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Abstract

The vapor-liquid equilibrium at 101.3kPa has been determined for the ternary system
1-bromopropane + 1-chlorobutane + cyclohexane. The data were correlated by the Redlich~
Kister and Wisniak—Tamir equations and the appropriate parameters are reported. The activity
coefficients of the ternary system can be predicted from those of the pertinent binary systems. No
ternary azeotrope is present.
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List of symbols

A, B, C; Antoine constants, Eq. (3)

By, B;; second molar virial coefficients, Eqgs. (1) and (2)
by,cijsdy Redlich—Kister constants, Eq. (7)

(o constants, Eq. (8)

AGE excess Gibbs function

N number of measurements

P total pressure

P? vapor pressure of pure component i

R gas constant

rmsd (T) root mean square deviation, [X(T,,,, — T,,,.)*1>°/N
rmsd (y;) root mean square deviation, [Z(7; eep — Vi,care) 1> /N
t, T boiling temperature of a mixture

T? boiling temperature of pure component i

vk molar volume of liquid component i
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X3 Vi mole fraction of component i in the liquid and vapor phases
i activity coefficient of component i

d;; molar virial coefficient parameter, Eq. (2)

Subscripts

expt experimental value

calc calculated value

i component i

1. Introduction

The present work was undertaken to measure vapor-liquid equilibria (VLE) data for
the title system for which no isobaric data are available. This is part of a program to
determine UNIFAC parameters for organic halides. Data for the three binary systems
have already been reported [1-3]. The binary system 1-bromopropane + 1-chloro-
butane behaves ideally while the two other binaries present strong deviations from
ideal behavior and an azeotropic point.

2. Experimental
2.1. Purity of materials

1-Bromopropane (99.5mol% +) was purchased from Aldrich, 1-chlorobutane
(99.5mol% +) from Merck and cyclohexane (99.5 mol% +) from Riedel de Haen. The
reagents were used without further purification after gas chromatography failed to
show any significant impurities. Properties and purity (as determined by GLC) of the
pure components appear in Table 1.

Table 1
Mol% GLC purities, refractive index n at the Na D line, and normal boiling points T of the pure
components

Component (purity, mol%) np (298.15K) T/K
1-Bromopropane (99.5) 1.4319* 344.05*
1.4317% 344,15°
1-Chlorobutane (99.5) 1.3999* 351.58*
1.4000° 351.58°
Cyclohexane (99.5) 1.4233% 353.82*
1.42354" 353.88°

@ Measured; ®Ref. [13].



J. Wisniak/Thermochimica Acta 264 (1995) 105-112 107
2.2. Apparatus and procedure

An all-glass modified Dvorak an Boublik recirculation still [4] was used in the VLE
measurements. The experimental features have been described in a previous publica-
tion [5]. All analyses were carried out by gas chromatography on a Gow-Mac series
550P apparatus provided with a thermal conductivity detector and a Spectra Physics
Model SP 4290 electronic integrator. The column was 2 m long and 0.2 cm in diameter,
filled with 10% SE-30. The temperatures of the column, injector and detector were
308.15, 493.15 and 543.15K respectively. Very good separation was achieved under
these conditions, and calibration analyses with gravimetrically prepared samples were
carried out to convert the peak ratio to the weight composition of the sample.
Concentration measurements were accurate to better than + 0.008 mole fraction units.
The accuracy in determination of pressure P and temperature T was at least + 0.1 kPa
and 0.02K, respectively.

3. Results

The temperature ¢, and liquid-phase x; and vapor-phase y; mole fraction measure-
ments at P = 101.3 kPa are reported in Table 2, together with the activity coefficients y;
which were calculated from the equation [6]

Iny,=In(Py/P%x;) + (B; — v})(P — P?)/RT+ (P/2RT) iiyjykﬂéﬁ—éjk) (1
11

where
5ji=23ji_Bjj —B; (2)

The standard state for the calculation of activity coefficients is the pure component at
the pressure and temperature of the solution. The pure component vapor pressure
P? were calculated according to the Antoine equation

log(P?/kPa)=A;— B/(T/K — C}) (3)

where the constants A, B;, C; are reported in Table 3. The molar virial coefficients B;;,
and B,; were estlmated by the method of O’Connell and Prausnitz [7] using the
molecular parameters suggested by the authors and assuming the association para-
meter # to be zero. The last two terms in Eq. (1) contributed less than 3% to the activity
coefficient and their influence was important only at very dilute concentrations. The
calculated activity coefficients are reported in Table 2 and are estimated accurate to
within + 3%.

The ternary activity coefficients reported in Table 2 were found to be thermodynami-
cally consistent as tested by the L-W method of Wisniak [8] and the McDermot-Ellis
method [9] modified by Wisniak and Tamir (10). Two experimental points a and b are
considered thermodynamically consistent if the following condition is fulfilled

D<D,. @)
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Table 3

Antoine coefficients, Eq. (3)

Compound A, B, C;

1-Bromopropane? 6.03555 1194.889 47.64

1-Chlorobutane® 6.05154 1216.82 50.82

Cyclohexane® 5.96407 1200.31 50.65
2Ref. [13].

The local deviation D is given by

M=

D:

(xi + X)) (Iny,, —Iny;) (3)

1

where N is the number of components and the maximum deviation D, is

N 1 1 1
Z X+ Xip <—+ +—+— )Ax
i= xia ym xib yzb

N N AP
+2Y IIny, —Iny,|Ax+ Y (xia+xib)7
i=1 i=1
N
+ Z (X +x) [t + C) 2 +(t, + C) 2] At (6)

i=1

The errors in the measurements A x, A P and At were as previously indicated. The
first term in Eq. [6] is the dominant one. For the experimental points reported here,
D never exceeded 0.069 while the smallest value of D, was 0.374.

The activity coeflicients for the ternary system were correlated by the Redlich-Kister
expansion [11]

Inyfy, =by,y(x; —x) = ¢y, [(x —x,)* —2x;x,]
+dy,(x; —x ) [(x; —x,)* —4x,x, ]+ x3[b, 5 + ¢,3(2x; — X3)
+d3(x; —x3) (3%, —x3)—by3 —353(2x, — X3)
—d,5(x; —%3)(3x, —x3)+ Cy(x; —x,)] (7

where b;;, ¢;; and d; are constants for the pertinent binary and C, is a ternary constant.
The equatlons for the two other pairs of activity coefficients were obtained by cyclic
rotation of the indices. Data for the three binary systems have been reported elsewhere
[1-3]. The ternary Redlich—Kister coeflicient was obtained by a Simplex optimization
technique. The differences between the values of the root mean square deviation for the
activity coefficient for the two cases, with and without the ternary constant C,
(Table 4), are statistically insignificant, suggesting that ternary data can be predicted
directly from the binary systems.
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Table 4
Redlich—Kister coefficients, Eq. (7)

Ternary system by, ¢2 diy bys Cis di; by Ca3 d,ys C, rmsd

RGP AUE

1-Bromopropane(l) 0 0 0 0.1570 —0.0077 0 0.1320 +0.0085 00160 O 0.005 0.004
+ 1-chlorobutane (2)
+ cyclohexane (3) —0.06074 0.005 0.003

1- CHLOROBUTANE
(351.58K)

R
./ 3 ‘
5‘3\5
"5““"\5
"5‘*"'\5
CYCLOHE XANE N v 9 v/ v vy PROPYL BROMIDE
(353.83K) - (34415 K)

Fig. 1. Isothermals for the ternary system l-bromopropane—1-chlorobutane—cyclohexane at 101.3kPa.
Coefficients from Eq. (8).

The boiling points of the systems were correlated by the equation proposed by
Wisniak and Tamir [12]

T/K = i x; T?/K + i [x.x; i Colx; —x))*]
k=0

i=1 i,j=1

+x;%,%3[A4 4+ B(x; —x,) + C(x; — x3) + D(x;, — x3)] (8)

In these equations, n is the number of components (n = 2 or 3), T, is the boiling point
of the pure component i (in K or °C) and / is the number of terms in the series expansion
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Table 5
Coseflicients in correlation of boiling points, Eq. (8), and root mean square deviations in temperature, rmsd
(T/K)

System C, C, C, rmsd %?
1-Bromopropane (1) + 1-chlorobutane (2)* —1.0788 —0.3199 0 0.01 0.04
1-Bromopropane (1) + cyclohexane (3) ¢ —14.163 48161 0 0.02 0.11
1-Chlorobutane (2) + cyclohexane (3)¢ —10.538 1.9321 —-2.1549 001 0.01

A B C rmsd
1-Bromopropane (1) + 1-chlorobutane (2) —2.56976 463007 - 0.04
+cyclohexane (3)

3 Average % deviation; ® Ref. [3]; ¢ Ref. [1];  Ref. [2].

of (x; — x;). C, are the binary constants where A, B, C, D are ternary constants. An
equation of the same structure can be used for the direct correlation of ternary data,
without use of binary data. Both forms will require about the same number of constants
for similar accuracy but the direct correlation allows an easier calculation of boiling
isotherms (Fig. 1). The various constants of Eq. (8) are reported in Table 5, which also
contains information indicating the degree of goodness of the correlation.
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