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Abstract 

The proportionality relation between the time integral of the input signal and that of the 
output signal is derived in a linear measurement system with lumped parameters and in a system 
with distributed parameters. The relation is equivalent to that of signals in a most simple case in 
which the input signal is a time-independent constant and the output signal is proportional to the 
magnitude of the input signal. In a system with distributed parameters, the relation is valid for 
signals averaged over surfaces through which they are transmitted in or out. The relation is also 
valid even when the linear system shows time delay, overshoot or damped vibration. 

Keywords: Heat conduction calorimeter; Linear measurement system; Measurement theory; 
Peak area 

1. Introduction 

Measurement  systems generally have two variable signals, an unknown  input signal 
x(t) and a known output  signal y(t), and they are functions of time t. The purpose of 
measurement  is to get the input signal from the observed output.  In the most  simple and 
usual case, the input signal is a step function of time 

x( t )  = XoU(t) (1) 
and the observed output  signal y ( t )=  yo(t) has a limiting value y o ( ~ )  as time 
approaches  infinity 

lim yo(t) = y o ( ~ )  (2) 
t ~  

* Corresponding author. 

0040-6031/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved 
SSDI 0040-6031(95)02597-9 



270 S. Tanaka, Y. Maeda/Thermochimica Acta 273 (1996) 269 276 

Here x o is a time-independent value and u(t) is the unit step function 

u(t) = 0 t < O }  (3) 
u(t) = 1 t > O  

In linear measurement systems, yo(~)  is proportional to x o and we can get the 
unknown x o from the observed value of yo(OO ) if the proportionality constant has been 
determined from calibrating experiments. 

When the input signal is time-transient, the output signal does not have a limiting 
value, yo(OC)#=0, and shows a time-transient behavior. Time-transient signals are 
found in chromatographic analysis, thermal analysis, etc. In these measurements, the 
output signal shows a peak on a recording chart and the time integral of the output 
signal, the "peak area", is used to determine sample amount [ 1] or energy change due to 
a phase change of the sample [2]. 

We show here that the proportionality relation between the time integral of the input 
signal and that of the output signal is valid in linear measurement systems and the 
relation is equivalent to that between a constant input signal x o and the limiting value 
of the output signal yo(OO). 

2. Linear measurement systems with lumped parameters 

Let us consider a linear system with lumped parameters described by the following 
differential equation 

d " x  dx  d"y 
a , , ~ + . . . + a l ~ [ + a o x = b , ~ - ~ + . . . + b l  + b o y  a o ¢ 0  b o # 0  (4) 

where coefficients a . . . . . .  a 1, a o and b . . . . . .  b 1, b o are real constants, x = x( t )  is the input 
signal and y = y(t) is the output signal. 

When the input and output signals are given by Eqs. (1) and (2) respectively, Eq. (4) 
yields 

aoX o = boYo(OO) (5) 

o r  

y o( ~V )/Xo = ao/b o (6) 

Relations (5) and (6) are the most simple and usual relations encountered in measure- 
ment problems. 

When all signals are time transient, the signals and their derivatives are zero as 
t --, oo, and the input and output signals are integral between 0 < t < ten d, then the time 
integral of both sides of Eq. (4) gives f:nd f:d 

a o x ( t ) d t  = b o y ( t ) d t  (7) 
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Using Eq. (6), Eq. (7) becomes 

;7 y ( t )d t  x ( t )d t  = ao/bo = yo(~) /Xo  (8) 
0 

where ~°d x(t)dt  is equal to the total amount of sample in chromatographic analysis 
and to the total amount of energy change of sample in thermal analysis, and the term 
~°~ y ( t )d t  is equal to the "peak area" on a recorded chart. Proportionality relation (7) 
or (8) is used in these analyses to determine the sample amount or the energy change of 
a sample. Eq. (8) shows that the proportionality relation between the integrals is 
equivalent to the relation between input signal x 0 and output signal yo(OO) in the most 
usual case of measurement described by Eq. (5) or (6). Under some circumstances, the 
output signal shows time delay, overshoot or damped vibration. Even in such cases, 
relations (7) and (8) are valid for the linear system described by Eq. (4). 

When the input signal is discontinuous, such as a pulse or step signal, a more 
sophisticated treatment is given to the linear model of a heat conduction calorimeter 
with lumped parameters [3]. 

3. Linear measurement system with distributed parameters 

We cannot have a generalized model of a linear system with distributed parameters. 
However, a linear model of a heat conduction calorimeter with distributed parameters 
is treated theoretically and the results are given as follows [4] 

;? 37(0 d t  v(t) d t  -- 37o(~)/po (9) 
0 

where 

37(0 =-~ y ( r , t )dA  (10) 

y(r, t) -- T(r, t) - T B (11) 

where T(r, t) is the temperature on surface S of the reaction vessel, r is the position 
vector and T~ is the constant temperature of the surrounding thermal bath of the heat 
conduction calorimeter; 37(0 is the surface average of y(r, t) over surface S, and A is the 
surface area; v(t) is the rate of enthalpy change due to physical or chemical change in the 
reaction vessel and 

fl  °d A H  = v( t )dt  (12) 

is the total change of the enthalpy in heat conduction calorimetry; 37o(~) is the 
convergence value of 37(0 when constant power Po is generated in the reaction vessel. 
Eq. (9) has the same form as Eq. (8) in the linear model with lumped parameters if the 
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surface average value of y(t) is chosen as the output signal in the heat conduction 
calorimeter model with distributed parameters. The detailed mathematical  proof  is 
given in Ref. [4]. 

Next, let us consider another model which consists of three concentric domains D~, 
D 2 and D 3, and has boundary surfaces S 1 and S 2 as illustrated in Fig. 1; n~ and n 2 are 
unit normal vectors on surfaces S~ and S 2 respectively, and they are directed toward the 
interior of O 2. The input signal x(r, t) and output signal y(r, t) depend on the position 
vector r and time t. The input signal in D 1 is transmitted to surface S 2 through surface 
S 1 and domain D 2. The purpose of measurement here is to find the time integral of the 
input signal on surface $1, Xs~(r, t), from the observed output signal on surface $2, 
Ys~(r, t). 

The boundary-initial conditions on the model are assumed to be the following. The 
rate of change of total amount  of x(r, t) in D 2 is assumed to be determined by the 
gradient of x(r, t) over surface S~ 

S 1" d S = - ~  x(r , t )dr  (13) 
S~ S~ 2 

The behavior of the transmission of x(r, t) in D 2 is given by 

82X 8X 
D~: V:x = ~-OV + ~ 7  (14) 

x(r, t) cannot transmit into D 3 and is reflected by 8 2. 
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Fig. 1. Model of a linear measurement  system with distributed parameters which consists of three concentric 
domains  D~, D2, D3, and boundary surfaces S~ and Sz; n~ and n 2 are unit normal  vectors on surfaces S x and 
$2, respectively. The input signal x(r, t) in domain D 1 is transmitted to surface S 2 through surface S~ and 
domain D 2. 
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The output  signal is x(r, t) over surface S 2 

$2: ys2(r,t)=Xs~(r,t) r~S 2 (16) 

Here  dS is the area element, d r  is the volume element, and ~ and fl are constant  
coefficients. The input and output  signals are assumed to be 

lim x(r, t) = 0 (17) 
I ~ 3 C  

lira y(r, t) = 0 
t ~ c L  

and they are integrable between 0 < t < oo. 
We define 

? I(r) = x(r,t)dt (18) 
o 

J(r) = y(r, t)d t (19) 

Integrat ing Eqs. (13) (16) from t = 0 to t -- oo, we have 

D2: V2I =O (21) 

S 2 : = 0 (22) 
S2 

$2: I ( r ) = J ( r )  reS 2 (23) 

Applying Green ' s  theorem in the symmetr ical  form [5] t o / )2  enclosed by surfaces S 1 
and $2, we have 

f f f o (CV 2 l - l V2~) dz - - f f s ,+ s ~ ( - ,~  alOn + I~n)dS (24) 

¢ = ~b(r) is defined as 

D2: V2q~ = 0 (25) 

and ¢ and O¢/On are uniform on surfaces S 1 and S 2. For  example,  ¢ = 1/r for spherical 
D1, D e, D 3 and ~b = In r for cylindrical D1, D2, D 3. ~ is defined as the potent ial  function 
in the coordinate  system. 

F r o m  Eqs. (21) and (25), Eq. (24) becomes 

o=ffs,+s~(-¢Ol~n + I ~ n ) d S = f f s  +ffs2 (26) 
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Here we have 

where 

1 f fs X(r, OdS (30) 

is the surface average value of x ( r , t )  on surface $1, and A 1 is the area of surface S 1. 
Similarly we have 

f5 I d S  = J d S  = A 2 ~ s 2 ( t ) d t  (31) 
2 2 

where 

1 ys2(t)= f fs y(V,t)dS (32) 

is the surface average value ofy(r, t) on surface S z, and A 2 is the area of surface S 2. From 
Eqs. (27)-(29) and (31), Eq. (26) becomes 

and 

Eqs. (33) and (34) are the proportionality relations between the time integral of the 
input signal and that of the output signal in a linear measurement system with 
distributed parameters and correspond to proportionality relations (7) and (8) in 
a linear measurement system with lumped parameters. In a system with distributed 
parameters, the same proportionality relation is obtained if the signals are averaged 
over surfaces through which the signals are transmitted in or out. 

Next we examine the output signal yo(r, t) when the input signal in O 1 is given by 

Xo(r, t) = Xo(r ) u(t)  (35) 
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The boundary conditions of Xo(r, t) are described by eqs. (13)-(16). When time t ap- 
proaches infinity, we assume in D 2 and D 3 

lim x(r, t) = x(r, oo) (36) 
t ~ o o  

lim yo(r, t) = yo(r, oo) (37) 

and the boundary conditions of xo(r, oo) become 

.[.[, 8x° d S = O  (38) St: 

D2: V2xo(r, oo) = 0 (39) 

(3x°~ = 0  (40) 
$2:  \c3rl2/s~ 

$2: Yo,s~(r, oo)= Xo,s~(r , ~ )  r6S 2 (41) 

Application of Green's theorem to D 2 enclosed by surface S~ and $2 gives 

fffo=(4 V2x°-x°V24))d =ff ,+s2(-4)&°an + x° 4 )dSon/ (42) 

where ~b is defined as before. Considering Eqs. (38)-(42), we have 

Then we have 

2o,s, + A 2 0 (44) A 1 3 ~ n l s  ' ~ n  2 
where 

- lffsXO(r)dS (45) XO'S' = A~I 1 

Yo,s2(Oo) = s2Yo(r , oo) dS (46) 

From Eqs. (35) and (44), we have 

~s2(t)dt ff(t)dt = ~o,s~(Oo)/Y%,s, = - A 1 (?q5 A2 (47) 
0 $1 $2 

Eq. (47) shows equivalence between the most simple relation (44) and the propor- 
tionality relation of the time integrals of the signals in a linear measurement system 
with distributed parameters. 

It should be noticed that the relation is also valid when the system shows time delay, 
overshoot or damped vibration. When distribution of the input and output signals is 
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not  uniform in the domains,  for example, the temperature  d is t r ibut ion in the reaction 
vessel of a heat conduct ion  calorimeter is not  uniform, the relation is also valid between 
surface average signals or surface average temperatures over the reaction vessel. 
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