

Thermochimica Acta 271 (1996) 9-21

thermochimica acta

Extension of the UNIVAP group contribution method: enthalpies of vaporization of special alcohols in the temperature range from 313 to 358 K'

P. Ulbig, M. Kliippel, S. Schulz*

Universiriit Dortmund, Lehrstuhl filr Thermodynamik, 44227 Dortmund, Germany Received 11 May 1995; accepted 13 June 1995

Abstract

For the extension of the UNIVAP group contribution method (UNIversal heats of VAPorization) it was necessary to measure heats of vaporization of substances containing some special functional groups. Measurements were performed with a quasi-isothermal microcalorimeter in order to obtain enthalpies of vaporization of pure substances with the accuracy needed. Experiments were made in a temperature range from 313 to 358 K for 3-buten-1-ol, 1-penten-3-ol, 5hexen-l-01, 3,3-dimethyl-1-butanol, 2,4,4-trimethyl-l-pentanol and 2,2-dimethyl-3-pentanol. The UNIVAP parameters were fitted and using some literature data for amines and aromatic hydrocarbons, the parameter-matrix was extended.

Keywords: Heats of vaporization; Group contribution; Isothermal calorimetry; UNIVAP

1 Introduction

Heats of vaporization are often required in chemical engineering, especially for dimensioning of thermal equipment. Unfortunately only a few experimental values for heats of vaporization of pure substances can be found in the literature [1]. In the past, group contribution methods for the calculation of the heat of vaporization were proposed which also required the critical temperature or which could be applied at one temperature only, usually 298.15 K. The UNIVAP group contribution method [2] was created to

^{*} Corresponding author.

¹ Presented at the 11th Ulm Conference, Freiberg, Germany, 29-31 March, 1995.

^{0040-6031/96/\$09.50 0 1996 -} Elsevier Science B.V. All rights reserved SSDI0040-6031 (95) 02595-2

overcome these limitations. This approach can be established physically. During evaporation the electrostatic forces between the molecules, which are caused by the interactions between functional groups, have to be dissolved. Therefore heats of vaporization of pure substances can be predicted over a wide temperature range, when the interaction parameters are known. For this purpose, specific measurements for the enthalpy of vaporization are necessary in order to calculate additional parameters for the model.

This paper describes measurements of ΔH_{v} of specific alcohols using an isothermal microcalorimeter. A specially designed measuring cell was built and tested with n alkanes and l-alcohols. The experimental values obtained and further data from the compilation of Majer and Svoboda were for the calculation of new interaction parameters for the UNIVAP model.

2. **Experimental**

2.1. *Materials*

The reagents were used without further purification: n-octane, n-decane, n-dodecane (Merck), purity >99%; I-propanol, I-butanol (Merck), purity >99.5%; I-heptanol (Merck), 1-decanol (Bayer), purity >99%; 3-buten-1-ol, 1-penten-3-ol, 5-hexen-1-ol (Aldrich), purity >99%; 2,2-dimethyl-3-pentanol, 2,4,4-trimethyl-l-pentanol (Aldrich), purity >98%; 3,3-dimethyl-1-butanol (Aldrich), purity >99%.

2.2. *Calorimeter*

An isothermal microcalorimeter SETARAM BT 2.15 with a newly designed cell was used. The cell consisted of a cylindrical body with an outer diameter of 17 mm and a length of 80 mm. The correct value for the enthalpy of vaporization can be measured if the liquid and the vapor phase are in thermal equilibrium. For this purpose, it is necessary to ensure a very slow evaporation. Therefore a plate made of brass or a foil made of aluminum with a hole was installed horizontally at the top of the cell. The diameter of the hole varied with the dimensions of the molecules in a range from 0.1 to 1.5 mm. The small size of the hole was necessary in order to obtain a steady slow evaporation, due to the diffusion of the molecules to the outside. The cell was connected with the experimental setup by an electrically heated pipe, which led the vapor to the outside without condensation. To prevent evaporation during temperature regulation, the cell can be set on overpressure with nitrogen up to 0.2-1.5 MPa. The pressure must be reduced during the measurement with a vacuum pump. Two valves (one computer controlled) were used to obtain a slow pressure drop during the whole measurement. The vapor can be absorbed into a washing bottle outside the vacuum pump. The experimental values were corrected with measurements with an unfilled cell. For the calibration of the calorimeter an electrical calibration and reference evaporation with water (bidest) were performed. The method was tested at an average temperature of 338.41 K with *n*-alkanes and *l*-alcohols. For a comparison of the experimental results, literature data were taken at the normal boiling point and converted to 338.41 K with the Watson equation using an exponent of

Substance	$\Delta H_{\text{v}(\text{exp.})}/(\text{kJ mol}^{-1})$	$\Delta H_{\text{v}(calc.)}$ /(kJ mol ⁻¹)	Deviation in %	
n -Octane	38.64	38.82	-0.46	
n -Decane	48.69	48.78	-0.20	
n -Dodecane	58.16	57.80	$+0.62$	
<i>l</i> -Propanol	44.38	44.48	-0.24	
<i>l</i> -Butanol	48.96	49.04	-0.17	
<i>l</i> -Heptanol	63.48	63.64	-0.25	
1-Decanol	76.28	76.72	-0.57	

Table 1 Comparison of experimental and calculated data

0.38. The experimental results show good agreement with the calculated values (Table 1).

3. Results

The experimental results at different temperatures are shown in Table 2. The number of experiments for one alcohol is usually below five. Therefore the maximum deviation of the average value is presented as a measure for the scatter. As the experimental results show, the scatter decreases with increasing temperature. This can be attributed to low vapor pressures of the substances at low temperatures.

Substance	T/K	$\Delta H_v/(kJ \text{ mol}^{-1})$	Deviation in %	
3-Buten-1-ol	313.15 50.86		0.39	
	327.56	48.81	0.18	
	342.79	46.69	0.13	
1-Penten-3-ol	313.15	49.85	0.64	
	327.56	48.35	0.50	
	342.79	46.78	0.19	
5-Hexen-1-ol	327.56	60.16	0.15	
	342.79	58.00	0.36	
	357.93	55.66	0.16	
3,3-Dimethyl-1-butanol	327.56	58.64	0.44	
	342.79	55.44	0.11	
	357.93	52.37	0.002	
2,4,4-Trimethyl-1-pentanol	327.69	60.60	0.017	
	342.81	58.62	0.085	
	357.96	56.54	0.018	
2,2-Dimethyl-3-pentanol	327.69	51.78	0.44	
	342.81	48.84	0.041	
	357.96	45.74	0.26	

Table 2 Experimental results for ΔH_v

In this case the vacuum pump is working in the lower threshold region. The experimental values for the enthalpy of vaporization are decreasing almost linearly with increasing temperature (Fig. 1). This is the normal characteristic for such substances in this temperature range. The exponential decrease up to the critical point begins at essentially higher temperatures, usually at $T_r \approx 0.7$.

4. **Discussion**

The enthalpies of vaporization can be calculated with the UNIVAP model. This model uses parameters describing the electrostatic interactions between groups in the molecule. Therefore it is necessary to calculate the sum over all group enthalpic factors of the different groups k in the molecule of type *i:*

$$
\Delta H_{\mathbf{v}} = R \sum_{k} \nu_{k}^{(i)} \varepsilon_{k}^{(i)}
$$
 (1)

with the group enthalpic factor $\varepsilon_k^{(i)}$:

$$
\varepsilon_{k}^{(i)} = Q_{k} \left\{ \frac{\sum_{m} \Theta_{m}^{(i)} \Psi_{mk} a_{mk} - 2c_{mk} T^{2} \exp(c_{mk} T^{2}) + \exp(c_{mk} T^{2})}{\sum_{m} \Theta_{m}^{(i)} \Psi_{mk}} + \sum_{m} \left[\Theta_{m}^{(i)} \Psi_{km} \left(\frac{\sum_{p} \Theta_{p}^{(i)} \Psi_{pm}}{\sum_{p} \Theta_{p}^{(i)} \Psi_{pm}} \right) (a_{km} - 2c_{km} T^{2} \exp(c_{km} T^{2}) + \exp(c_{km} T^{2}))}{\sum_{p} \Theta_{p}^{(i)} \Psi_{pm}} \right]
$$
\n
$$
- \sum_{m} \left[\Theta_{m}^{(i)} \Psi_{km} \left(\frac{\sum_{p} \Theta_{p}^{(i)} \Psi_{pm} [a_{pm} - 2c_{pm} T^{2} \exp(c_{pm} T^{2}) + \exp(c_{pm} T^{2})]}{\sum_{p} \Theta_{p}^{(i)} \Psi_{pm}} \right) \right]
$$
\n
$$
\left(\sum_{p} \Theta_{p}^{(i)} \Psi_{pm} \right)^{2}
$$
\n(2)

The temperature dependent parameter Ψ_{mk} can be calculated with a modified exponential function:

$$
\Psi_{mk} = \exp\left(-\frac{\Delta u_{mk}}{T}\right) \tag{3}
$$

Fig. 1. Heat of vaporization for specific alcohols as a function of temperature

$$
\Delta u_{mk} = a_{mk} + b_{mk}T + \exp(c_{mk}T^2)
$$
\n(4)

The surface fraction $\Theta_{m}^{(1)}$ of group m is defined as:

$$
\Theta_m^{(i)} = \frac{\nu_m^{(i)} Q_m}{\sum_p \nu_p^{(i)} Q_p} \tag{5}
$$

The definition of the groups is shown in Table 3. Despite an earlier paper, some new groups were defined. Especially for aromatics and amines, new main groups were created. Special attention should be paid to the group of the quaternary carbon atom. The group enthalpic factor $\varepsilon_k^{(i)}$ is calculated by totaling all group contributions and then multiplying by the relative van der Waals surface parameter Q_k . The amount of Q_k is zero for a quaternary carbon atom, so that this carbon atom would not make a contribution to the heat of vaporization. Neopentane would then only be constituted by four $CH₃$ groups, which leads to major errors in ΔH_v prediction. For this reason, the adjacent groups are included. In order to avoid unclarity the following rule applies. If it is not possible to allocate a part of a molecule to one group, it will be incorporated into the group itself as shown in the following example: $(CH_3)_3C-CH_2-C(CH_3)_3$. This compound is divided in the following manner: $2 \, (CH_3)_3C$, $1 \, CH_2$.

Using our experimental data and data from the literature, the parameters for the combinations of main groups *m* and *k* were fitted (see Table 4).

Fig. 2 shows the deviation plot of ΔH_v with regard to temperature for different classes of compounds. A systematic deviation cannot be detected. The deviations are very small and agree with previous experience. The parameters were fitted employing the Simplex algorithm [3]. The mean relative deviation (MRD) was used as the error criterion for the fitting procedure:

Table 3 UNIVAP group identifications

Table 3 *(continued)*

Table 3 *(continued)*

$$
MRD = \frac{\sum_{i=1}^{n} \frac{|\Delta H_{v,\text{calc}} - \Delta H_{v,\text{lit}}|}{\Delta H_{v,\text{lit}}}}{n}
$$
(6)

A value of less than 1.3% could be estimated. An overview of the actual matrix of fitted parameters is shown in Fig. 3. The black squares mean the parameters were fitted by a large number of data points. For some group combinations, a few data were available in the literature only. These parameters should be used with care and therefore the corresponding squares in the parameter matrix are hatched. Some combinations between main groups are not possible, for example combinations with CH4.

Fig. 2. Deviation plots for the new main groups.

Fig. 3. UNIVAP parameter matrix

m	k	a_{mk} K	b_{mk} /–	c_{mk}/K^{-2}	a_{km} /K	b_{km} /–	c_{km}/K^{-2}
$\mathbf{1}$	\mathbf{I}	$2.4302E - 2$	$-1.3589E - 2$	1.0945E-5			
\overline{c}	\overline{c}	0.27689	0.60592	5.0755E-6			
$\overline{2}$	3	-0.21565	2.1145E-2	$-6.7101E - 7$	0.18793	-0.10685	$-6.8209E - 7$
\overline{c}	4	-1.95775	0.59530	$-4.8778E - 4$	1.16215	-3.2709	$-9.7207E - 4$
$\overline{2}$	5	-0.10486	7.2788E-3	$-5.9808E - 7$	-0.16111	-0.74353	$-2.8966E - 6$
$\mathbf 2$	6	0.70118	2.14012	$-5.1809E - 6$	-0.16515	-2.30152	6.0351E-7
$\overline{2}$	7	0.41639	6.8172E-3	2.0050E-6	$-8.4900E - 2$	-3.0494	2.8368E-7
$\overline{\mathbf{c}}$	8	-2.8965	3.5070E-2	$-4.9680E - 6$	0.82361	5.3801E-2	$-5.8062E - 6$
\overline{a}	9	2.3564	0.12098	$-1.2748E - 5$	0.11201	-1.99942	2.3223E-6
\overline{c}	10	$-1.8151E - 2$	9.3916E-4	6.6319E-7	-0.23961	-1.8526	$-1.0628E - 6$
$\bar{2}$	11	-10.463	$-7.5560E - 2$	$-8.5853E - 7$	10.959	-0.41053	6.3482E-6
$\overline{2}$	12	-0.20068	-0.32410	$-5.2789E - 6$	0.48873	-0.64198	$-1.8295E - 6$
\overline{a}	14	1.9608	0.21311	$-4.5389E - 4$	1.00369	-0.25896	$-3.5462E - 5$
$\overline{\mathbf{c}}$	15	0.31149	$-5.0449E-3$	$-1.9118E - 6$	0.36680	1.2220E-2	$-9.9411E - 6$
\overline{c}	16	-0.38286	$-4.1717E - 2$	2.1633E-6	0.93398	-0.16959	$-2.0730E - 6$
$\overline{2}$	17	0.73826	$1.2635E - 2$	$-6.8220E - 6$	0.51846	$-3.2061E - 2$	$-2.2126E - 6$
$\overline{2}$	18	1.0129	4.1456E-2	2.3603E-6	-0.70793	0.14086	$-8.3655E - 7$
$\boldsymbol{2}$	20	7.1419E-5	$-2.5965E-3$	$-8.3760E - 6$	0.33853	-3.2582	-9.1420E-6
\overline{c}	21	-39.867	4.5707	$-9.9684E - 5$	1.1413	-2.1239	$-3.1452E - 5$
\overline{c}	22	1.4318	$-4.6666E - 2$	4.9643E-6	-0.26530	-3.7865	$-1.0318E - 6$
3	3	0.19964	$-2.5854E - 2$	1.4693E-6			
3	4	1.5934	4.4437E-2	$-1.5983E - 5$	-0.54217	-0.77405	$-7.8298E - 5$
3	5	-1.0545	4.8601E-2	$-8.6411E-7$	2.7932	-0.87579	6.3655E-6
3	6	0.74413	0.24985	1.6247E-6	-0.18494	-0.48763	2.4466E-7
3	7	-0.11350	0.10490	80205E-7	0.67106	$-2.5646E - 2$	$-1.4679E - 6$
$\overline{\mathbf{3}}$	8	0.43936	-0.27839	$-3.4049E - 6$	0.24282	$-4.2770E - 2$	$-2.6233E-6$
$\overline{\mathbf{3}}$	9	2.39561	5.3650E-2	$-1.6682E - 5$	-0.87842	0.50702	$-1.3097E - 5$
$\overline{\mathbf{3}}$	10	0.44540	5.6691E-2	6.7598E-6	0.15585	2.5203E-2	3.3222E-6
$\overline{\mathbf{3}}$	11	0.37267	-0.13797	7.4949E-6	5.40226	-0.36443	$-5.5980E - 5$
$\overline{\mathbf{3}}$	12	0.97674	$-3.2825E - 2$	1.9896E-6	0.20941	$-8.2440E - 2$	3.1283E-6
$\overline{\mathbf{3}}$	14	2.49196	9.0876E-2	4.8898E-6	2.22554	-0.33169	$-1.5916E - 5$
$\overline{\mathbf{3}}$	15	0.54238	5.5237E-3	$-2.6977E - 6$	0.45638	$-1.9689E - 2$	$-1.0323E - 5$
$\overline{\mathbf{3}}$	16	2.4651E-2	$-1.2105E - 2$	2.3613E-6	0.71470	$-3.4854E - 2$	1.1904E-6
3	17	0.80712	5.9172E-2	$-1.8874E - 6$	0.67462	$-3.2995E - 2$	4.8155E-6
3	18	0.56304	7.1615E-3	$-3.6603E - 6$	0.55474	0.56610	$-2.2441E-5$
3	20	0.31893	-0.76099	1.3209E-6	17.794	3.6509	8.8606E-6
3	21	-0.12050	-0.45095	3.2529E-6	5.6373	1.3522	1.0895E-6
3	22	-2.2378	2.9660E-2	3.9145E-6	3.2032	-0.13952	$-7.0283E - 7$
$\overline{4}$	4	6.79918	0.16841	$-1.0550E - 5$			
$\overline{\mathbf{4}}$	5	-0.61521	0.13026	2.7889E-6	-0.61228	3.9974E-2	2.7766E-6
$\overline{\mathbf{4}}$	6	7.1448E-2	5.2441E-3	$-6.4878E - 7$	7.0394E-2	$-2.9722E-3$	$-4.1328E - 7$
$\overline{\mathbf{4}}$	9	-0.69589	3.0084E-2	4.7117E-6	0.13396	-0.10370	$-3.7162E - 7$
$\overline{\mathbf{4}}$	12	0.26236	$-7.7327E - 2$	4.3128E-6	0.57237	-0.88929	3.8890E-6
$\overline{\mathbf{4}}$	18	-0.25415	2.5667E-2	7.9758E-6	6.2961E-4	2.6976E-2	$-1.8725E - 5$
$\overline{4}$	20	0.13211	2.2003E-2	$-9.2877E - 6$	0.94121	-4.3127	9.2626E-6
$\overline{\mathbf{4}}$	21	0.33866	7.1382E-3	$-6.6736E - 6$	0.64286	0.11424	$-2.2114E-5$
5	5	3.5701E-2	-1.6995	2.2097E-6			
5	$\overline{7}$	-6.9097	-0.18763	1.4368E-6	9.0121	0.21055	$-3.0170E - 6$

Table 4 UNIVAP interaction parameters for combinations of the main groups m and *k*

\boldsymbol{m}	k	a_{mk} /K	b_{mk}	c_{mk}/K^{-2}	a_{km} /K	b_{km} –	c_{km}/K^{-2}
5	9	0.52258	-29.323	$-5.6094E - 5$	36.615	2.4558	1.1387E-5
5	20	0.43997	-0.17999	$-6.3429E - 6$	$-4.6968E-2$	-0.43727	$-1.4181E-5$
6	6	0.44605	$6.1621E - 3$	1.8399E-6			
6	9	1.9160	$-4.7375E-2$	2.5590E-6	4.0673	1.6346	$-9.7438E - 5$
6	12	-19.535	$-8.4161E-3$	$-3.8609E - 5$	26.346	0.16205	$-4.8833E - 5$
7	7	0.33587	$-5.3219E - 2$	6.1545E-6			
$\overline{7}$	9	-26.142	1.3169	$-5.5592E - 6$	21.790	0.83753	$-5.5197E-5$
8	8	0.61398	$-2.7894E - 2$	5.6280E-6			
9	9	1.5352	$-1.6187E-2$	2.6462E-6			
10	10	0.24592	3.4321E-2	$-1.2441E-5$			
11	11	1.2432	$-2.1133E-2$	$-1.1460E - 5$			
12	12	0.50213	$-2.5459E-2$	$-1.1634E - 5$			
13	13	0.50051	$9.6268E - 3$	$-1.8991E - 6$			
14	14	0.16204	$-3.4768E-3$	$-4.8927E - 6$			
15	15	0.69027	$-1.8061E - 2$	$-1.4530E - 5$			
16	16	0.40466	$-8.0536E - 2$	$-1.1291E-5$			
17	17	5.8917E-2	$2.6172E - 2$	$-4.0165E - 6$			
18	18	0.49621	$-2.2932E - 2$	$-1.0016E - 5$			
19	19	0.20189	$-1.0947E - 2$	1.9736E-6			
20	20	1.5499	0.14975	$-4.9229E - 5$			
21	21	3.4375E-2	3.0087E-2	4.7343E-6			
22	22	0.49116	1.8108E-2	$-1.3938E - 6$			

Table 4 *(continued)*

5. Conclusions

With specific measurements for the enthalpy of vaporization, it is possible purposefully to extend the UNIVAP parameter matrix. Due to this fact, special alcohols with three different types of main groups were measured with an isothermal microcalorimeter in the temperature range from 313 to 358 K. The calorimetrically determined heats of vaporization show a scatter of less than 1%. With the fitted parameters of the UNIVAP model, the prediction of the enthalpy of vaporization for pure substances over a wide temperature range is possible with high accuracy, without using the critical temperature. The UNIVAP model shows a mean relative error of less than 1.3%. For the calculation only specific interaction parameters are necessary, due to the structure of the molecule. In the future more experimental work for special group combinations has to be done in order to extend this universal method.

List of symbols

20 *P. Ulbig et (11. / Thermochimica Acta 271 (1996) 9-21*

Greek letters

Subscript

k group of type *k*

Appendix A: Example

The enthalpy of vaporization of 3-buten-l-01 shall be calculated at a temperature of 3 13.15 K. The group specific parameters are given in the following table:

Due to the combinations of main groups the interaction parameters a_{mk} , b_{mk} , c_{mk} , Δu_{mk} , Ψ_{mk} and Y_{mk} are given. Y_{mk} is an abbreviation for the temperature dependent expression:

$$
Y_{mk} = a_{mk} - 2c_{mk}T^2 \exp(c_{mk}T^2) + \exp(c_{mk}T^2)
$$

Eq. (2) can be divided into three terms. The first is defined as the numerator of the first term in Eq. (2). The second is the accompanying denominator. The third expression means the sum of the second and third term in Eq. (2). These three terms have to be calculated for the four different groups k .

With these $\varepsilon_{k}^{(i)}$ a calculated result of 50.66 kJ mol⁻¹ can be obtained. The experiment value is 50.86 kJ mol⁻¹, i.e. a deviation of -0.39% can be found.

References

[l] Majer, V. and Svoboda, V., IUPAC Chemical Data Series No. 32, Blackwell, Oxford, 1985.

- [2] Kliippel, M., Schulz, S. and Ulbig, P., Fluid Phase Equilibria, 104 (1994) 1-15.
- [3] Nelder, J.A. and Mead, R., Comput. J., 7 (1965) 308-313.