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Abstract 

There exists a common intersection point for the isotherms of the reduced bulk modulus of 
each compressed liquid mixture as a function of density from triple point up to the critical 
temperature. A theoretical analysis of this empirical regularity is presented in terms of a statisti- 
cal-mechanical equation of state (EOS) with accuracy near that of experiment. The results 
indicate that an effective van der Waals covolume b(T) seems weakly temperature-dependent in 
agreement with molecular theory, thus the reduced bulk modulus versus volume shows the 
crossover. The better corresponding state for the volumetric properties of compressed liquids 
recently showed the successful extension of the previous equation of state to molecular liquids; 
the present results for LJ (12, 6) mixture, Ar + Kr, Kr + Xe, and CO, + C,H, show the further 
capability of the equation of state for predicting the volumetric properties of liquid mixtures. 
Finally, we look at the pressure-dependence of the excess molar volume of Kr + Xe, Ar + N,, 
Ar + C,H,, and CO, + C,H,. In general, VE gets closer to 0 as P increases and the (EOS) 
reproduces this effect. 
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1. Introduction 

Knowledge of the equation of state (EOS) is necessary to obtain densities and other 
thermodynamic properties under high pressure. An analytical equation of state based 
on the statistical-mechanical perturbation theory, has recently been proposed [ 1,2]. 
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This equation of state shows how the successful results of the past century for the 
compressibility of liquids could be obtained from statistical-mechanical theory [3]. 
The extension of Ref. [2] to molecular liquids, for which the second virial coefficients are 
not known, gives accurate P-VT results at all liquid densities and temperatures [4]. 

There are many interesting regularities in physical properties of dense fluids. Seven of 
the better known ones are the following: 

(1) Near linearity of p vs Tat constant density, over the entire range from the perfect 
gas to the compressed liquid [S]. 

(2) Near linearity of a Clausius-Clapeyron plot of In pvap vs l/T from the triple point 
to the critical point [6]. 

(3) Near linearity of the mean density of a saturated liquid and its equilibrium vapor 
as a function of temperature. This is the so-called “law of rectilinear diameters” [7]. 

(4) Near linearity of the bulk modulus of a liquid as a function of pressure [S-lo]. 
(5) Linearity of the Zeno contour and its correlation with the line of rectilinear 

diameter. The Zeno contour is the locus of T vs p points at which the compression 
factor, 2 = PI/IR T, is unity [ll, 121. 

(6) The common bulk modulus point, in which all the liquid isotherms of the 
reduced bulk modulus as a function of density intersect at essentially a single point 
[13, 141. 

(7) Linearity (Z- l)u2 vs p2, where p = l/u is the molar density for both compressed 
liquids and dense supercritical fluids [ 151. 

In Ref. [14] it has been shown how the existence of the common bulk modulus point 
for compressed liquids can be given a theoretical basis in terms of a statistical- 
mechanical equation of state. Analysis of this reference also indicates the limits of 
validity of the regularity, namely from triple point up to critical point. For simplicity 
only CH, and n-CsH,, were considered in Ref. [14]. However, the arguments are not 
essentially changed for other molecules. In summary, the equation of state shows the 
behavior of the reduced bulk modulus in agreement with Huang and O’Connell’s 
crossing plot [ 131. This equation of state also shows how this generalized technique can 
be used in its present form for even the most complex systems. The results show further 
capability of the equation of state for predicting the volumetric properties of liquid 
substances with quite different acentric factors. Furthermore, we consider the treat- 
ments of mixtures in this report. The present work shows the successful extension of 
previous studies to molecular liquid mixture. Finally, we look at the pressure- 
dependence of the excess molar volume. In general, FE gets closer to 0 as P increases, 
regardless of its sign at low P, and the EOS reproduces this effect. 

2. Basic expressions and application 

The corresponding state equation can be written as [2] 

P p=l+(B,-a)L ___ P 

PKT 1+6bp +‘l -ibp (1) 
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where 0 = 0.22 I, p is the number (molar) density, k T has its usual meaning, and k is 
a constant. Three temperature-dependent quantities are needed to use the strong 
principle: the second virial coefficient B,, an effective van der Waals covolume b, and 
a scaling factor a, which is equivalent to the contribution to B, from just the repulsive 
branch of the intermolecular forces. The strong principle may also be characterized by 
three constants: the Boyle volume I&, the Boyle temperature TB, and an empirical 
constant A reflecting the spheracy of the molecule. It fortunately turns out that a(T) and 
b(T) are rather insensitive to the shape of the intermolecular potential, so they appear 
nearly universal functions of temperature in terms of suitable reducing unit such as TB 
and V,. The numerical tables for B,, a, and b for (12,6) potential and Aziz-Slaman 
potential are given in Refs. [l] and [2], respectively. The bulk modulus (reciprocal of 
the isothermal compressibility) can be calculated from Eq. (l), that is 

B=p(~)T=pKT[l+ (l+dbp)’ (1-Abp)‘] 
(B, - a)p(% + 6bp) + aA2 - Abp) 

The reduced bulk modulus, B = B/pk T, can be related to the equation of state 

I_B=(a-B2)~(2+db~J apP--bp) _ (1 +6bp)2 - (1 -Up)2 

(2) 

(3) 

The statistical-mechanical equation of state for a liquid LJ mixture has the following 
form [16] 

P 
- = 1 + pc xixj Bij + p c xixjaij [gij(di, dj) - l] 
pkT 

(4) 
ij ij 

where all the parameters of this equation are similar to those of Eq. 1, and the 
summations apply to all the components of the mixture. 

We have used Eq. (4) to obtain the reduced bulk modulus for equimolar liquid 
mixtures of LJ molecules at three different temperatures in which one component has 
a fixed parameter value (El/k = 34 K and o1 = 2.85 A), and the parameter values of the 
other component are E~/E~ = 3.5 and 02/c1 = 2. The unlike parameters ??i2 and 
6i2 were taken to follow simple combining rules: oi2 = 1/2(a, + a,) and 
E i2 = (E,E,)“2. 

Fig. 1 shows that the isotherms of 1 - B vs (l/p I&) cross at one point. Eq. (4) involves 
pairwise additivity, gij, where many-body forces are included in Eq. (3), xi and xj are 
mole fractions and the quantities Bij and aij are related to pair potential Uij(r) in 
a manner similar to Eqs. 2 and 3 in Ref. [ 161. 

The equation of state for 0.485 Ar +0.515 Kr and 0.556 Kr+0.444 Xe has been 
shown to be of the form [17] 

P -=l+p~xixj(Bij-aij)Fij+p~xixjaijGij 
PkT ij ij 

where Fij and Gij are defined in Ref. [17], and other parameters are the same as those of 
Eq. (4). We have used the best available intermolecular potentials of the HFD-B or 
HFD-C form given by Aziz et al. [ 17-191, since the pair potentials for Ar-Ar, Kr-Kr, 
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Fig. 1. Isotherms of 1 -B vs l/pi/, for a (12,6) mixture predicted from Eq. (4). The scale is made 
dimensionless with V’s for 1,2. 

Xe-Xe, Ar-Kr, Ar-Xe, and Kr-Xe are accurately known. We have taken 1= 0.454. No 
mixing rules are needed, and similar results are shown in Figs. 2 and 3. For convenience 
the scales in Figs. 2 and 3 are made dimensionless with the V, for Ar and Kr, 
respectively. It is true that the isotherms don’t intersect at exactly the same density, but 
they are within 5% of a common point. Even the slightly supercritical isotherms 
conform. Our examination of the behavior of the reduced bulk modulus reveals that its 
crossover occurs for liquid mixture isotherms using Eq. (5). 

Data for pure CO,, N,, and C,H, have previously been analyzed using mean 
effective L-J (12,6) potentials, and the resulting potential parameters together with the 
values of A are listed in Ref. [2]. The Boyle constants can be estimated by Ta = 3.4186/k 
and V, = 1.201 r,$ The values of ~ and b for CO,, N,, and C,H, can then be calculated 
[l]. It is important to use accurate values of B(T) in the calculation, and for B,, we 
have adapted the fairly elaborate combination rules developed by Bzowski et al. [20] 
for use in a correlation scheme for the properties of a low density gas mixture [21]. 

Fig. 2 shows the variations of 1 - B as a function of l/p V, for Ar + Kr. The crossover 
of Kr + Xe isotherms is clearly shown in Fig. 3. Because the phenomenon is in the dense 
liquid as shown in Fig. 4 for 05C0, + 0.5C,H,, this behavior can be attributed to 
variations of repulsive forces corresponding to r/r, = 0.86 to 0.89, where rm represents 
the intermolecular distance at the well depth and U (r/r,,, = 0.89) z 0. Figs. l-4 show 
that 1 - B are insensitive to the nature of the intermolecular forces in the fluid. Their 
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Fig. 2. The predicted reduced bulk modulus, 1 - B, of Ar + Kr as a function of reduced volume for four 
temperatures. 
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Fig. 3. Same as Fig. 2, for Kr + Xe 

universality can be attributed to the lack of importance of nonspherical forces in 
(1 - @). Careful examination of the 1 - B vs l/p V, plots in Figs. l-4 leads to the 
following observations: 

1. The isotherms intersect at nearly the same point in the plot of 1 - Jj vs the reduced 
volume (l/p V,) by a temperature-independent quantity l/p, V, (pO is the density at the 
point of intersection). This is consistent with the finding by Huang and O’Connell [ 131. 
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Fig. 4. Same as Fig. 2, for CO, + C,H,. The scale is made dimensionless with V, for C,H,. 

2. The common bulk modulus point is approximately valid in the liquid region. The 
lower temperature isotherms tend to intersect at the smaller volume and the higher 
temperature isotherms at the larger volume. 

3. The existence of the intersection between the isotherms is associated with the 
temperature-dependence of the van der Waals covolume 6. If b is temperature 
independent, the 1 - B vs l/p V, plot will be equivalent to the 1 - B vs l/bp plot and so 
there will be no intersection of the isotherms. Huang and O’Connell noted that the van 
der Waals EOS does not lead to the intersection of the isotherms. This is primarily due 
to the temperature-independence of the covolume b in the van der Waals EOS. 

4. The existence of the common bulk modulus point requires not only that covolume 
b be temperature-dependent but also that it have the correct choice of temperature- 
dependence. Apparently, the statistical-mechanical EOS allowing the existence of the 
common bulk modulus point indicates that the choice of b in this EOS is correct. 

3. Results and discussion 

The present work shows how the equation of state of compressed liquids can give 
a statistical-mechanical basis for application to real molecular liquids. The greatest 
source of liquid compression data is the work of Huang and O’Connell [ 133, in which is 
collected data on over 300 substances, but the present paper is only intended to assist 
users in judging the potential utility of the new equation of state for their purposes. 

The similarity of the crossover behavior of all liquids is amazing. Figs. l-4 show the 
behavior of LJ (12,6) mixture, Ar + Kr, Kr + Xe, and CO, + C,H, in reduced coordi- 
nates of 1 - @ vs reduced volume, respectively. Figs. l-4 indicate that variation of 
1 - (B/pR 7’) with volume for both saturated and compressed liquids is similar. The 
present results also indicate that the strong principle of corresponding states for 
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describing volumes of compressed liquid mixtures is valid. The most important result of 
the present work is that the unique modulus point of any liquid can be given a strong 
basis in statistical mechanics. This work shows to what extent the results for com- 
pressed liquids can be extended, namely from critical up to the freezing density [ 141. 

In summary, theory indicates that 1 - B is a function of l/p Va for pure substance, 
and the fact that 1 -B is nearly a unique point in volume is consistent with the 
empirical findings of Huang and O’Connell [ 131. Finally, the common compressibility 

-1.5 I I I / I 

20 120 220 320 420 520 

P / bar 

Fig. 5. Excess molar volume VF for a 0.556Kr + 0.444Xe liquid mixture at 179.99 K as a function of pressure. 
The curve was calculated from the EOS and the symbols are the experimental values [22]. 

50 250 450 650 0.50 1050 1250 1450 

Fig. 6. Same as Fig. 5, for 0.476Ar + 0.524N, at 119.33 K. The curve was calculated from the EOS and the 
symbols are the experimental values [23]. 
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furnishes a constraint on the equation of state of the compressed liquid mixtures and 
the Song-Mason equation of state does give the unique modulus point. Furthermore, 
we look at the pressure-dependence of excess molar volume. In general, VE gets closer 
to 0 as P increases, regardless of its sign at low P, and the equation of state reproduces 
this effect. 

The excess molar volume, l/p-&xi/pi, at 179.99K for the liquid mixture 
0556Kr + 0.444Xe [22] is shown as a function of pressure in Fig. 5. Figs. 6 and 7 show 
Vp” as a function of P for 0.476Ar + 0.524N, at 119.33 K and 0.4983Ar + 0.5017C,H, at 

0 2 

I 1 I I I I I 

0 100 200 300 400 500 600 

P / bar 

Fig. 7. Same as Fig. 5, for 0.4983Ar + 0.5017C,H, at 115 K. The curve was calculated from the EOS and the 
symbols are the experimental values [24]. 
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Fig. 8. The calculated excess molar volume of CO, + C,H, liquid mixtures at their measured vapor 
pressures at 241.5 K with experimental VE of Wallis et al. (0) [25]. 



A. Boushehri, E.K. GoharshadilThermochimica Acta 2691270 (1995) 371-379 379 

115.0 K, respectively [23,24]. Fig. 8 compares the calculated excess molar volume of 
CO, + C,H, liquid mixtures at their measured vapor pressures at 241.5 K with the 
experimental VE of Wallis et al. [25]. 
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