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Abstract 

The percentage of acid-soluble components (ASC) and the aggregate granulometric distribu- 
tion in mortars from two frescoes (Gothic and Flemish wall paintings) from Chiaravalle Abbey 
were determined. Principal component analysis (PCA) of these data provided a “scores” plot 
where Gothic plaster samples were clearly grouped, and separate from Flemish plaster samples. 
Classification into the above two classes was achieved by the residual standard deviation values 
of all samples fitted into disjoint principal components (PC) models according to the SIMCA 
method. Furthermore the PCA scores for the “Flemish” class pointed out differences between 
painted and internal plasters, indicating the use of layers with different composition and function, 
while those for the “Gothic”class showed no grouping indicating either the use of a single mortar 
or inhomogeneous layers. The above findings confirm and extend previous results on the 
classification of mortars into groups with similar architectural function, pointing out the 
generality of the SIMCA classification for both historical attribution and conservation studies. 

Keywords: Flemish art; Gothic art; Mortar; Principal component analysis (PCA); Plaster; Soft 
independent modelling of class analogy (SIMCA); Wall paintings 

1. Introduction 

The characterization of mortars used with different functions in artistic, architectural 
and archaeological hand work, generally involves quantitative determination of the 
mineral binder and of the sand aggregate by means of different parameters. 
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A simple analytical procedure for characterization of mortars is based on the 
determination of a compositional parameter (the acid-soluble percentage) and of the 
aggregate granulometric fractions, after chemical separation from the binder [ 11. The 
above procedure may be applied using small quantities of sample and is therefore 
particularly useful for the study of painted plasters (frescoes and other wall paintings). 
It minimizes sampling damage and is generally sufficient to provide significant data for 
the characterization of such non homogeneous materials. 

As the chemical methods used for the quantitative separation of the aggregate from 
the mortar are generally based on acid attack, this procedure, providing multivariate 
data, can be safely adopted only for acid-resistant aggregates (e.g. basically with 
a silicate composition and, at the same time, when the binder is without hydraulic 
components). Both conditions were satisfactorily fulfilled in the two frescoes examined. 

Previous studies [Z] achieved multivariate characterization of mortars from paint- 
ing decorations of the Cupola of Florence Cathedral by processing the analytical data 
through PCA classification according to the SIMCA (soft independent modelling of 
class analogy) method [3,4]. This statistical procedure has been already applied in 
archaeometry for the classification of ancient Mesopotamian ceramics and clay [S] and 
of Roman pottery [6]. 

The previous work [2] pointed out the possibility of obtaining a satisfactory 
classification of mortars into groups of similar architectural function, such as mortars 
between the bricks, mortars for covering plasters, and mortars used for painted 
plasters, evidencing differences among areas painted by different artists. Furthermore 
in the above case no doubt could exist on the functional role of the mortar, the sampling 
being performed in large lacunas of the plasters where each sample could certainly be 
assigned a given function. The analytical procedure was the same as that described 
above, consisting in the determination of the percent acid-soluble component (%ASC) 
and of the aggregate granulometric distribution. 

In the present study we report the multivariate characterization and SIMCA 
classification of mortars from two different wall paintings in a side chapel of the 
Chiaravalle Abbey (Milano). Analysis and characterization have been carried out on 
samples both from the external painted plasters and from the internal preparatory 
layers with the aim of reciprocal comparison between the two paintings in order to 
obtain a better understanding of plaster layering in the chapel. 

2. Materials studied 

The front wall of the chapel was painted in different periods. On the left part of the 
Chapel there is a Flemish fresco painting, representing Christ in front of Pilato, while 
the right side includes two scenes of a Gothic fresco (the nativity and a group of saints). 

Samples (100-200 mg) of mortar were taken from areas with paint lacunas in order to 
cause minimum damage. The sample distribution was as follows: 14 samples at different 
depth from the Gothic area; 11 samples at different depth from the Flemish area. 

A stratigraphic sampling was performed. Only the externally observable painted 
layer can be safely attributed to the corresponding (Gothic or Flemish) plaster, while 
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the internal layer may belong to the same plaster or to different ones. Moreover, 
samples taken at the same depth may contain different plasters due to the inhomo- 
geneous thickness of man-made layers. 

3. Analytical methods 

Following previously tested procedures [l] 100-200 mg of dry mortar were treated 
with 7 ml of 1.4 M HCl for 60 min at room temperature. The insoluble residue was 
centrifuged and washed with distilled water until neutrality of the solution. Percent 
quantities were calculated as follows: 

%ASC = lOO( W, - W,)/W, 

where W, is the weight of the dry mortar sample and W, the weight of residue after acid 
attack and wash. 

Such residue, dried to constant weight, was separated into seven granulometric 
fractions using seven 38 mm diameter sieves. The chosen series (Endecotts series DIN 
4188 part 2) gives granulometric fractions which are significant for the characterization 
of the mortars from painted plasters. 

Each of the seven granulometric fractions (f, > 630 pm; 630 pm > fi > 400 pm; 
4OOum>f,>250um; 250um>f,>160pm; 160pm>f,>lOOum; lOOum>f,> 
63 pm; 63 urn > f7 > 50 urn; fs < 50 pm) was dried, weighed and calculated as: 

%ti = WJW, x 100 

where ti = weight percent of fraction i, wi = weight of fraction i, and w, = weight of the 
dried aggregate. 

4. Statistical methods 

The results of PCA depend on the scaling of the data; in SIMCA the variables are 
generally autoscaled by multiplying the variables by appropriate weights in order to 
give them the same importance. Alternatively, block weighting can be used in order to 
give the same importance to group of variables. In the present work block weighting 
was in order to give 50% importance to the only chemically derived variable (% ASC) 
and 50% to the group of granulometric measurements. 

PCA using the SIMCA method and its applications have been presented in detail 
[7,8], also in relation to mortar classification [2]. Consequently the statistical 
procedure will only be summarized here. The SIMCA method carries out PCA on 
a data matrix containing elements xik, where index k is used for the experimental 
measurements (variables) and index i for the samples (objects). Each element is 
described by Eq. (l), where the number A of significant cross terms (components), and 
the parameters pak, ti, are calculated by minimizing the squared residuals eik, after 
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subtracting XL (the mean value of the i experimental quantities x,J. 

a=A 

xik = %k + 1 ‘iapak + eik 
a=1 

In this model, parameters Xk and pak (the loadings) depend only on the experimen- 
tally measured variables and ti, (the scores) only on the compounds. The deviations 
from the model are expressed by the residual eik. The number of significant components 
(A) is determined using the cross-validation technique [3]. The relevance of each 
variable in describing the mathematical model is given by its modelling power MPO W; 
where Sk is the residual standard deviation for each variable after A dimension and after 
dimension zero. 

~$4 =A) 
MPOW,=l- J__--- 

[ 1 s’A=O) 
k 

5. Results and discussion 

Mortar and plaster samples were characterized by nine variables: the % acid soluble 
component (ASC) and the granulometric distribution of the aggregate into eight 
different portions. The % granulometric distribution does not sum to 100% due to 
sample loss during the analysis, ranging from 1% to 9%. The latter loss might appear to 
be high from an analytical point of view. However, this is not relevant to the following 
statistical treatment, which fitting the data by a “soft” model, will anyway discard 
information from the analytical data matrix. Moreover variable sample loss overcomes 
the limitations due to the closure problem in the application of PCA to percentage data 
[9-111. 

The %ASC and the granulometric distributions are recorded in Table 1, together 
with additional information useful for classification. In order to carry out the PCA, the 
data were arranged into a matrix with the 25 mortar samples as “objects” and the 
physicochemical measurements (%ASC and 8 granulometric percentages) as “vari- 
ables”. Each of the 225 elements of the matrix is indicated in Eq. (1) as xik 

The SIMCA classification was achieved in two steps: 

(i) Pattern recognition by PCA on the whole data set 
This procedure provided a simplified picture of the multivariate data structure, by 

means of the loadings plot (related to the variable information content) and of the 
scores plot (an idea of the samples grouping). 

(ii) SIMCA classification 
Disjoint PCA models were calculated on each homogeneous data subset evidenced 

by the whole set scores plot and samples classified according to their distance from the 
appropriate PCA model. 



Ta
bl

e 
1 

C
la

ss
ifi

ca
tio

n 
of

 m
or

ta
rs

 

Sa
m

pl
e 

Pa
in

te
r 

“D
ep

th
 

b 
Fu

nc
tio

n 
c 

PC
A

 
va

ria
bl

es
 

1 
2 

3 
4 

5 
6 

I 
8 

9 
%

A
SC

 
>6

30
pm

 
63

0p
m

-4
O

O
pm

 
4O

O
pm

-2
50

pm
 

25
0p

m
-1

60
pm

 
16

0p
m

-1
O

O
km

 
lO

O
pm

-6
3p

m
 

50
pm

 
<5

0p
m

 
9 2 

50
.1

 
13

.2
 

7.
9 

1.
2 

5.
3 

2.
9 

3.
0 

47
.0

 
5.

2 
14

.8
 

9.
7 

5.
1 

3.
0 

3.
0 

46
.2

 
5.

3 
13

.9
 

8.
0 

6.
4 

3.
7 

4.
0 

62
.7

 
8.

6 
7.

5 
6.

1 
3.

8 
1.

7 
2.

5 
61

.2
 

9.
1 

8.
3 

6.
2 

4.
2 

2.
0 

3.
6 

68
.1

 
3.

3 
8.

1 
6.

1 
3.

9 
1.

8 
2.

2 
69

.5
 

4.
1 

8.
2 

5.
1 

3.
4 

1.
7 

2.
3 

46
.4

 
13

.7
 

11
.2

 
8.

8 
5.

0 
2.

4 
3.

3 
70

.2
 

5.
4 

6.
9 

5.
4 

3.
2 

1.
4 

1.
8 

59
.8

 
6.

1 
10

.2
 

1.
3 

4.
1 

2.
2 

2.
5 

68
.6

 
8.

2 
5.

4 
5.

0 
3.

1 
1.

9 
2.

5 
61

.0
 

6.
1 

9.
0 

6.
6 

4.
4 

2.
4 

4.
0 

60
.3

 
7.

7 
7.

3 
7.

4 
4.

8 
2.

3 
3.

1 
63

.9
 

9.
4 

1.
6 

5.
2 

3.
4 

1.
9 

2.
9 

33
.7

 
2.

5 
9.

1 
14

.0
 

14
.2

 
1.

2 
7.

8 
31

.5
 

5.
1 

19
.5

 
13

.1
 

8.
6 

4.
5 

4.
7 

28
.9

 
12

.8
 

15
.1

 
9.

0 
7.

4 
3.

5 
5.

5 
28

.5
 

2.
4 

12
.3

 
14

.2
 

12
.8

 
8.

1 
8.

3 
41

.1
 

1.
3 

14
.0

 
9.

3 
6.

4 
3.

5 
5.

5 
37

.8
 

13
.6

 
10

.8
 

9.
3 

6.
4 

4.
0 

4.
2 

35
.5

 
1.

7 
10

.8
 

13
.1

 
12

.6
 

6.
6 

7.
9 

30
.7

 
20

.6
 

12
.7

 
10

.8
 

1.
0 

3.
2 

4.
0 

31
.2

 
2.

6 
10

.5
 

14
.5

 
13

.9
 

7.
1 

7.
2 

31
.1

 
8.

8 
20

.3
 

16
.0

 
8.

5 
3.

2 
3.

9 
29

.9
 

23
.5

 
14

.8
 

9.
9 

4.
4 

2.
7 

3.
0 

1.
5 

9.
8 

z 

1.
2 

E 
11

.0
 

3 
1.

6 
10

.9
 

e 

0.
6 

a 
6.

5 
z 

0.
7 

4.
7 

” 
0.

6 
5.

2 
i 

0.
7 

4.
5 

2 
0.

9 
8.

3 
3 

0.
8 

4.
9 

F:
 

0.
9 

6.
3 

F ii.
 

0.
8 

3.
9 

z 
0.

9 
5.

6 
1.

1 
6.

0 
E 

0.
6 

5.
1 

%
 

2 
1.

9 
9.

6 
Y

 

1.
6 

11
.4

 
: 

2.
8 

15
.0

 
: 

2.
1 

10
.7

 
2 

1.
9 

17
.0

 
2 

1.
5 

12
.5

 
;”

 

2.
1 

9.
7 

: 
1.

9 
9.

1 
1.

9 
11

.1
 

0.
8 

7.
4 

1.
5 

10
.3

 

1 
G

ot
hi

c 
0-

4m
m

 
PP

 
2 

G
ot

hi
c 

4-
10

m
m

 
IP

 
3 

G
ot

hi
c 

O
-4

m
m

 
PP

 
4 

G
ot

hi
c 

4-
11

 
m

m
 

IP
 

5 
G

ot
hi

c 
lS

6m
m

 
PP

 
6 

G
ot

hi
c 

6-
15

m
m

 
IP

 
7 

G
ot

hi
c 

C
kl

O
m

m
 

PP
 

8 
G

ot
hi

c 
0-

4m
m

 
PP

 
9 

G
ot

hi
c 

&
lO

m
m

 
IP

 
10

 
G

ot
hi

c 
4-

15
m

m
 

IP
 

11
 

G
ot

hi
c 

O
-1

O
m

m
 

PP
 

12
 

G
ot

hi
c 

1%
13

m
m

 
IP

 
13

 
G

ot
hi

c 
O

-1
O

m
m

 
PP

 
14

 
G

ot
hi

c 
lO

-1
5m

m
 

IP
 

15
 

Fl
em

is
h 

C
L6

rn
m

 
PP

 
16

 
Fl

em
is

h 
6-

9m
m

 
IP

 
17

 
Fl

em
is

h 
9-

12
m

m
 

IP
 

18
 

Fl
em

is
h 

@
2m

m
 

PP
 

19
 

Fl
em

is
h 

48
m

m
 

IP
 

20
 

Fl
em

is
h 

4-
1O

m
m

 
IP

 
21

 
Fl

em
is

h 
O

-2
m

m
 

PP
 

22
 

Fl
em

is
h 

2-
4m

m
 

IP
 

23
 

Fl
em

is
h 

O
-2

m
m

 
PP

 
24

 
Fl

em
is

h 
2-

6m
m

 
IP

 
25

 
Fl

em
is

h 
6-

1O
m

m
 

IP
 

“G
ot

hi
c:

 
fro

m
 

th
e 

G
ot

hi
c 

ar
ea

s;
 

Fl
em

is
h:

 
fro

m
 

th
e 

Fl
em

is
h 

ar
ea

; 
b 

Sa
m

pl
in

g 
de

pt
h;

 
’ P

P:
 

pa
in

te
d 

pl
as

te
rs

; 
IP

: 
in

te
rn

al
 

pl
as

te
rs

. 



802 G. Musumarra et al.JThermochimica Acta 2691270 (1995) 797-807 

5.1. Pattern recognition 
The PCA of the entire data matrix gave a model comprising two significant principal 

components (Table 2). The first component explained 48.1% of the total variance and 
the second one a further 19.2%; the planar model thus accounted for 67.3% of the total 
variance. A third component was not significant according to cross validation [3]. 

Table 3 reports the variable parameters, i.e. the weights (w), the averages (X), the 
loading values (p, and p2) and the modelling powers after two PCs for variable 
1 (%ASC) and for variables 2-9, the granulometric variables. 

The modelling powers, giving an estimate of how much each single variable 
contributes to the two PC model, show that variables 3, 8, and 9 are not relevant in 
describing the mathematical model. Moreover, the second PC is required to describe 
the granulometric variables, mainly 5,6 and 7. The PCA loadings plots (Fig. 1) shows 
that the information provided by the chemical variable 1 (direction a) lies in a direction 
orthogonal with respect to that(b) of granulometric variables 2-8; variable 9, very close 
to zero, has little systematic variation. 

The t, and t, values (the “scores” for samples l-25) are listed in Table 4. 
The plot oft, vs t, for all 25 examined samples (“scores plot”, Fig. 2) shows a clear 

Table 2 
PCA for classes A-C a 

Class Objects in the reference set b % Variance’ 

A l-25 67.3(48.1+ 19.2) 
B 1,2,4-7, 9914 56.2(41.9 + 14.3) 
C 15-19,21-25 70.1(44.1+26.0) 

’ Variables l-9 were included in all classes; weights for each class are recorded in Table 3; b For numbering 
see Table 1; ‘Total variance explained; % variances for 1st and 2nd PC reported in parentheses. 

Table 3 
Weight (w), PC loadings (p) and modelling power (MPOW) for variables l-9 in class A, and weights for 
classes B and C 

Var” Class A Class B Class C 

w Pl PZ MPOW, MPOW, - MPOW, w w 

1 0.065 0.920 0.359 0.759 
2 0.038 0.145 - 0.372 0.080 
3 0.079 0.098 -0.179 0.023 
4 0.132 -0.073 0.299 0.003 
5 0.096 -0.184 0.435 0.148 
6 0.168 -0.196 0.420 0.172 
7 0.168 -0.115 0.455 0.040 
8 0.519 -0.152 0.186 0.091 
9 0.126 0.092 0.068 0.000 

0.198 
0.303 
0.038 
0.152 
0.586 
0.561 
0.504 

0.137 0.266 
0.061 0.030 
0.091 0.066 
0.184 0.101 
0.413 0.068 
0.723 0.117 
0.257 0.123 
0.720 0.435 
0.346 0.085 

a For variable numbering see Table 1; modelling powers calculated by use of Eq. (2). 
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Pl 

Fig. 1. p,-p2 “Loadings” plot for class A. 

grouping of the Gothic samples on the right of the plot. Therefore the first score t, 
differentiates Gothic mortars from Flemish ones, regardless of their function (i.e. 
covering or painted plasters). Moreover Flemish mortars, located on the left in Fig. 2, 
exhibit a clear grouping of surface Flemish samples (15, 18, 21, 23) in the upper left 
located on the left in Fig 2 of the plot, indicating that the second score differentiates 
Flemish painted plasters (FPP), characterized by high t, values, from Flemish covering 
plasters (FIP). Fig. 2, giving a clear insight into the total data set structure, provides the 
basis for SIMCA classification. 

5.2. SIMCA classijication 

SIMCA classification implies calculation of PCA models for two separate classes 
(Gothic and Flemish samples, classes B and C, respectively), fitting of new samples 
(objects) into each model, and classification of unknown samples by means of their 
residual standard deviation (RSD). Table 2 reports the samples used as training set for 
classes B and C (Gothic and Flemish samples respectively). Three objects, (3,8 and 20) 
whose appurtenance to a given class is not evident from Fig. 2, were kept out of the 
training set to be used as a test set for both models. 

Table 2 reports the results of the PCA for class B containing 108 elements (12 objects, 
9 variables) and for class C containing 90 elements (10 objects, 9 variables). The 
explained variances are similar to those found for class A. The weights adopted in PCA, 
calculated by block weighting (see section 4), are recorded in Table 3. 

Fig. 3, the scores plot for class B, shows no clear grouping of the samples according to 
sampling depth (painting plaster, internal plaster), which might be due to the use of 
similar mortars for internal and external layers or to an inhomogeneous layer 
thickness. 
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Table 4 
PC “Scores”(class A), and residual standard deviations (classes B and C) for mortar and plaster samples l-25 

Sample * Class A 

t1 tz 

Class B 
RSDb 

Class C 
RSD’ 

1 0.188 - 0.263 
2 0.114 -0.316 
3 -0.070 -0.047 
4 1.146 -0.142 
5 0.935 0.047 
6 1.281 0.485 
I 1.374 0.370 
8 0.184 -0.639 
9 1.470 0.231 

10 0.866 - 0.026 
11 1.271 0.350 
12 0.783 0.348 
13 0.759 0.398 
14 1.193 -0.114 
15 - 1.445 1.147 
16 - 1.001 -0.349 
17 - 1.077 -0.671 
18 - 1.770 0.873 
19 -0.399 0.115 
20 -0.520 -0.511 
21 - 1.295 1.071 
22 -0.911 - 1.012 
23 - 1.504 0.856 
24 -0.882 -0.691 
25 -0.688 - 1.521 

0.09 
0.04 

CO.291 
0.22 
0.16 
0.13 
0.16 
0.22 
0.13 
0.07 
0.06 
0.20 
0.15 
0.20 

Cl.203 
[0.55] 
0.22 

[l.lS] 
CO.521 
0.12 

[l.OS] 
CO.611 
[l.lO] 
[0.41] 
CO.981 

C0.W 
CO.261 
CO.231 
CO.611 
[0.58] 
[0.68] 
[0.71] 
CO.321 
co.751 
co.543 
CO.781 
[0.58] 
co.491 
CO.641 
0.07 
0.11 
0.16 
0.10 
0.06 
0.18 
0.06 
0.12 
0.06 
0.15 
0.09 

a For additional information on samples see Table 1; b Samples with RSD smaller than 1.5 x 0.17 = 0.26 
belong to class B, other samples in parentheses; ’ Samples with RSD smaller than 1.5 x 0.12 = 0.18 belong 
to class C, other samples in parentheses. 

Grouping of superficial samples characterized by low t, values (15,18,21,23) in the 
lower left part of Fig. 4 (the scores plot for class C) suggests the interpretation oft, as an 
index for sampling depth in Flemish mortars (see Table 1). 

The statistical classification procedure of the SIMCA program implies fitting of all 
samples (learning + test sets) to subset classes B and C. In order to assign samples 
(objects) to a given class, each sample should be fitted into the class PCA model and its 
residual standard deviation (RSD) calculated [7]. The object belongs to a given class if 
its RSD is smaller than 1.5 times the class RSD (in the present case 1.5 x 0.17 = 0.26 for 
class B and 1.5 x 0.12 = 0.18 for class C). 

RSD values, reported in the Table 4 and plotted in Fig. 5, correspond to the 
orthogonal distances between each sample (object) and class B. Assuming as belonging 
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IP 
. 

2 

1 

'1 

Fig. 2. t,-t, “Scores” plot for class A. 

2 
. .” 

'1 

Fig. 3. t,-t, “Scores” plot for class B. 

to class B all samples with RSD < 0.26 and to class C those with RSD < 0.18, the 
SIMCA method correctly classifies all samples in the reference set of both classes apart 
from 17, which could be attributed to either class. As regards test set samples, 8 is 
correctly assigned to class B, while 3 and 20 remain with uncertain assignment. 
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'1 

Fig. 4. t,-t, “Scores” plot for class C. 

Fig. 5. Classification plot (RSD for class B vs RSD for class C). 

6. Conclusions 

PCA of 25 mortar samples from the Chiaravalle Abbey wall paintings, characterized 
by the acid soluble component percentage and by eight granulometric fractions 
provided the following information: 
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(a) actual analytical classification into two different groups of mortars belonging, 
respectively, to the Gothic painting and to the Flemish one, regardless of their function 
(painting or internal plasters), by means of the first PC scores in the overall model; 

(b) differentiation of Flemish mortars into painted plasters and internal plasters by 
means of the second PC scores both in the overall model and in the Flemish class 
model; and 

(c) no clear indication of mortar function in the Gothic area. 

These results can be given in the following interpretation: 

(a) Gothic and Flemish artists actually used different mortars both internally and for 
painting; 

(b) Flemish artists used different mortars as the internal plaster and as the painted 
plaster; 

(c) Gothic artists either used the same mortar for the internal and the external 
plasters or applied the internal plaster in such an inhomogeneous thickness that it is not 
possible to distinguish it from the painted plaster because samples taken at definite 
depth are unavoidable mixtures of the two plaster layers. 

The above findings confirm and extend previous results on the classification of 
mortars into groups with similar architectural function pointing out the generality of 
the SIMCA classification for both historical attribution and conservation studies. 
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