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Abstract 

The authors discuss the steady-state approximation for variable temperature and, implicitly in 
time, kinetic constants, within the framework of the kinetic analysis of a sequence of two 
first-order consecutive reactions with an active intermediate. It is thus demonstrated that the 
steady-state approximation as used in isothermal kinetics may also be applied in the non- 
isothermal kinetics. 
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1. Introduction 

In a recent note concerning the correctness of the rate expression for non-isothermal 
kinetics, Nawada  argues against the steady-state approximation under such conditions 
[1]. His argument rests on two major statements, namely: 

1. "The constancy of [A*] (where [A*] is the concentration of the activated 
complex) is inappropriate because this is only an assumption in one of the methods of 
solving the unimolecular gas-phase reaction taking place under steady-state condi- 
tions". 

2. The steady-state condition with respect to the activated complex "describes only 
isothermal processes, it cannot be readily extended to non-isothermal processes with 
the same zero value for the derivative". 
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Concerning statement 1, one has to emphasize that although inadequate, the term 
"constant" for the concentration of the active intermediate was used by Eyring et al. 
[2]. As each elementary reaction, regardless of molecularity or order, has its own 
activated complex (transition state), the steady-state with respect to it as an active 
intermediate is generally valid, not being limited to unimolecular reactions. 

Concerning the possibility to extend the steady-state approximation under non- 
isothermal conditions (statement 2), some qualitative considerations have been given in 
a previous note as an answer to Nawada's  criticism [3]. In this paper we aim to offer 
a demonstration regarding the validity of the steady-state approximation. 

2. Theory 

Let us consider the classical sequence of two first-order consecutive reactions 

kl k2 
a --* B ~ C  (1) 

k 1 and k 2 being their rate constants. 
Treatment of the kinetics of sequence (1) in isothermal conditions, which leads, for 

high chemical reactivity of the intermediate B (k 2 >> k 0, to the steady-state approxi- 
mation with respect to it, i.e. d[B] /d t  = 0, can be found in the literature [4, 5]. 

In order to investigate whether this approximation is valid under non-isothermal 
conditions, we present a kinetic treatment of sequence (1), occurring when the system is 
heated according to a program whose particular form does not matter  for the moment.  

Some assumptions have to be made concerning the reaction rate of an elementary 
reaction r, i.e.: 

(i) The reaction rate r of an elementary step depends on two independent variables: 
concentration Ix] and temperature, T, respectively. Mathematically this may be written 
a s  

r = f ( [ x ] ) k ( T )  (2) 

Eq. (2) is considered to have a phenomenological background. 
(ii) The functionsf([x])  and k(T),  respectively, are continuous and do not change 

their sign within the range (0, tr), where t r is the time of reaction completion. The first 
part of this assumption is required in order to ensure that the reaction rate r is 
continuous along the reaction path and, also, in order to be able to use the integral. The 
second part  of the assumption is, in fact, a restriction on the analytical forms of the two 
functions,f  (Ix]) and k(T).  

(iii) The functions k I and k2, respectively, are of the same analytical form and differ 
only by a scaling constant, i.e. the ratio k l / k  2 keeps approximately the same value for 
t ranging from 0 to t r, where t r is the time which corresponds to the end of the changes in 
sequence (1). This assumption is approximately valid if the approximately low range of 
temperatures within which the reaction occur, IT(0), T(tr)], is taken into account. 

(iv) As far as the initial conditions are concerned, we shall assume that at t = 0, 
T = T o, [A] = [A(0)], [B(0)] = [C(0)] = 0, and Ix(t)] is the concentration of the com- 
pound x which changes in time and temperature. 
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Under isothermal conditions, the rates of such changes are given by three differential 
equations [4, 5]. Based on the above assumptions the system of the three differential 
equations may extend its validity under non-isothermal conditions too, i.e. 

d [a(t)] _ _ k ~ (t) [A(t)] 
dt  

dEB(t)] dt -k~(t) EA(t)]-k2(t)EB(t)] (3) 

dEC(t)] dt - k2(t)[B(t)] 

It has to be noted that, under non-isothermal conditions, the coefficients k~ and k 2 
respectively, are no longer constants, but depend on temperature and, implicitly, on 
time. System (3) is, thus, a system of differential equations with variable coefficients. 

The first equation of system (3) can easily be integrated, leading to 

EA(t)] _ e_~,ok,(y)dy (4) 
EA(O)] 

The second equation of the system is a linear first-order differential equation with 
variable coefficients, whose second term has the well-known solution [60 

[B(t)] = e--~;k~y)dY(S~k 1 (y)[A(y)] e~;k~ly)aYdy) (5) 

or, after taking into account Eq. (4) and performing the calculations 

[B(t)] _ e I'ok~y)ay (S~ok  1 (y)e~'o~k2~,) k~l,)~a, dy ) (6) 
[A(0)l 

Once [A(t)] and [B(t)] are known, as given by Eqs. (4) and (5), and using the obvious 
conservation equation 

[A(t)] + [B(t)] + EC(t)] = [A(0)] (7) 

the function [C(t)l can easily be obtained. 
The first average value theorem for definite integrals provides the following equali- 

ties 

f'okl(y)dy=tkx(~) (8) 

and respectively 

ftok2(y)dy=tk2(~ ) (9) 

where a e [0, t]. 
According to assumption (iii), "or" will have the same value for both k~ and k 2 

functions. 



176 E. Seyal et al./Thermochimica Acta 274 (1996) 173 177 

With relationships (8) and (9), Eq. (6) becomes 

[B(t)] ,k~(~)f' ° [A(0)] - e kl(y)e 'Eke(') k'(~)]dy (10) 

As 

ettk~(a) k,(a)] (11) 

is continuous and keeps its sign over the range [0, t], the second average value theorem 
for definite integrals may also be used in order to calculate the integral of Eq. (10), as 
shown below 

ftokX(y)et[k2(s) k'(Y)]dy = kl(a) f~oeak2(~)-klt°)Jdy 

kl(a) et[k~(~) kl(o)] (12) 
- k2 (a  ) _  kl(a ) 

By introducing this result into Eq. (10) one obtains 

EB(t)] _ kl  (a) e_,k2(~) (13) 

Now, if one takes into consideration that B is a reactive intermediate, i.e. 

kz>>k a 

over the whole time interval [-0, tr], Eq. (13) becomes 

[B  (t)] _ k 1 (a) e -  tk,(~) (14) 
Ea(0)l 

With this result, the third equation of system (3) becomes 

dEC(t)] _ k2(t)EA(o)] kl(a)e kl(~), (15) 
dt  

and, according to assumption (iii), because k 1 (a)/k2(a) = k l(t)/k 2 (t), it follows that 

dEC(t)] 
dt _kl(t)EA(0)]e k.~), (16) 

From the first equation of system (3), and also using Eqs. (4) and (8), one obtains 

dEA(t)] 
d ~  - kl(t)EA(0)]e-k'(~)' (17) 

The differential form of the conservative relationship (7) is 

dEA(t)] d[B(t)] dEC(t)] 
d ~  ÷ d ~  ~- d ~  - 0 (18 ) 
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By introducing Eqs. (16) and (17) into Eq. (18) 

d[B(t)]  
- -  - 0  (19) 

dt  

i.e. the steady-state approximat ion  is valid even when the kinetic "constants",  k;, 
change in time through their change with temperature. 

3. Conc lus ions  

By analysing two consecutive first-order reactions, when the system is heated such 
that the temperature changes in time as T(t), the validity of the steady-state approxi- 
mat ion under non-isothermal  conditions has been demonstrated.  Obviously Eq. (19) is 
only an approximat ion  as, for its demonstrat ion,  we have used assumption (iii) and 
relationship (14). 
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