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Abstract 

Low temperature heat capacity models for substances with diamond-like structures have been 
considered on the basis of the Debye model and fractal states filling at fixed characteristic 
temperature. It was shown that low temperature calorimetry is an efficient tool for scanning the 
distribution of the atomic vibrational states in real substances. Fractal dimension and Poisson’s 
ratio in the elastic-isotropic multifractal model are related by a simple interdependence, which 
enables estimation of the fractal dimension from elastic properties of solids. 

Keywords: Fractal dimension; Heat capacity; Low-temperature calorimetry; Multifractal elas- 
ticity 

1. Introduction 

The development of models which enable description of the temperature-depend- 
ence of heat capacity by using the real physico-chemical properties of a substance, is of 
great importance both from the point of view of solving the applied problems (for 
example, determination of thermodynamic properties in the temperature range in 
which experimental data weren’t measured), and for revealing the correlation between 
physico-chemical properties. 

At present there are different models based on the concept of a solid as an elastic 
continuum. We assume that it would be interesting to consider the temperature- 
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dependence of a parameter, which can be obtained both from elastic and ther- 
modynamic properties. In this paper we suggest application of the fractal dimension 
[l] as such a parameter. To check this suggestion it is quite natural to use the well 
studied diamond-like substances (diamond, silicon and germanium) as they possess 
a highly symmetric crystal structure and contain a minimum amount of impurities and 
defects. The models, which are based on different assumptions about the form of 
phonon density of vibration states vs. frequency curves, are used for modeling the 
temperature-dependence of heat capacity. 

2. History 

Great progress was achieved by the work of Einstein [2], Debye [3], Born and 
Coworkers [4,5], Blackman [6], Tarasov [7], Sirota [IS] and Lifshits [9]. The most 
important was the Debye model. In the Debye model the heat capacity (at a given 
frequency distribution of the number of vibrations) can be represented as: 

s 

“mai 
cv= (hv/k,T)*exp(hv/k,T)(exp(hv/k,/T)- 1)-2g(v)dv. (1) 

0 

To determine the continuous function g(v), Debye assumed that a solid body can be 
considered as a continuous elastic medium, the thermal vibrations in which are the 
superposition of elastic vibrations similar to sound waves. Moreover, the continuum is 
considered to be isotropic, so that the velocities of the longitudinal and tranverse 
vibrations are direction-independent. In this medium, the total number of vibrational 
modes in the interval from v to v + dv is given by 

g(v)dv=4~V(l/$+2/$)v2dv. (2) 

where V is the sample volume, and u, and v, are the longitudinal and transverse 
velocities of sound. Because the number of fundamental vibrations of the continuum is 
limited to 3 N vibrations with frequencies between zero and v,,, the spectral density is 
proportional to the square of the frequency: 

g(v) dv = 9 Nv,,J,v2 dv. (3) 

whereas the heat capacity is given by 

s 

@o/T 
Cv = 9RT(T/Q3 x4 exp (x) (exp(x) - 1)-2 dx (4) 

0 

where x = hv/kT and 0, = hv,,,/k. At high temperatures, the heat capacity ap- 
proaches a value close to 3R; at low temperatures, it is proportional to temperature 
cubed: Cv = A T3. 

The Debye theory related the elastic properties of solids to their thermodynamic 
properties; however, the experimental data (as derived from the heat capacity) showed 
that 0, was temperature-dependent. We emphasize this fact because we will return to it 
below in considering the multifractality of vibrational states in solids. 
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3. Theory 

To date, numerous attempts have been undertaken to construct a simple and 
convenient model for the phonon distribution function. The kieffer model [lo] is based 
on analysis of the vibrational contributions. The distribution function is divided into 
three frequency groups (one acoustic and two optical). 

Westrum and Komada [ll] developed a new model of the phonon distribution, 
which involves one characteristic temperature as a parameter for describing the heat 
capacity. It was assumed that, irrespective of structure, a solid possesses one longitudi- 
nal and two degenerate transverse acoustic modes, in this case the dispersion ratios for 
longitudinal and transverse modes are similar. In treating the optical branches within 
this model, it is assumed that the distribution function differs from the Debye function 
as a consequence of discrete atomic positions in real crystals, so that the cut-off 
frequency diminishes by a value proportional to the square of the frequency. The 
distinguishing feature of this model is that it takes account of atomic masses in 
determining the frequency range and the distribution function for the optical modes. 
The interamolecular vibrations are described within this model by the Dirac 6- 
function. 

The above models of C, (T) are based (to various extents) on the specific features of 
the atomic structure of crystalline substances. 

One can to assume that in “quasi-linear” and “quasi-layered” structure substances 
the C,(T) dependencies can be expressed by the exponential functions, and the 
exponent is determined by the crystallochemical features of the structure. This would 
be related to a strong anisotropy of substances under study. In this case, the noninteger 
exponent in the Cv = f( TD) dependence might be interpreted as some effective value. 
The frequency distribution of the number of vibrational states was described by 
continuous exponential functions. It resulted in a discrepancy between theory and 
experiment. 

Now we turn to the Debye model once more. The characteristic temperature 
introduced by Debye defines the temperature at which all of the vibrational states of 
a crystal (substance) are excited. In some publications the value 0, was assumed (see, 
for example, Ref. [12]) to be temperature-dependent (without any strict substantiation) 
in order to fit the low-temperature calorimetry data to the theoretical predictions. 

The variations of the characteristic Debye temperature with temperature are in- 
herent to the great majority of substances, irrespective of the dimension of the 
interatomic bonds within the above crystallochemical approach to the “quasi-linear”, 
and “quasi-layered”, or high-symmetric structures, which can be fairly illustrated by 
the experimental data on diamond [ 131, silicon [ 141 and germanium [ 151. 

The contradiction between the Debye assumption “0, = const” and the experimen- 
tally studied dependence 0, (T) can be easily eliminated. 

The suggested approach to modeling of Cv (T) dependence is based on the assump- 
tion of the fractality of vibrational states in the substance (solid). From the viewpoint of 
the formulation (filling the space of quasi momenta) of the “phonon cloud” (which 
corresponds to the heating of a solid), this is a process of “multifractal growth”. As is 
supported by the above models and available experimental data, the distribution of the 
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atomicvibrational frequencies(phonons) obeys the scaling relationship Cv - v”, where 
D is the fractal dimension that takes effective, comprehensive account of the fractal 
dimension of all the series of vibrations. The magnitude of D can take nonlinear values; 
it characterizes the degree of filling of the vibration space (in reciprocal space, it is the 
space of the phonon quasi momenta). Note that the scaling relationship between the 
number of particles and the aggregate radius (in this case, Cv - vD) supports the 
approach suggested. And finally, the third distinctive feature of the fractality of the 
phonon cloud is that a decrease in density (the number of the vibrational states- 
phonons) with increasing distance from the fractal center is described by the well- 
known formula from Bose-Einstein statistics [12]; this formula suggests that the 
number of phonons in a given state diminishes with increasing frequency (energy) of 
phonons. 

So in modeling the temperature-dependence of heat capacity, one can adopt Debye’s 
assumptions and modern concepts about the fractal character of the filling of vibra- 
tional states. 

From this point of view low-temperature calorimetry may be used as one of the 
methods for estimating the fractonic dimension D(T) of the phonon cloud of the 
occupancy of the “vibrational space”. The temperature-dependence of the fractonic 
dimension D(T) is related, via the structure of the vibrational states, to special features 
of the filling of real space with atoms. So it may also contain information about the 
degree of imperfection of a real substance and thus provide some indirect characteriz- 
ation of the topology of the atomic structure of materials. 

4. Results 

Let us turn our attention to the known, reliable experimental data obtained for 
C [13], Si [14] and Ge [15]. 

On the basis of the formula for calculation of vibration states density 

G(v) = 3 Nv,,D,vD 

we solved the following equation: 

(5) 

C(T, D) = 3D(O + l)Nk,r 
T D o/r 

[IS 

p O/T 
o 

o ewW-1 
dx - 3Dk,Nr 

exp Of T - 1 

= C,(T) (6) 
where N is the Avogadro number, k, is the Boltzmann constant, r is the number of 
atoms per formula unit, and Cv is the isochoric heat capacity obtained as a difference 
between the experimental value of C, and the contribution from the work of lattice 
expansion (C, - Cv). 

We sought a value of D for 0 I T < 0 such that the termination error for D would not 
increase with decreasing T. To do so, Eq. (6) was replaced by the equation: 

C(D), = const = C,( T = const) (7) 
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the solution for which was sought for each pair of experimental values of T and Cv (T). 
We used dichotomy. Integration was performed numerically first over a small, fixed 
number of points, gradually increasing their number as long as the integral over n + 1 
points differed from that for n points by a magnitude higher than lo-*. 

The results obtained are presented in Fig. 1. 
On the basis of the assumptions adopted by Debye and the fractonic character of 

filling of the vibrational states, analysis of the topology of the real atomic structure of 
substances of varied physicochemical origin becomes possible. The fractonic dimen- 
sion, its temperature-dependence as derived from the low-temperature data on heat 
capacity, can serve as a more meaningful characteristic of a material than the 
temperature-dependence of the Debye temperature because this quantity is directly 
related to the degree of filling of vibrational space and, therefore, indirectly related to 
the degree of filling of real space, that is, to the atomic arrangement in the structure of 
the substance. So it may also contain information about the degree of imperfection of 
a real substance and thus provides indirect characterization of the topology of the 
atomic structure of solids according to the physicochemical analysis formula: “compo- 
sition-structure-fractal topology-properties”. 
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Fig. 1. Low temperature dependence of the fractonic dimension for diamond, silicon and germanium. 
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From the analysis of low temperature heat capacity data one can envisage the solid 
not as an elastic continuum, but as an elastic-isotropic multifractal. In this case the 
fractonic dimension must have a constant noninteger value in the particular tempera- 
ture range. 

A self-consistent thermodynamic theory of multifractal elasticity was constructed in 
Refs. [ 16, 173 on the basis of two postulated laws (see Table 1) by analogy with classical 
theory of the elasticity of solids. These laws enable description of the elastic deforma- 
tion of statistically self-similar structures and the effect of lateral deformations. In the 
limit of infinitely small deformations, all relations of the thermodynamic theory lead to 
the corresponding relations of the theory of the elasticity of solids, which postulates the 
effect of lateral deformations (see Table 1) in the absence of lateral strains (this, 
apparently, runs counter to Hooke’s law, which is a particular case of Newton’s second 
law). 

Deformations Li, i = 1,2,. . ., d (where d is the topological dimensionality of Euclid- 
ean space) appear under the elastic stresses; in this case the density is 

P = PO/(nt 4 (8) 
When a multifractal is uniaxially deformed (with the fractal dimension d,) under the 
influence of a stress o,, (deformation /1, = A,) the structure develops lateral stresses gl, 
which caused lateral deformations lj = 2 ___ d 

’ ’ 
= AI. From the density equation, Eq. (8), 

and data from Table 1 it follows that 

In@,) + (d - l)ln(A,) = ctln (A,). (9) 

Table 1 
Comparison of the postulates and certain results of the linear theory of the elasticity of solids and 
thermodynamic theory of elasticity multifractals 

Linear theory of the elasticity of solids Thermodynamic theory of elasticity of multifractals 

1. Hooke’s law : relative deformation E,, 1. Reversible deformation of an elastic multifractal under 
is proportional to the stress o,, the force F generates only one new characteristic L,. 

2. Poisson’s effect: lateral deformations 
.sl = - VE,, developed in the absence of the 
corresponding stresses, i.e. when (rl = 0 

2. Deformation of a multifractal is self-affine, i.e. 
density values p with L, in the same fashion as p varies 
with geometrical size change p - A;“; A, = L, (F)/L,(O); 
z=d-d,>O 

3. Expression for the stress c: 
1 au 

"ii=7 a,,. 
(> 

4. Ratio between elastic moduli (E,G, B are 

the Young’s, shear and bulk moduli): 

v = -a&,> G = A, B = & 

3. Expression for the force F: 

F=(E)-T(E) 

4. Y = -& - 1 [d, = (v + l)(d - 1)] 

d-l E 
G=2d,E’B=d(d-df) 
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Table 2 
Approximation of the temperature-dependence ofthe heat capacity by the Debye model and fractonic model: 
D is the fractonic dimension from the experimental data 

Substance A T/K max ACp/(rel. units) max A&ret. units) D 

Li” 3-28 0.0043 0.0013 2.82 
CU” 14-44 0.091 0.060 2.40 
B 40-92 0.025 0.016 2.82 
Al” 15-55 0.0063 0.0004 2.69 
C 13-300 0.034 0.016 2.43 
Ge 4-250 0.037 0.026 2.59 
Si 44150 0.057 0.033 2.51 
BN 16-63 0.022 0.011 2.16 
a-A&O, 5-100 0.81 0.69 2.49 
NaCl 10-50 0.32 0.14 2.41 

a For these metals the electron heat capacity was taken into account. 

Table 3 
The Debye temperature, calculated from the Debye model (On,,) and, from the fractonic model, O,,,, 
calculated from the heat capacity temperature-dependence, the fractonic dimension D and the fractal 
dimension of elastic isotropic fractal d, 

Substance @n,,/K %,X/K. D d, 

Li 344 407 2.82 2.56 
cu 343 358 2.40 2.65 
B 1510 1577 2.82 2.46 
Al 428 451 2.69 2.70 
C 2230 2465 2.43 2.20 
Ge 374 364 2.59 2.45 
Si 645 639 2.51 2.40 
BN _ 1550 1453 2.16 2.20 
a-Al,O, -1100 1045 2.49 2.46 

In this case 

ln@,) 4 
1)=_=-- 

In&) d-l 
1 

where the logarithmic relationship is the lateral-deformation ratio, which coincides 
with Poisson’s ratio vO = EJE,, only within the limit of infinitely small deformations sL, 
E,, << 1. 

5. Conclusion 

So, the fractal dimension and Poisson’s ratio in the model of the elastic-isotropic 
multifractal are related by the simple interdependence. It gives the ability to estimate 
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the fractal dimension from dilatometric and ultrasonic studies. In addition, it is 
interesting to compare data obtained from elastic properties and from thermodynamic 
ones. The results from Tables 2 and 3 testify to good agreement of fractonic (obtained 
from C,(T) data) and fractal dimensions (calculated for substances with known 
Poisson’s ratio). 
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