure components

Component (purity, mol%)	$n_{\rm D} (298.15 {\rm K})$	T/K
1-Bromopropane (99.5)	1.4319°	344.05°
• • •	1.4317 ⁶	344.15 b
1-Chlorobutane (99.5)	1.3999 a	351.58 a
	1.4000 ^b	351.58 b
Cyclohexane (99.5)	1.4233 a	353.82 a
•	1.42354 b	353.88 b

^a Measured; ^b Ref. [13].

2.2. Apparatus and procedure

An all-glass modified Dvorak an Boublik recirculation still [4] was used in the VLE measurements. The experimental features have been described in a previous publication [5]. All analyses were carried out by gas chromatography on a Gow-Mac series 550P apparatus provided with a thermal conductivity detector and a Spectra Physics Model SP 4290 electronic integrator. The column was 2 m long and 0.2 cm in diameter, filled with 10% SE-30. The temperatures of the column, injector and detector were 308.15, 493.15 and 543.15 K respectively. Very good separation was achieved under these conditions, and calibration analyses with gravimetrically prepared samples were carried out to convert the peak ratio to the weight composition of the sample. Concentration measurements were accurate to better than \pm 0.008 mole fraction units. The accuracy in determination of pressure P and temperature T was at least \pm 0.1 kPa and 0.02 K, respectively.

3. Results

The temperature t, and liquid-phase x_j and vapor-phase y_j mole fraction measurements at P = 101.3 kPa are reported in Table 2, together with the activity coefficients γ_i which were calculated from the equation [6]

$$\ln \gamma_i = \ln(P y_i / P_i^0 x_i) + (B_{ii} - v_i^L)(P - P_i^0) / R T + (P/2RT) \sum_{i=1}^{n} \sum_{j=1}^{n} y_j y_k (2\delta_{ji} - \delta_{jk})$$
 (1)

where

$$\delta_{ji} = 2B_{ji} - B_{jj} - B_{ii} \tag{2}$$

The standard state for the calculation of activity coefficients is the pure component at the pressure and temperature of the solution. The pure component vapor pressure P_i^0 were calculated according to the Antoine equation

$$\log(P_i^0/kPa) = A_i - B_i/(T/K - C_i)$$
(3)

where the constants A_i , B_i , C_i are reported in Table 3. The molar virial coefficients B_{ii} , and B_{ij} were estimated by the method of O'Connell and Prausnitz [7] using the molecular parameters suggested by the authors and assuming the association parameter η to be zero. The last two terms in Eq. (1) contributed less than 3% to the activity coefficient and their influence was important only at very dilute concentrations. The calculated activity coefficients are reported in Table 2 and are estimated accurate to within $\pm 3\%$.

The ternary activity coefficients reported in Table 2 were found to be thermodynamically consistent as tested by the L-W method of Wisniak [8] and the McDermot-Ellis method [9] modified by Wisniak and Tamir (10). Two experimental points a and b are considered thermodynamically consistent if the following condition is fulfilled

$$D < D_{\text{max}} \tag{4}$$

Experimental vapor-liquid equilibria data for 1-bromopropane (1) + 1-chlorobutane (2) + cyclohexane (3) at 101.3 kPa

					Activity c	Activity coefficients		-B ₁₂	- B ₁₃	- B ₂₃	- B ₁₁	- B ₂₂	- B ₃₃
T/K	x ¹	x_2	у,	<i>y</i> ₂	γ,	γ2	γ3	cm³ mol					
344.40	0.836	0.051	0.844	0.043	1.0039	1.0770	1.3207	702	1227	1187	901	893	1206
344.40	0.870	0.037	0.877	0.030	1.0008	1.0124	1.3307	701	1226	1187	006	892	1206
344.60	0.788	0.065	0.803	0.054	1.0075	1.0149	1.2972	701	1225	1186	668	892	1204
344.80	0.742	0.104	0.762	980.0	1.0090	1.0187	1.2993	669	1223	1184	868	890	1203
344.80	0.794	0.080	0.809	0.065	1.0009	1.0155	1.3040	669	1223	1184	868	890	1203
344.90	0.799	0.149	0.824	0.120	1.0102	0.9918	1.4108	669	1222	1183	268	688	1202
345.00	0.726	0.085	0.749	0.070	1.0072	1.0158	1.2482	869	1221	1182	268	688	1201
345.20	0.745	0.163	0.772	0.134	1.0055	1.0044	1.3277	L69	1220	1180	895	888	1199
345.20	0.647	0.142	0.680	0.120	1.0214	1.0302	1.2247	269	1220	1180	895	887	1199
345.50	0.713	0.205	0.743	0.174	1.0004	1.0191	1.3147	969	1217	1177	893	885	1196
345.70	0.712	0.213	0.747	0.176	1.0024	0.9915	1.3124	969	1215	1176	892	884	1195
345.70	0.593	0.199	0.632	0.168	1.0184	1.0119	1.2262	969	1215	1176	892	884	1195
345.90	0.632	0.261	999.0	0.225	1.0045	1.0288	1.2700	694	1214	1174	891	883	1193
345.90	0.532	0.178	0.565	0.160	1.0078	1.0658	1.2081	694	1213	1174	891	883	1193
346.30	0.474	0.158	0.525	0.139	1.0431	1.0383	1.1427	692	1211	1171	688	881	1190
346.30	0.440	0.149	0.496	0.132	1.0589	1.0416	1.1329	692	1210	1171	888	880	1190
346.60	0.578	0.355	0.616	0.313	0.9903	1.0279	1.3144	069	1207	1168	988	878	1187
346.80	0.393	0.227	0.451	0.197	1.0642	1.0077	1.1420	689	1206	1167	885	877	1186
346.80	0.427	0.278	0.482	0.241	1.0434	1.0018	1.1635	689	1206	1167	885	877	1186
346.90	0.431	0.346	0.471	0.308	1.0108	1.0269	1.2212	689	1205	1166	885	877	1185
347.10	0.356	0.120	0.422	0.113	1.0908	1.0824	1.0862	889	1204	1165	884	876	1183
347.20	0.369	0.399	0.410	0.359	1.0174	1.0275	1.2147	289	1203	1163	883	875	1182
347.30	0.320	0.350	0.364	0.319	1.0367	1.0387	1.1726	289	1202	1163	882	874	1182
347.50	0.456	0.487	0.503	0.437	0.9993	1.0155	1.2718	989	1200	1161	880	873	1179
347.60	0.329	0.094	0.384	0.094	1.0547	1.1307	1.0927	685	1200	1161	880	872	1179
347.70	0.278	0.203	0.338	0.194	1.0950	1.0777	1.0852	685	1199	1160	880	872	1178
347.70	0.429	0.528	0.485	0.467	1.0192	0.9962	1.3409	685	1199	1159	879	872	1178
347.80	0.330	0.495	0.371	0.446	1.0122	1.0120	1.2543	684	1198	1159	879	871	1178
347.80	0.250	0.276	0.301	0.263	1.0810	1.0658	1.1042	684	1198	1158	879	871	1177
348.00	0.349	0.561	0.392	0.508	1.0038	1.0106	1.3215	683	1196	1157	878	870	1176
348.30	0.362	0.594	0.408	0.541	0.9983	1.0078	1.3822	682	1194	1155	928	898	1173

1173	1173	1172	1172	1171	1170	1170	1170	1170	1169	1169	1168	1168	1168	1167	1167	1167	1167	1165	1164	1163	1162	1162	1161	1161	1161	1160	1159	1158	1158	1158	1156	1155	1155	1151	1145	1143
898	298	298	298	998	998	998	998	865	864	864	864	864	864	863	863	863	863	862	861	098	829	826	829	829	829	828	857	857	856	826	855	854	854	851	847	845
875	875	875	874	874	874	873	873	873	872	872	872	872	872	871	871	871	871	870	698	898	298	298	298	298	298	998	865	864	864	864	863	862	862	829	855	853
1154	1154	1153	1153	1152	1152	1152	1151	1151	1150	1150	1150	1150	1149	1149	1149	1149	1148	1147	1146	14	1143	1143	1143	1143	1142	1142	1140	1140	1140	1139	1137	1137	1136	1133	1127	1125
1193	1193	1192	1192	1191	1191	1190	1190	1190	1189	1189	1188	1188	1188	1188	1187	1187	1187	1186	1184	1183	1182	1182	1182	1181	1181	1180	1179	1178	1178	1178	1176	1175	1175	1171	1165	1163
682	681	681	681	089	089	089	089	089	629	629	629	629	879	8/9	879	879	8/9	<i>LL</i> 9	9/9	9/9	675	675	675	675	674	674	673	673	673	672	671	671	671	899	999	664
1.0706	1.1596	1.3789	1.0325	1.2567	1.2111	1.0367	1.3410	1.1987	1.1552	1.1167	1.0409	1.1029	1.2267	1.1699	1.2314	1.0286	1.2477	1.0853	1.3896	1.0287	1.0723	1.2114	1.2869	1.1378	1.0197	1.0381	1.0359	1.1565	1.0120	1.0504	1.0113	1.2611	1.3525	0.9991	0.9954	1.0007
1.0902	1.0308	1.0040	1.1551	1.0067	1.0081	1.2160	1.0025	1.0238	1.0298	1.0591	1.1233	1.0471	1.0107	1.0212	1.0114	1.1913	1.0079	1.0762	1.0054	1.1571	1.0819	1.0097	1.0080	1.0336	1.1998	1.1235	1.1305	1.0160	1.2973	1.1148	1.2684	1.0020	1.0012	1.3489	1.2912	1.3985
1.1105	1.0235	1.0133	1.1648	0.9947	1.0004	1.1158	1.0160	1.0162	1.0288	1.0386	1.1588	1.0614	1.0121	1.0158	0.9946	1.1896	0.9998	1.0824	0.9997	1.1708	1.1019	0.9981	1.0027	1.0465	1.2036	1.1502	1.1563	1.0631	1.2185	1.1462	1.2935	1.0026	1.0004	1.2562	1.2930	1.3992
0.222	0.451	0.580	0.084	0.537	0.522	0.129	0.603	0.550	0.505	0.452	0.194	0.385	0.595	0.523	0.623	0.107	0.618	0.367	0.698	0.167	0.383	999.0	0.747	0.594	0.125	0.304	0.277	0.665	090:0	0.373	0.095	0.828	0.847	0.051	0.068	0.049
0.266	0.263	0.389	0.318	0.308	0.312	0.284	0.347	0.210	0.190	0.165	0.234	0.195	0.228	0.186	0.297	0.253	0.253	0.135	0.271	0.196	0.093	0.125	0.199	0.055	0.195	0.114	0.108	0.045	0.206	0.042	0.153	0.114	0.122	0.163	0.110	0.077
0.225	0.482	0.636	0.080	0.584	0.567	0.116	0.657	0.586	0.533	0.464	0.188	0.399	0.638	0.554	0.665	0.097	0.662	0.366	0.742	0.153	0.375	0.699	0.784	0.607	0.110	0.285	0.257	0.684	0.048	0.349	0.078	0.854	0.874	0.039	0.052	0.035
0.212	0.227	0.339	0.240	0.272	0.273	0.223	0.299	0.181	0.161	0.139	0.176	0.160	0.196	0.159	0.259	0.185	0.219	0.108	0.232	0.143	0.072	0.107	0.168	0.044	0.138	0.084	0.079	0.035	0.141	0.031	0.098	0.094	0.102	0.106	0.068	0.044
348.40	348.40	348.50	348.50	348.60	348.60	348.70	348.70	348.70	348.90	348.90	348.90	348.90	349.00	349.00	349.00	349.00	349.10	349.30	349.40	349.60	349.70	349.70	349.80	349.80	349.80	349.90	350.10	350.10	350.20	350.20	350.40	350.50	350.60	351.00	351.80	352.10

• • •			
Compound	A_i	B_i	C_i
1-Bromopropane ^a	6.03555	1194.889	47.64
1-Chlorobutane ^a	6.05154	1216.82	50.82
Cyclohexane*	5.96407	1200.31	50.65

Table 3 Antoine coefficients, Eq. (3)

The local deviation D is given by

$$D = \sum_{i=1}^{N} (x_{ia} + x_{ib}) (\ln \gamma_{ib} - \ln \gamma_i)$$
 (5)

where N is the number of components and the maximum deviation D_{max} is

$$D_{\text{max}} = \sum_{i=1}^{N} (x_{ia} + x_{ib}) \left(\frac{1}{x_{ia}} + \frac{1}{y_{ia}} + \frac{1}{x_{ib}} + \frac{1}{y_{ib}} \right) \Delta x$$

$$+ 2 \sum_{i=1}^{N} |\ln \gamma_{ib} - \ln \gamma_{ia}| \Delta x + \sum_{i=1}^{N} (x_{ia} + x_{ib}) \frac{\Delta P}{P}$$

$$+ \sum_{i=1}^{N} (x_{ia} + x_{ib}) \left[(t_a + C_i)^{-2} + (t_b + C_i)^{-2} \right] \Delta t$$
(6)

The errors in the measurements Δx , ΔP and Δt were as previously indicated. The first term in Eq. [6] is the dominant one. For the experimental points reported here, D never exceeded 0.069 while the smallest value of D_{max} was 0.374.

The activity coefficients for the ternary system were correlated by the Redlich-Kister expansion [11]

$$\begin{aligned} &\ln \gamma_1/\gamma_2 = b_{12}(x_2 - x_1) - c_{12} \big[(x_1 - x_2)^2 - 2x_1 x_2 \big] \\ &+ d_{12}(x_2 - x_1) \big[(x_1 - x_2)^2 - 4x_1 x_2 \big] + x_3 \big[b_{13} + c_{13} (2x_1 - x_3) \\ &+ d_{13}(x_1 - x_3) (3x_1 - x_3) - b_{23} - c_{23} (2x_2 - x_3) \\ &- d_{23}(x_2 - x_3) (3x_2 - x_3) + C_1(x_2 - x_1) \big] \end{aligned} \tag{7}$$

where b_{ij} , c_{ij} and d_{ij} are constants for the pertinent binary and C_1 is a ternary constant. The equations for the two other pairs of activity coefficients were obtained by cyclic rotation of the indices. Data for the three binary systems have been reported elsewhere [1-3]. The ternary Redlich-Kister coefficient was obtained by a Simplex optimization technique. The differences between the values of the root mean square deviation for the activity coefficient for the two cases, with and without the ternary constant C_1 (Table 4), are statistically insignificant, suggesting that ternary data can be predicted directly from the binary systems.

a Ref. [13].

Table 4
Redlich-Kister coefficients, Eq. (7)

Ternary system	b ₁₂	c ₁₂	d ₁₂	b ₁₃	c ₁₃	d ₁₃	b ₂₃	c ₂₃	d ₂₃	C_1	rmsd	
											γ_1/γ_2	γ_1/γ_3
1-Bromopropane (1) + 1-chlorobutane (2)		0	0	0.1570	-0.0077	0	0.1320	+0.0085	0.0160	0	0.005	0.004
+ cyclohexane (3)										-0.06074	0.005	0.003

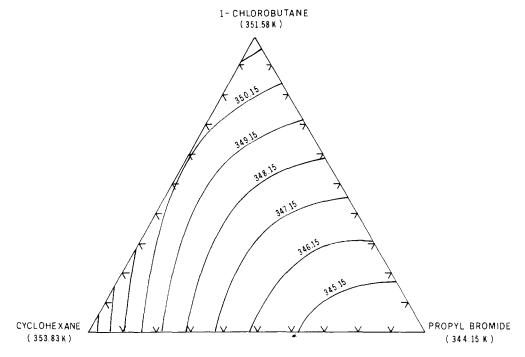


Fig. 1. Isothermals for the ternary system 1-bromopropane-1-chlorobutane-cyclohexane at 101.3 kPa. Coefficients from Eq. (8).

The boiling points of the systems were correlated by the equation proposed by Wisniak and Tamir [12]

$$T/K = \sum_{i=1}^{n} x_i T_i^0 / K + \sum_{i,j=1}^{n} \left[x_i x_j \sum_{k=0}^{m} C_k (x_i - x_j)^k \right]$$

$$+ x_1 x_2 x_3 \left[A + B(x_1 - x_2) + C(x_1 - x_3) + D(x_2 - x_3) \right]$$
(8)

In these equations, n is the number of components (n = 2 or 3), T_i^0 is the boiling point of the pure component i (in K or $^{\circ}$ C) and l is the number of terms in the series expansion

System	C ₀	C ₁	<i>C</i> ,	rmsd	0/0 a
1 Paramanana (1) 1 1 abbank 4 4 (2) b		0.2100		0.01	0.04
1-Bromopropane (1) + 1-chlorobutane (2) b 1-Bromopropane (1) + cyclohexane (3) c	-1.0788 -14.163	-0.3199 4.8161	0	0.01 0.02	0.04
1-Chlorobutane (2) + cyclohexane (3) ^d	-10.538	1.9321	-2.1549	0.01	0.01
	A	В	С	rmsd	
1-Bromopropane (1) + 1-chlorobutane (2) + cyclohexane (3)	-2.56976	46.3007	_	0.04	

Table 5 Coefficients in correlation of boiling points, Eq. (8), and root mean square deviations in temperature, rmsd (T/K)

of $(x_i - x_j)$. C_k are the binary constants where A, B, C, D are ternary constants. An equation of the same structure can be used for the direct correlation of ternary data, without use of binary data. Both forms will require about the same number of constants for similar accuracy but the direct correlation allows an easier calculation of boiling isotherms (Fig. 1). The various constants of Eq. (8) are reported in Table 5, which also contains information indicating the degree of goodness of the correlation.

Acknowledgement

Yehudit Reizner and Evis Data helped in the experimental part.

References

- [1] J. Wisniak, A. Apelblat, J. Zabicky and I. Feingold, J. Chem. Eng. Data, 40 (1995) 120.
- [2] J. Wisniak, Phys. Chem. Liq., (1994) submitted.
- [3] J. Wisniak, Thermochim. Acta, (1995) in press.
- [4] L.K. Boublikova and B.C.-Y Lu, J. Appl. Chem., 19 (1969) 89.
- [5] J. Wisniak and A. Tamir, J. Chem. Eng. Data, 20 (1975) 168.
- [6] H.C. Van Ness and M.M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions, McGraw-Hill, New York, 1982.
- [7] J.P. O'Connell and J.M. Prausnitz, Ind. Eng. Chem., Process Des. Develop., 6 (1967) 245.
- [8] J. Wisniak, Ind. Eng. Chem. Res., 32 (1993) 1533.
- [9] C. McDermott and S.R.M. Ellis, Chem. Eng. Sci., 20 (1965) 293.
- [10] J. Wisniak and A. Tamir, J. Chem. Eng. Data, 22 (1977) 253.
- [11] E. Hala, J. Pick, V. Fried and O. Vilim, Vapor-Liquid Equilibrium, Pergamon Press, London, 1967.
- [12] J. Wisniak and A. Tamir, Chem. Eng. Sci., 31 (1976) 631.
- [13] TRC-Thermodynamic Tables—Non-hydrocarbons, Thermodynamics Research Center, The Texas A & M University System, College Station, Texas (Loose-leaf data sheets, extant 1974).

^a Average % deviation; ^b Ref. [3]; ^c Ref. [1]; ^d Ref. [2].