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Abstract

The heat capacities of three para-halotoluenes, p-chlorotoluene, p-bromotoluene and p-
iodotoluene, were measured with an adiabatic calorimeter. All three compounds showed the
formation of glassy crystals. The glass transition temperatures are 220, 242 and 250 K respective-
ly. The temperature and enthalpies of fusion are: for p-chlorotoluene, 280.69 +0.01 K and 13554
J mol~!; for p-bromotoluene, 299.94+0.01 K and 15127 J mol~!; and for p-iodotoluene,
306.70+0.05 K and 14963 J mol~!. The heat capacity of p-iodotoluene was measured from 5 K;
the derived thermodynamic properties are given. Those of the other compounds were measured
from 80 K.

Keywords: Adiabatic calorimetry; Glassy crystal; Halotoluenes

1. Introduction

The syncrystallisation of para-disubstituted benzenes is one of the topics studied in
our laboratories. The compounds often form solid solutions and we are interested in
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formulating more detailed conditions for the occurrence of (complete) miscibility in the
solid phase. Aspects which attract our special attention are the size of the substituents
and the symmetry of the components. Several phase diagrams for binary systems
composed of the para-dihalobenzenes ( Cl-, Br- and I- ) have already been measured
[1-4]. Now, we are including a new substituent: the methyl group, thus greatly
enlarging the number of possible combinations. Detailed knowledge of the crystallo-
graphic and thermodynamic properties of the pure components is of paramount
importance. The calculations of the excess properties by the method of the equal Gibbs
energy curve [5] (or EGC method) performed on the obtained phase diagrams start
with data for the pure components.

In this work we report on the thermodynamic properties of the para-halotoluenes
(Cl-, Br- ) between 100 K and room temperature. The iodo-compound was measured
between 5 and 330 K. To our knowledge, these compounds have not been studied
before by adiabatic calorimetry.

2. Experimental

The commercially available products (Fluka) were further purified, the iodo- and
bromo-products by sublimation and the chloro-compound by fractional crystallisa-
tion. The purity was checked by differential scanning calorimetry and gas chromato-
graphy. The purity was estimated to be better than 99.7%.

The adiabatic calorimeter used was described before in detail [6]. The performance
of the calorimeter was checked with synthetic sapphire and n-heptane and compared to
the data published by the National Bureau of Standards. Above 30 K the inaccuracy of
the heat capacity data and the other thermodynamic properties which are calculated
from these data is within 0.2%, but below 30 K this inaccuracy increases to about 1%.
Between 100 and 300 K the imprecision of the calorimeter, as derived from the
differences of the experimental data from a fitted curve, is in the order of 0.02%. The
thermometer used was calibrated at 16 points between 13 and 300 K (Oxford
Instruments Limited) on the IPTS-68 scale; we converted the calibration to ITS-90.
The calorimeter was loaded with 7.55, 8.62 and 10.06 g ( Cl-, Br- and I-toluene
respectively ). The vessel was closed under vacuum after admitting about 2000 Pa of
helium in order to enhance the heat conduction. The calorimeter vessel and its
surrounding shields are mounted under the liquid helium tank in the cryostat. A shield
1s soft-soldered to the bottom of the cryostat, thus creating a space separated from the
high vacuum of the cryostat. This space is evacuated through a by-pass tube which
can be closed at the top of the cryostat. Closing this connection and admitting about
100 Pa of helium pressure allows us to cool the vessel and the shields quickly without
much evaporation of liquid nitrogen or liquid helium in the tanks. Cooling down from
room temperature to 80 K takes about two hours. When the lower tank is filled with
liguid helium, cooling from 80 to 4.2 K takes only about half an hour. Before the
measurements are started, the vacuum in the space surrounding the vessel is restored.
The measurements are completely automated; the operator chooses the end tempera-
ture of the measurement, the temperature increment in the successive heat capacity
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determinations and some other settings. Measurements are made with a stabilisation
period of about 800 s above 100 K and of 400 s between 30 and 100 K. The input period
is of the same order. The calculation of the heat capacity data was performed in the
usual way by extrapolating the temperature-time curves in the stabilisation periods to
the mid-point of the heat input period. This gave us the temperature increment caused
by the known amount of heat supplied to the vessel and the heat capacity was
calculated. When, however, the product in the vessel is in a metastable state and is
relaxing to a more stable state, the temperature-time curves deviate from the normal
behaviour expected at that temperature and shield setting. In this case, the heat
exchange with the surroundings was taken as a linear function between two tempera-
tures at which the system showed normal behaviour or, if no such equilibrium values
could be found, the heat capacities were calculated with the heat exchange found in
a previous empty vessel experiment.

3. Results

All three compounds showed two anomalies in the heat capacity curves (see Fig. 1).
The high-temperature anomaly is the fusion, the low-temperature a glass transition in
the crystalline state. The jump in heat capacity at the glass transition temperature T,
diminishes in the order iodo > chloro > bromo. The curve of p-bromotoluene is shifted
upwards by 30 J K~ ! mol~! and for p-iodotoluene by 50 J K~ mol~*, for clarity. Table
1 gives the experimental data series. Table 2 gives a polynomial expression for the heat
capacities of the glass phase, the crystalline phase between the glass transition and the
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Fig. 1. Heat capacity curves of the three compounds: N, p-chlorotoluene; O, p-bromotoluene, shifted
upwards by 30JK "' mol !; and O, p-iodotoluene, shifted upwards by 50 J K~! mol~'.
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Table 2
Linear fit coefficients C, = a, + a, T of the heat capacities and the corresponding temperature range

Coefficients Temperature range
ao/J K~ 'mol ! a;/JK ?mol ! T,/K T,/K
p-Chlorotoluene
Glassy crystal 29.99 0.3924 160 200
Crystalline phase 12.75 0.5012 245 255
Liquid phase 98.62 0.2618 283 310
p-Bromotoluene
Glassy crystal 30.99 0.4005 160 225
Crystalline phase 21.71 0.4506 250 290
Liquid phase 103.27 0.257 300 330
p-lodotoluene
Glassy crystal 33.17 0.3925 160 225
Crystalline phase —557 0.765 280 300
Liquid phase 10527 0.265 305 325

Table 3
The enthalpies of melting and the melting temperatures, the estimated glass transition temperatures and the
associated heat capacity jump

Compound Teuo/K Aq, H/Imol ™! T/K AC,(T I K™ mol™!
p-Chlorotoluene 280.69 +0.01 13554+3 220 7.8°
p-Bromotoluene 299.94 + 0.01 15127 242 4.5
p-lodotoluene 306.70 + 0.05 149.63 + 6 250 12.4°

2 Less reliable due to pre-melting.

melting point, and the liquid phase. In Table 3 the melting points and the enthalpy of
fusion are given and also the estimates of the glass transition temperatures and the
corresponding heat capacity jumps. We could not find a clear relation between the
enthalpy of fusion and the molar mass. Table 4 lists the derived thermodynamic
properties for p-iodotoluene which were measured from 5 to 330 K.

3.1. Fusion and purity determination

The temperature of fusion and the purity of the sample were calculated from the
interrupted melting experiments. After each energy addition, the sample was stabilised
and the equilibrium temperature determined. The data were plotted as 1/F against T
in which F is the fraction melted at the temperature T. Using the van’t Hoff relation for
the freezing point depression, the purity can be calculated if the impurity forms
a eutectic phase diagram with the main component. The plots are given in Fig. 2 and
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Table 4
Thermodynamic properties at selected temperatures for p-iodotoluene (M = 0.218037kgmol ™ ')

T/K C,/imol 'K ! SO(T)-8°(0)/ HO(T)-H°(0)/ —[G*(T)= H°O))/T
Jmol 'K™1 Jmol ™! Jmol !K™!
10 6915 2.666 18.96 0.7700
20 22.25 11.93 161.93 3.834
30 34.04 23.35 447.48 8.431
40 43.03 34.45 835.81 13.56
50 49.72 44.80 1301 18.79
60 55.43 54.38 1827 23.93
70 60.48 63.31 2407 28.93
80 65.01 71.66 3033 3375
90 69.21 79.57 3704 38.41
100 73.49 87.07 4417 4290
110 77.46 94.26 5172 4725
120 81.37 101.17 5966 51.45
130 85.16 107.83 6799 55.54
140 88.93 114.28 7669 59.50
150 92.68 120.54 8577 63.36
160 96.27 126.64 9522 67.13
170 100.04 132.59 10503 70.81
180 103.94 138.42 11523 74.40
190 107.97 144.15 12583 7792
200 111.94 149.79 13682 81.37
210 116.05 155.35 14822 84.76
220 120.05 160.84 16003 88.10
230 124.15 166.26 17224 91.38
240 128.19 171.63 18485 9461
250 134.20 176.97 19793 97.80
260 148.19 182.47 21195 100.95
270 155.35 188.28 22735 104.07
280 15843 193.96 24297 107.18
290* 166.15 199.65 25920 110.27
300* 173.80 205.42 27620 113.35
306.70%* 178.93 209.31 28802 115.40
306.70"* 186.50 258.10 43764 115.40
310 187.42 260.10 44381 116.93
320 190.07 266.09 46269 121.50
330 192.73 271.98 48183 12597

Key: *, extrapolated; %, solid; |, liquid.

from them it is clear that the purity cannot be calculated by this method for
p-iodotoluene. However, because the melting process for this compound takes place in
avery narrow temperature range (in the order of 0.04 K), we assume that the compound
is very pure. For p-chlorotoluene, we found a purity 0f99.73% and for p-bromotoluene,
99.994%. Since the latter value is exceptionally high, we think that purification by
sublimation works very well for this compound as large and beautiful crystals are
rapidly formed.
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(E-1)

T-Tbase

1/F

Fig. 2. The three melting experiments. The equilibrium temperatures in the melt are plotted against the
reciprocal of the melted fraction: @, p-chlorotoluene, temperature axis minus 280 K, plotted on the left y-axis;
&, p-bromotoluene, plotted on the right axis, minus 300 K; and B, p-iodotoluene, plotted on the right axis
minus 306.7 K.

The enthalpy of fusion was calculated in an iterative way. The linear fits of the heat
capacity before and after the fusion are taken as a first baseline and extrapolated to the
temperature of highest value in the heat capacity. Then the enthalpy of fusion is
calculated and the baseline is adjusted to the melted fraction. This process gives
a sigmoidal baseline; repeating the calculation three or four times results in a stable
value for the enthalpy of fusion. Repeated melting experiments with the same charge in
the calorimeter results in a very small standard deviation in the enthalpy of fusion, at
maximum 0.005%. This reflects, however, the precision of the calorimeter and the
inaccuracy of 0.2% mentioned before also applies to these values.

3.2. The glass transition

In Fig. 3 the rate of temperature drift in the stabilisation periods multiplied by the
heat capacity is plotted against the temperature in the region of the glass transition of
p-chlorotoluene. The molar heat capacities measured in those runs are also given. The
normal drift of the calorimeter in this region caused by the inevitable deviation from
complete adiabatic behaviour is about 40uW. Approaching the glass transition
temperature from low temperature, the sample exhibits first an exothermic effect,
corresponding to the relaxation of the glass. After the glass transition, the compound is
in a state in which the enthalpy is lower than the equilibrium value, and the drift
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160 - + 1000

140
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Drift in puWatt

120

100

T/K

Fig. 3. The glass transition in p-chlorotoluene: +, without prior stabilisation; A after stabilisation at 220 K.
The drawn curves, representing the drift, are plotted on the right axis.

becomes endothermic. The summation of these two effects is roughly equal to zero, thus
indicating that the enthalpy loss before the glass transition is recovered after the
transition. We did an experiment in which we relaxed the glass for over two days close
to the temperature where the exothermic effect was maximal; then we recooled the
vessel and repeated the heat capacity measurements passing through the glass transi-
tion. The exothermic effect had almost completely disappeared and the endothermic
effect became larger as a result of this thermal treatment. This confirms the already
known fact that a glass relaxes to a lower enthalpy state, without, however, reaching
thermodynamic equilibrium within the experimental time. The temperature—time
curve of the relaxation process close to the glass transition is of an exponential form,
with the natural drift of the calorimeter added as a linear function. Fitting these data to
the model proposed by Williams and Watts [7]

AT(t)= AT(O)exp(— (t/1)")

as done by Fujimori and Oguni [ 8] for the glass transition in 2-bromothiophene, gave
a value of 0.765 for 8 and 22735 s for t with a standard deviation of 7 x 10~* K. This
standard deviation is quite high and the reliability of the value for f may be questioned.
The same experiment was done for p-iodotoluene and the experimental data are given
in Table 1. The glass transition in p-bromotoluene was measured only once. The molar
heat capacities of the relaxed glass and the glass formed by rapid cooling are
indistinguishable within the precision of the calorimeter.
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4. Discussion

The thermal properties of three p-halotoluenes were measured. All three compounds
show the formation of glassy crystals. For a discussion of this not so well-known phase,
we refer to a recent article by Suga [9]. We did not manage to avoid this transition by
forming a new stable crystal phase, which one might expect to realize at lower
temperatures. It is interesting to point out that the formation of glassy crystals was not
observed in the para-halobenzenes [4]. The introduction of the methyl-group gives
additional degrees of freedom to the molecules in the crystal. We strongly suspect that
the glass transition is caused by the freezing of these degrees of freedom. A structural
study clarifying the nature of the disorder in the three halotoluenes is under way.

The melting enthalpies and melting temperatures are given. No obvious relation to
the molar mass was found. The entropy increments for p-iodotoluene are given from
0 K and these values might be used when the entropy values are calculated from
spectroscopic data to find the residual entropy of the glass.
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