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Abstract 

The present work is concerned with the classical Johnson-Mehl-Avrami-Yerofeev-Kol- 
mogorov (JMAYK)equation. Somecritical points are presented because this kinetic relation has 
been extensively misused. Various aspects regarding its failure when it is applied to recrystalliz- 
ation of plastically deformed metals are also considered. Recent conceptual improvements, such 
as the new approach where the transformation is described by the superposition of single 
JMAYK processes, have resulted in the resurgence of this approach. 

Keywords: Crystallization; Kinetics; Recrystallization 

1. Introduction 

Almost sixty years ago, different researchers developed independently the well- 
known JMAYK kinetic relation which has been extensively used to give a phenom- 
enological description of many solid-state processes. At present, methods allowing the 
most simple and direct measurement of the transformed fraction come from the field of 
thermal analysis: DSC, TG, etc., and, perhaps, some electromagnetic measurements. 
From a technical viewpoint, an important advance has already been achieved in the 
problem of obtaining reproducible and correct kinetic data. However, even nowadays, 
the widespread effects of some leading questions are still an important current issue: 
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Why are kinetic parameters necessary? Is there a definite physical meaning behind the 
kinetic parameters, i.e. they allow us to obtain some fundamental information on the 
physics of the transformation, or do they have a purely empirical significance? Is the 
JMAYK kinetic relation such an oversimplified approach to the true transformation 
rate equation that it has become useless? 

Certainly, the applicability to some specific problems (particularly to the recrystalliz- 
ation kinetics of metals) constitutes a serious challenge for this old formulation. At the 
same time, many doubts and discussions have been expressed so far in literature in 
relation to the extensive misuse of the JMAYK equation. Consequently, this is now 
a convenient time to reflect on the use and validity of this kinetic relation and to 
consider recent experimental observations. However, our final personal opinion is 
hopeful, provided recent improvements reveal that we have not reached a deadlock in 
this area. 

2. The groundwork 

The kinetics of the heterogeneous reactions of the solid state can usually be described 
in terms of separate nucleation and growth mechanisms. It is evident that the kinetics of 
such transformations is important from the point of view of both fundamental and 
applied research. For instance, the technological applications of many solid-state 
devices require the corresponding materials to be thermally stable with time and 
temperature during use. Recrystallization in cold-worked metals and the crystalliza- 
tion of amorphous alloys are representative examples of this kind of transformation. 
The transformed fraction c( can be monitored under any thermal history by different 
experimental methods such as differential scanning calorimetry (DSC), electrical 
resistivity, transmission electron microscopy (TEM), hardness measurements, or X-ray 
diffraction techniques. Unfortunately, however, the theory and practice of the different 
methods for the evaluation of the kinetic parameters are far from being universally 
accepted. In this respect, the classic kinetic relation developed independently by 
Kolmogorov [I], Johnson and Mehl[2], Avrami [335] and Yerofeev [6] (the JMAYK 
equation) has been widely used to describe not only a great variety of solid-state 
transformations but also some heterogeneous chemical reactions such as soliddgas 
decompositions. The JMAYK kinetic relation is based on the well-known extended- 
volume concept which is the volume that new grains would occupy in the absence of 
impingement and overlap of adjacent transformed grains. The significance of this 
extended volume (where no correction for overlapping is made) is that it is simply 
related to the kinetic laws ofgrowth, which may thus be separated from the geometrical 
problem of impingement. 

An extensive and elegant treatment on the foundations of the JMAYK theory is due 
to Christian [7]. Next, we summarize concisely the main points of these foundations in 
steps of increasing generality. 

(i) In this step we consider the following conditions: 

(a) isothermal transformations which do not involve a change in mean composition, 
i.e. polymorphic phase changes; 
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(b) a constant and isotropic growth rate, Y(so the transformed regions are spherical); 
(c) only the initial stages of transformations are considered; in this way the interfer- 

ence of neighbouring nuclei is negligible. 
(d) a constant nucleation rate per unit volume, I,. 

These conditions lead to the result 

where r is the incubation time for nucleation. 

(ii) In a more exact treatment we must take into account the geometrical problem of 
the impingement. According to Avrami [3], the change in the actual transformed 
volume, I$ and that of the extended volume, V,, are related by 

which describes a completely random overlap of growing crystallites, Vbeing the full 
volume. Consequently, we can define an extended degree of conversion, LX,, correspond- 
ing to the omission of the ingestion of the phantom or potential nuclei 

*=f-cc 
d% 

and then we can write 

-ln(l --~xa)=rc/31,Y~t~ (4) 

(iii) The previous formalism may be generalized for a number of more general 
conditions, i.e.: 

(a) The effects of the free surface that occur in a thin sheet of solid material; in this 
case, growth is essentially two-dimensional; 

(b) I, may not be constant. Some physical processes leading to this situation are the 
cases of nuclei forming preferentially at either grain boundaries or at edges or corners. 
The calculation of the isothermal kinetic laws under these conditions has been 
performed by Cahn [S]; 

(c) diffusion controlled reactions where the growth laws are parabolic; 
(d) the case of non-isothermal transformations. 

An interesting survey on the theory of nucleation and growth controlled transform- 
ations under very general thermal conditions has been published by Kemeny and 
SCstak [9]. For instance, for an isotropic growth confined to m dimensions, Eq. (1) can 
be rewritten as 

.=l-exp{-~~g[~~Y(0)dB]IIV(r)dr} (5) 

where Y(0) represents the growth rate for all of the m dimensions of growth and g is 
a geometrical factor. This equation is valid under very general thermal conditions 
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insofar as no assumption has been made about the origin of the time dependences of I, 
and Y: so, the implicit time dependences Y [T(0)] and I,[ T(z)] could be easily included. 

Under isothermal conditions and by assuming an Arrhenius dependence for the 
nucleation and growth rates 

Z,(r) = I, exp( -E,/RT) (6) 

Y(t) = Y, exp( - E,/RT) (7) 

the integrals in Eq. (5) are easily solved and yield 

a(t) = 1 - exp 
1 

---$ rZOexp( - ENiyEG)I”“] 

On the basis of all the previous expressions, we should use the general relation 
proposed by Avrami for isothermal transformations 

c(= 1 -exp(-Kt”) (9) 

where n is the Avrami exponent (indicative of the transformation process) and K is 
a thermally activated rate constant representing both nucleation and growth rates. 
Eq. (9) is valid for linear growth under most circumustances and approximately valid 
for the early stages of diffusion-controlled growth (although Ham [lo] has emphasized 
that a law of this kind has no fundamental significance is diffusion-limited reactions). 
Table 1 summarizes the values of n corresponding to a variety of experimental 

Table 1 
Values of n in the kinetic law u = 1 - exp( -kt”) (from Ref. [7]) 
(a) Polymorphic changes, discontinuous precipitation, eutectoid reactions, interface controlled growth, etc. 

Conditions n 

Increasing nucleation rate 
Constant nucleation rate 
Decreasing nucleation rate 
Zero nucleation rate (saturation of point sites) 
Grain edge nucleation after saturation 
Grain boundary nucleation after saturation 

>4 
4 
334 
3 
2 
1 

(b) Diffusion-controlled growth 

Conditions n 

All shapes growing from small dimensions, increasing nucleation rate >2+ 
All shapes growing from small dimensions, constant nucleation rate 2; 
All shapes growing from small dimensions, decreasing nucleation rate 1+-2f 
All shapes growing from small dimensions, zero nucleation rate lf 
Growth of particles of appreciable initial volume 1-14 
Needles and plates of finite long dimensions, small in comparison with their separatil on 1 
Thicknening of long cylinders (needles), e.g. after complete end impingement 1 
Thickening of very large plates, e.g. after complete edge impingement l/2 
Precipitation on dislocations (very early stages) = 213 
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situations. Eq. (9) can also be written in the form 

ln[-ln(l-a)]=12lnt+lnK (10) 

Thus. the Avrami exponent can be evaluated from the slope of the plot of In 
[ -In (1 - x)] against In t. In addition, the apparent activation energy E, can be derived 
from the intercepts of the plot for different temperatures, through the Arrhenius 
relation 

K(T) = k,eCEd’RT (11) 

This apparent activation energy E, has contributions from both the activation energy 
of nucleation E, and that of growth E,. Thus, if we are dealing with crystallization 
processes, the effective activation energy E, will be (E.&t) [ll, 121. Moreover, the 
Avrami exponent can be partitioned [7, 12, 131 as 

n=a+bp (12) 

where a depends on the nucleation rate (zero for existing nuclei and unity for constant 
nucleation rate), b represents the dimensionality of the growing phase (1-3) and p is 
related to the growth mechanism (l/2 for parabolic, diffusion controlled and 1 for 
interfacial growth). In the same way, a general equation for the effective activation 
energy was suggested by Von Heimendahl and Kuglstatter [ 141 

(13) 

where E, and E, stand for the activation energies of nucleation and growth, respective- 
ly, as stated in Eqs. (6) and (7). These quantities can be separately determined by TEM 
experiments, and the E, values predicted by Eq. (13) have been found to be in good 
agreement with those determined by the usual kinetic methods [15]. Therefore, it is 
worth noting that in conjunction with DSC methods, supplementary TEM studies 
based on the observation of sufficient specimens to ensure adequate statistical confi- 
dence, are a powerful tool in determining the kinetics of solid state processes [15]. 
Thus, in order to gain a deep understanding of the atomic processes involved in the 
transformation, the analysis (by means of the proper stereological relationships) of 
variables such as the number of particles per unit volume and the particle size 
distribution for each heat treatment, is very useful. 

In the framework of the above considerations, extensive work has been carried out 
on the kinetics of solid-state reactions mainly by using methods of thermal analysis. In 
this respect, the present survey is concerned with a variety of serious difficulties in this 
field, namely the oversimplified approaches describing the kinetics of non-isothermal 
experiments and the indiscriminate use of the JMAYK equation for such processes, the 
ability to determine the actual reaction mechanism, the applicability to heterogeneous 
reactions of concepts founded in the field of homogeneous reactions, i.e. the rate of nth 
order, the criticism concerning the validity of Eqs. (2) and (3) the most recent 
interpretations of the JMAYK kinetic law to explain the commonly observed non- 
linearity in the JMAYK plots of different systems, as well as the recent improvement 
based on the use of an activation energy distribution (AED) for the description of 
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kinetic equations. It is worth noting here that the most exciting of these questions has 
been thoroughly considered and analysed in the classical work by Sestak [ 161, i.e. the 
question concerning the physical meaning of kinetic parameters, as well as the 
problems inherent in the mathematical formalism used for the description of kinetic 
processes. 

3. Alternative models in solid state kinetics 

The aim of this section is to present some alternative kinetic models different from 
the conventional JMAYK model. In order to express the reaction rate, dr/d t, the form 
usually adopted is 

(14) 

wheref(cc) is a function characteristic of the actual transformation mechanism and 
K(T) is the temperature dependence which is usually believed to be of the Arrhenius 
form (Eq. (11)). 

This dependence for the rate constant is accepted without question, although this 
assumption is only justified for a random distribution of energy states. However, the 
separability of CI and 7; implicit in the above equation, is almost a dogma in routine 
kinetic analysis. 

The integration of Eq. (14) under the condition of a constant heating rate (fi = d7’/d t) 
yields 

where x = E/RT and p(x) denotes the exponential integral function, which cannot be 
expressed in a simple analytical form. Methods for the evaluation of kinetic parameters 
using as a starting point either Eqs. (14) or (15) are described, respectively, as differen- 
tial or integral methods. 

The correct form for thef(a) function, relative to the JMAYK model, is 

f(a)=n(l-a)[ln(l--~1)]~-l’” (16) 

Almost twenty-five years ago, Sestak and Berggren [17] proposed an alternative 
empirical kinetic model of the form 

f(ol) = am( 1 - c()” [ - In (1 - a)]” (17) 

Further mathematical analysis [18] has shown, however, that no more than two 
kinetic exponents are necessary for the description of any experimental curvef(a). 
Thus, after eliminating the third exponential term in Eq. (17), the final form obtained is 

f(cc) = Urn(l -c() (18) 

where the exponential factors m and n, in this Sestak-Berggren (SB) kinetic model have 
purely empirical significance. According Criado et al. [19], the behaviour of both 
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models (SB and JMAYK) exhibit important similarities and, moreover, it seems that 
the SB model is more suitable for a quantitative description of some processes, e.g. the 
decomposition of nickel nitrate in Ref. [ 191. In contrast to this, it has been shown that 
the SB model cannot be successfully used as a general expression for diffusion models. 
This fact, together with the lack of validity of the SB exponents as universal constants 
for solid state reactions, has determined its rather scarce use. 

With respect to recrystallization kinetic experiments, the following relation has been 
proposed [20,21] as the Speich and Fisher (SF) kinetic model 

c! 
-=kt” 
l-cc (19) 

The above equation was based on an empirical relation between CY and the interfacial 
area A between recrystallized and unrecrystallized material. It is well known that pure 
metals that have work-hardened due to deformation will soften completely when being 
annealed at a suitable temperature. The process responsible is called recrystallization 
and leads to a new grain structure of the metal. In a remarkable work on the computer 
simulation of recrystalization kinetics [21], Price has demonstrated the agreement 
between the SF model and some experimental kinetic data over a wide range of 9. In 
this work impingement geometry (hard and soft) was studied as a function of grain 
shape, grain symmetry, and distribution geometry. In the same way, Price stresses how 
the JMAYK formulation (founded on linear growth rates) is restricted to only the early 
stages of recrystallization. Moreover, it seems strange or anomalous that the JMAYK 
model uses only volumetric terms to model a transformation which is mainly due to 
a surface reaction. Nevertheless, by using stereological relations, Cahn [22] showed 
that Eq. (19) was not rigorously correct at either extreme of r. Likewise, some criticism 
concerning the SF equation [21] has been reported since this equation is based on an 
empirical relation between the variables r and A (the interfacial area) which are not 
geometrically related. Finally, Table 2 summarizes the algebraic expressions for thef(a) 
and g(c() functions for the most frequently used mechanisms of solid state reactions. 

4. Methods for determining the actual kinetics from non-isothermal data: 
the master plots 

As soon as different alternative models have been considered, the problem about the 
ability to distinguish between the JMAYK model and other possible choices is raised. 
In this respect, the master plot is a characteristic curve independent of the condition of 
the measurement which is easily obtained from experimental data (an interesting and 
complete survey on this problem is due to Criado and coworkers [23-25-J). This kind of 
reference theoretical curve is useful in determining the mechanism of a solid state 
process. In this sense, the master plots are mainly obtained from the less time- 
consuming non-isothermal experiments, i.e. a linear heating programme. Although 
some opinions are in disagreement [26,27] with respect to the usefulness of non- 
isothermal experiments in determining the actual kinetic model, the most recent 
interpretation, Ref. [9], is conclusive and emphatic: “Non-isothermal measurements 
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Table 2 
Algebraic expressions for thef(a) and s(a) functions for the most common mechanism operating in solid-state 
reactions 

Mechanism Symbol f(a) g(Go 

Random nucleation and growth An n(l--1)[-ln(l-z)]‘+‘!” [-ln(1 -a)]“” 
of nuclei (JMAYK equation) 
Rate law of nth order R(f/(f -u)) (l-a) (l-(1-a)‘_“)/(l-n) 
One-dimensional diffusion Dl (f12)u X2 
(parabolic law) 
Two-dimensional diffusion D2 [-In(l-z)]-’ (1-cc)ln(l--Y)+z 
Three-dimensional 
diffusion D3 3(1 --c#‘3 
(Jander equation) 2[I -(l-d()]t’a 

[1-(l-c()“3]2 

Three-dimensional 
diffusion (Ginstein- 

Brounshtein equation) 

D4 3 

2[(1-r))“3-l] 

can be used even for the determination of the mechanism of crystallization, in contrast 
to the belief that it is restricted to isothermal methods only”. 

Once the activation energy has been determined, by using the well-tried Kissinger 
method [28], several simple procedures allow us to ascertain the actual reaction 
mechanism. 

The most commonly used master plots are those based on the first and the second 
derivatives of the transformed fraction tl. Within the first group, we note the method 
based on the representation of z(a) against SI, where 

z(c() = Wdt) 
B 44 T =A4 s(4 

Z(X) being the fourth rational expression of Senum and Yang [29] which is used in an 
accurate approximation for the exponential integral function 

7r(X) = 
x3 + 18x2 + 88x + 96 

x4 +20x3 + 120x’ + 240x + 120 (22) 

It has been shown [23] that the plot corresponding to Eq. (20) leads to well- 
separated curves for all models considered in Table 2. Thus, by plotting the Z(U) 
function obtained from the experimental data and comparing with the theoretical 
master curves, the proper kinetic model can be determined precisely. 

In the same way, the representation of lnf(cc) versus -In (1 - ~1) [30,31] is a powerful 
tool for the discrimination of the kinetic models. In practice, we use the simple 
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relationship 

In [k, f(m)] = ln$ + +T 

where the parameter k, only involves a shift in the direction of the ordinate axis, while 
retaining the shape of these master curves. 

More recently [32,33], the y(a) function (which can easily be obtained from the 
observed data) has been defined as 

y(a) = g exp(E/RT) 
0 

(24) 

The values of y(cr) are then proportional to thef(a) function. Thus, the use of a modified 
version of y(r) normalized within the interval (0,l) allows us to get a picture off(a). 
Further advantages of the y(cc) representation, as well as some mathematical properties 
of this function useful for kinetic analysis, are considered in Ref. [33]. However, 
a problem must be noted in that the shape ofy(a) is strongly dependent on E. Hence, the 
foregoing application needs a reliable previous determination of the activation energy. 

In relation to the master curves of the second group the characteristic function has 
been proposed [24] 

‘+‘(‘) = (da/d@ f(ol) 
d%!LL+)+~] (25) 

At first sight, this seems a suitable choice as a master plot because the W(N) function is 
independent of the heating rate (unlike the z(m) representation) and its values can easily 
be calculated from the experimental data. A closer examination, however, leads us to 
advise against this method since W(U) is dependent on the value of x(as is evident from 
Eq. (25)). Criado et al. [23] have shown that under these circumstances it is very 
difficult to draw any conclusion without a very precise knowledge of x, (the value of 
x related to the maximum of dcc/dt). 

5. Non-isothermal description of JMAYK kinetics 

We will now discuss the interpretation of non-isothermal transformations. In fact, is 
industrial practice, the kinetic behaviour of a system at constant temperature is 
frequently of less interest than its behaviour during constant heating or cooling 
through a transformation range. As a starting point, many researchers [34-381 have 
applied the JMAYK equation, as derived for the isothermal case, to non-isothermal 
conditions. However, this indiscriminate use of isothermal laws under non-isothermal 
conditions is a practice not generally recognized [39,40]. Ref. [9] discusses this at great 
length. The difficulties in treating non-isothermal transformations are mainly due to 
the independent variations of the nucleation and growth rate with temperature. 
According to Christian [7], this problem can only be resolved when the instantaneous 
transformation rate can be shown to be a function solely of temperature and the degree 
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of transformation. Moreover, the ‘separation of variables’ principle expressed in is 
universally accepted (14). The isokinetic hypothesis states that the transformation rate 
as described in Eq. (14) is independent of its thermal history. Under these circumstan- 
ces, the transformed fraction IY is calculated by integration of the rate equation 

s f d4 = K[T(t’)]dt’ 
0 

where x is clearly dependent on the whole T(t) path. Under isothermal conditions, 
Eq. (26) can be rewritten as 

[-ln(1 -cc)]‘/“=kt (27) 

which corresponds to the classical formulation of the JMAYK equation. It is clear from 
Eq. (26) that the correct non-isothermal equivalent of the widely used isothermal 
Eq. (27) is 

[-ln(1 -a)]““= 
s 

* K[T(t’)]dt’ 
0 

An alternative formalism was suggested by McCallum and Tanner [34], rejecting 
Eq. (14) under non-isothermal conditions. Then it is claimed that the actual rate under 
non-isothermal conditions is 

(29) 

where the use of partial derivatives requires the existence of an c( = oi (t, T) function on 
account of which a unique vlaue of CI is determined for any point (t, T) independent of 
previous thermal history. However, because the point (t, T) can also be reached along 
an isothermal route, the transformed fraction must be similar to that calculated 
isothermally. Therefore, a significant modification of the rate equation is obtained 

(30) 

Nevertheless, some examples have been proposed to point out that this formalism is 
a fallacy [16,41], even by experimental comparisons [42]. Kern&y [40] emphasizes 
the correct steps: Eqn. (14) is to be used as the actual rate equation; the appropriate 
mathematical approximations of Eq. (28) predict the transformed fraction a. 

The reminder of this section will be devoted to discussion of the recent work of Woldt 
[43]. This author has performed an original approach to the problem of non- 
isothermal kinetics for the case of a constant heating rate fi = d T/dt. Here, the amazing 
result is that under the JMAYK kinetics the transformed fraction for isothermal 
conditions and for constant heating rate can be described with equations of identical 
form and a slightly different definition of the kinetic parameters. The Woldt approach is 
based on the recognition that Eq. (5) is still valid during linear heating except that its 
integration now becomes much more difficult. After the achievement of a number of 
approximations whose accuracy is meticulously checked, the following results are 
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obtained for the transformed fraction 

a(t, T)- 1 -exp(-K’(T)t2m+2) 

with K’ (T) = kb exp ( - EH/RT), and for the rate equation 

(31) 

dcc 
Z=k,(l-~)[-ln(l-~)]& (32) 

where k, is a constant and the activation energy EL is identical to the isothermal 
activation energy. Table 3 summarizes the meaning of the parameters of the non- 
isothermal JMAYK description in the cases of continuous nucleation and fixed 
number nucleation. 

It may be remarked that this rate equation obtained by Woldt differs considerably 
from that generally used in the literature for isothermal transformations. 

6. Critical considerations concerning the extended-volume concept 

It has been observed [13] that JMAYK plots for recrystallization in cold-worked 
metals frequently show a severe negative curvature. In fact, some problems in the 
application of JMAYK kinetics have been suspected to be related to the extended 
volume concept, V,, and more particularly with the well-known Avrami Eqs. (2) and (3). 
Some earlier criticisms concerning this equation are due to Rozovskii [44]. Recently, 
Urbanovici and segal [45] have pointed out in an excellent work that there is not 
adequate theoretical sanction for Eq. (3) from the formal theory of nucleation and 
growth transformations. 

In spite of this criticism, computer simulations due to Price [21] demonstrate that 
the JMAYK extended volume concept does provide a reasonable compensation for 
grain impingement (with the possible exception of dispersion-strengthened metals). In 
the opinion of Price, the major limitation of the JMAYK relation is the assumption of 
linear growth. However, in a recent work Rollet et al. [46] presented their results on the 
computer simulation of recrystallization in non-uniformly deformed metals. For this 

Table 3 
Meaning of the parameters of the non-isothermal JMAYK description for continuous and fixed number 
nucleation 

Continuous nucleation Isothermal Non-isothermal 

E, 
k 
n 

E, + mE, E,+mE, 
gl, Y/(m+ 1) gl, YpZU”+’ 
m+l 2m+2 

Fixed number Isothermal Non-isothermal 

J-K 
k, 
n 

m-% 
gl,* TDa”’ 
2m 
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purpose they performed Monte Carlo simulations to model grain growth and recrys- 
tallization. It was found that Eq. (3) is correct under conditions of uniform stored 
energy of plastic deformation. With non-uniform stored energy, however, the results 
proved that the Avrami equation underestimated the effect of impingement. In this 
case, therefore, the JMAYK kinetic law would not be appropriate because of the failure 
of its key assumption: spatially random nucleation and uniform growth. On second 
thoughts, it has been emphasized [21] that these observed deviations do not necessarily 
constitute a true failure of the JMAYK kinetic relation; in fact they only signify that the 
actual growth dependence must be coupled with the Avrami extended-volume to 
obtain the proper kinetic relation. 

From the foregoing considerations it can be concluded that the Avrami interpreta- 
tion of V, does not cause severe deviation from linear JMAYK behaviour in spite of the 
formal inconveniences underlined in Refs. [45,46]. In fact, according to Urbanovici 
and Segal [45], the search for an adequate relationship between r and CX, is a fairly 
complicated problem which is not worth considering from the point of view of the 
current practical applications. 

7. Deviations from the ideal JMAYK kinetics 

In the preceding section, it was remarked how the majority of the published 
recrystallization studies show a significant deviation from the ideal JMAYK kinetics. 
A similar situation [47] occurs for the crystallization kinetics of many amorphous 
alloys, e.g. the conventional JMAYK plot of Ni,,.,Zr,,,,Si,., in Ref. [47] showed 
marked deviations from linearity from the beginning of crystallization. Sometimes, this 
spread in the Avrami exponent n over the full range of transformations has lead to 
determination of a mean value for n. Nevertheless, Calka and Radlinski [48,49] 
demonstrated that this practice may be inappropriate and, perhaps, misleading. They 
proposed an alternative method of examining the JMAYK plot: a local value nloc is 
defined as 

aln[-ln(1 -cc)] 
% = alnt (33) 

being a function of the transformed fraction. In this analysis the variations in nloc are 
attributed to real changes in the transformation process, i.e. changes in growth 
morphology, growth velocity, nucleation rate, etc; in fact, in a recent paper Shepilov 
and Baik [SO] suggest high anisotropy in the growing crystalline phases as a possible 
alternative explanation for non-linear effects. Let us now consider two likely explana- 
tions of such non-linearity effects. Although several different causes have been pointed 
out and will be considered as a whole in the following section, we highlight and analyse 
two significant and crucial shortcomings which have been seldom recognized, namely: 
(a) The large uncertainty associated in determining the effective time lag t; (b) The loss 
of early-time data. 

(a) The parameter r indicates the incubation time necessary for obtaining a popula- 
tion of critical-size nuclei characteristic of the annealing temperature. In fact, according 
to the non-steady theory of nucleation [47,51], the experimentally observed incuba- 
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tion time T can be expressed as 

z = z, + zg (34) 
where z, is the time for non-steady state nucleation and rfi is the time required to attain 
an experimentally observable degree of transformation. Therefore, the experimentally 
observed incubation periods will be larger than the theoretically estimated one. Within 
these considerations, the JMAYK kinetic equation (9) is frequently rewritten as 

a= 1 -exp{-K(t-t)“} (35) 
In this way, Thompson et al. [52] linearized the JMAYK plot by treating z as an 
adjustable parameter for a given value of n. In our opinion this method suffers on two 
important drawbacks: it assumes an a priori knowledge of n; and no further changes are 
allowed in n throughout the transformation process. 

Recently, Mao and Altounian [53] proposed an original and simple method for the 
accurate determination of n, for which an exact knowledge of z is not necessary. They 
called their method the modified Avrami (MA) plot. The subtle procedure consists of 
eliminating the explicit form (t - T), which appears in Eqn. (35), by substitution of the 
rate equation (11). Then, instead of Eq. (lo), the new fitting equation is 

ln[-ln(1 -a)]=sl”(“K)+*ln (36) 

From this MA plot, the Avrami exponent and the activation energy can be easily 
deduced. 

(b) In a very recent publication Smith [54] emphasized the problems which can 
occur in using the JMAYK equation if values of u(t) for early times are either not valid 
or unavailable. This situation may arise in many experimental circumstances, e.g. the 
sample is out of equilibrium because of a rapid warm-up. Thus, Smith investigated, by 
means of two alternative methods, the effect of missing or invalid initial data from 
isothermal experiments. 

The first method (interesting but exceedingly tedious) consists of replotting the 
experimental data for successive shifts, At, of the time origin; then, the corresponding 
curves a(t) versus t are calculated for each time shift, At; next, the JMAYK plot allows 
us to derive the kinetic parameters n and E,; finally, extrapolation to At = 0 lead us to 
the best values. Smith [54] has found that the method is particularly effective when 
n values are not too far from unity or when the time interval over which data are 
missing or invalid is small compared to K(T)- ‘, the inverse of the rate constant at 
temperature T. 

A second method (faster than the first) uses a 2-exponential simulation approximat- 
ing the DSC data from zero to infinity; then, a(t) is calculated and a JMAYK fit allows 
us to determine n and E,. 

8. Superposition of local JMAYK processes: the use of an activation 
energy distribution (AED) 

According to the previous sections, the JMAYK relation cannot be safely applied to 
describe the recrystallization kinetics of metals unless the assumption of random 
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nucleation can be verified or guaranteed. A new approach addressing the problem was 
due to Rollett [SS] who was the first to incorporate a superposition of local JMAYK 
processes into an analytical model of the recrystallization. A little later, Kruger and 
Woldt [56] revived the old basic idea of Primak [57] concerning the distribution of 
activation energies into a more general model, which is shown in Ref. [56] to work very 
well with data for the recrystallization of copper. The new approach is based on 
abandoning the assumption of global homogeneity and isotropy. Thus, for the 
isothermal case we can write 

s 

Z 
a(t) = Nt,E)f(E)dE 

where 

*(r,JZ)=llexp{-[K(& T)ty] 

andf(E) is the normalized AED 

s 
xj-(E)dE= 1 
0 

and K (& T) has the usual Arrhenius form (Eq. 11)). 
After the application of the Laplace-transformation and resealing time as 

following kth order approximation of f(E) is obtained 
z= t”, the 

(37) 

(38) 

(39) 

(40) 

where p(E) = [K(E, T)]“. 
Here a difficulty is thought to arise from the instability of the preceeding equation 

which requires the evaluation of a kth derivative of a function derived from experimen- 
tal data. Then, Kruger and Woldt [56] suggest two alternative numerical approxi- 
mations to this problem: 

(a) The experimental data are fitted with a suitable analytical function which can be 
subsequently differentiated by current algebraic program packages [SS]. 

(b) Eq. (37) can be regarded as a Fredholm integral equation of the first kind. It can 
be approached, with the help of a quardrature formula, by a system of linear equations 
of the form 

(41) 

where c( andf correspond to a discrete representation of a(t) andf(E) with a constant 
step, and the coefficients of matrix A can be obtained by means of a Simpson 
quardature. 

From a computational standpoint, the inversion of such an integral equation 
represents an ‘ill-posed’ problem and the regularization method is the traditional way 
to convert it into a related well-posed problem by the introduction of some condition of 
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smoothness within the field of admissible solutions. In this way, the minimization of the 
so-called Tikhonov functional leads to the following system of equations 

I being the identity matrix and 3, a parameter controlling the balance between the 
smoothness of the solution and the accuracy of the stabilized solution (indicated by the 
residual IAf- Cr 11). Unlike the original problem, Eq. (42) can be solved by a simple 
inversion matrix. 

Under a minor modification, this model can work satisfactorily with data of either 
isothermal or non-isothermal transformations. 
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