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Abstract

The authors discuss the steady-state approximation for variable temperature and, implicitly in
time, kinetic constants, within the framework of the kinetic analysis of a sequence of two
first-order consecutive reactions with an active intermediate. It is thus demonstrated that the
steady-state approximation as used in isothermal kinetics may also be applied in the non-
isothermal kinetics.
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1. Introduction

In a recent note concerning the correctness of the rate expression for non-isothermal
kinetics, Nawada argues against the steady-state approximation under such conditions
[1]. His argument rests on two major statements, namely:

1. “The constancy of [A*] (where [A*] is the concentration of the activated
complex) is inappropriate because this is only an assumption in one of the methods of
solving the unimolecular gas-phase reaction taking place under steady-state condi-
tions”.

2. The steady-state condition with respect to the activated complex “describes only
isothermal processes, it cannot be readily extended to non-isothermal processes with
the same zero value for the derivative”.
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Concerning statement 1, one has to emphasize that although inadequate, the term
“constant” for the concentration of the active intermediate was used by Eyring et al.
[2]. As each elementary reaction, regardless of molecularity or order, has its own
activated complex (transition state), the steady-state with respect to it as an active
intermediate is generally valid, not being limited to unimolecular reactions.

Concerning the possibility to extend the steady-state approximation under non-
isothermal conditions (statement 2), some qualitative considerations have been given in
a previous note as an answer to Nawada’s criticism [ 3]. In this paper we aim to offer
a demonstration regarding the validity of the steady-state approximation.

2. Theory

Let us consider the classical sequence of two first-order consecutive reactions
ki k2
A-SB5C (1)

k, and k, being their rate constants.

Treatment of the kinetics of sequence (1) in isothermal conditions, which leads, for
high chemical reactivity of the intermediate B (k, >> k), to the steady-state approxi-
mation with respect to it, i.e. d[B]/dt = 0, can be found in the literature [4, 5].

In order to investigate whether this approximation is valid under non-isothermal
conditions, we present a kinetic treatment of sequence (1), occurring when the system is
heated according to a program whose particular form does not matter for the moment.

Some assumptions have to be made concerning the reaction rate of an elementary
reaction r, i.e.:

(1) The reaction rate r of an elementary step depends on two independent variables:
concentration [x] and temperature, T, respectively. Mathematically this may be written
as

r=f([xDk(T) ()
Eq. (2) is considered to have a phenomenological background.

(ii) The functions f([x]) and k(T), respectively, are continuous and do not change
their sign within the range (0, t,), where ¢, 1s the time of reaction completion. The first
part of this assumption is required in order to ensure that the reaction rate r is
continuous along the reaction path and, also, in order to be able to use the integral. The
second part of the assumption is, in fact, a restriction on the analytical forms of the two
functions, f ([x]) and k(T).

(1)) The functions k, and k,, respectively, are of the same analytical form and differ
only by a scaling constant, i.e. the ratio k,/k, keeps approximately the same value for
t ranging from 0 to t,, where ¢, is the time which corresponds to the end of the changes in
sequence (1). This assumption is approximately valid if the approximately low range of
temperatures within which the reaction occur, [T(0), T(¢,)], is taken into account.

(iv) As far as the initial conditions are concerned, we shall assume that at t =0,
T =T,, [A]=[A(0)], [B(0)] =[C(0)] =0, and [x(#)] is the concentration of the com-
pound x which changes in time and temperature.
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Under isothermal conditions, the rates of such changes are given by three differential
equations [4, 5]. Based on the above assumptions the system of the three differential
equations may extend its validity under non-isothermal conditions too, i.e.

d[dAE[)] = —k, () [A@)]
d[g f[)] =k, () [A(®)] — k, (1) [B(1)] :
d[C(1)]

T = k(0 [B®)]

It has to be noted that, under non-isothermal conditions, the coefficients k, and k,
respectively, are no longer constants, but depend on temperature and, implicitly, on
time. System (3) is, thus, a system of differential equations with variable coefficients.
The first equation of system (3) can easily be integrated, leading to
[A(1)] — e~ kst

[AQ)] @)

The second equation of the system is a linear first-order differential equation with
variable coefficients, whose second term has the well-known solution [6]

[B(1)] =40 (ft ky (I[A (W] e dy) (5)
or, after taking into account Eq. (4) and performing the calculations

BO1 .

Ao =¢ " Gk et gy (©

Once [A(t)] and [B(¢)] are known, as given by Eqgs. (4) and (5), and using the obvious
conservation equation

[A@®)] + [B(®)] + [C()] =[A0)] (7)

the function [C(t)] can easily be obtained.
The first average value theorem for definite integrals provides the following equali-
ties

J kywdy=tk,(o) ©8)
0
and respectively
J kay(y)dy =1k, (0) ©)
0

where g € [0, t].
According to assumption (i), “o” will have the same value for both k; and k&,
functions.
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With relationships (8) and (9), Eq. (6) becomes

B(t !
[[A((O))]] :etkz(a)J‘ kl(y)et[kz(a)fk,(a)]dy (10)
0
As
gllka(0) k(o)) (11)

1s continuous and keeps its sign over the range [0, ], the second average value theorem
for definite integrals may also be used in order to calculate the integral of Eq. (10), as
shown below

t

t
f kl(y)e‘[’“(y)’“‘”]dyzkl(a)f eha0) =kl g

0 0

ki(9) (k@) —ki(a)]
= e 2{0 1{o 12
k20— k(o) (12

By introducing this result into Eq. (10) one obtains
B0l k@)

[A(0)] k(o) —k,(0)
Now, if one takes into consideration that B is a reactive intermediate, i.e.

ky,»k,

over the whole time interval [0, ¢, ], Eq. (13) becomes
[B(1)] _ kl(a)e—tk‘(u)
[A(0)] k(o)

With this result, the third equation of system (3) becomes

d[C] _ £0) v
G = ROIAOT ! Fe

(14)

(15)

and, according to assumption (iii), because k (a)/k,(a) = k(£)/k,(2), it follows that

d{C()]
dr

=k, (O[A(0)]e *r (16)

From the first equation of system (3), and also using Egs. (4) and (8), one obtains

d[A(1)]
dr

= — k ()[A(0)]e ™ " (17)

The differential form of the conservative relationship (7) is

d[A(n)]  d[B(n)] , d[C(1)]
dr + dt + dr

=0 (18)
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By introducing Eqs. (16) and (17) into Eq. (18)

d[B(1)]
—==0 19
i.e. the steady-state approximation is valid even when the kinetic “constants”, k

change in time through their change with temperature.

i

3. Conclusions

By analysing two consecutive first-order reactions, when the system is heated such
that the temperature changes in time as T'(¢), the validity of the steady-state approxi-
mation under non-isothermal conditions has been demonstrated. Obviously Eq. (19} is
only an approximation as, for its demonstration, we have used assumption (iii) and
relationship (14).
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