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Abstract

Theoretical data with various amounts of random gaussian errors have been used to test the
validity of single-peak methods. This procedure was applied to various multiple linear regression
algorithms with one or two kinetic exponents, and to the Achar-Brindley-Sharp, the Freeman-—
Carroll and the Ellerstein methods. Simulations were performed according to the results
previously obtained for an experimental polymerization of an epoxy-novolac resin. The test of
validity of the methods was performed using the LSM parameter which represents the fit between
the mathematical treatment used in the kinetic model and known data, relative errors and
standard deviations. The study shows in our case the lack of robustness of the Freeman—Carroll
and of the Ellerstein methods in the presence of noise, and their sensitivity to temperature errors.
The effect of smoothing has also been studied.
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1. Introduction

In our previous paper [1], a comparative kinetic study from simulated thermo-
analytical curves was presented. The validity of single-peak methods such as the
multiple linear regression [2,3], the Achar-Brindley-Sharp [4], the Freeman—Carroll
and the Ellerstein methods [5,6] was discussed. Assuming the hypothesis of a single-
step reaction, the test of validity of the methods was performed using a parameter called
LSM which represents the fit between the mathematical treatment used in the kinetic
model and known data [7], relative errors and standard deviations. The parameter

0040-6031/96/$15.00 1996 —- Elsevier Science B.V. All rights reserved
SSDI0040-6031(95)02611-8



170 N. Shirrazzuoli/ Thermochimica Acta 273 (1996) 169-184

LSM is defined as
1
LSM = N Z ( Yi, exp Yi, calc)2

)

where N is the number of experimental values and Yrepresents the heat flow measured
(exp) or calculated (calc) from the kinetic parameters. Relative errors have been
computed by comparing the values obtained to those of a reference (the values
mentioned are always absolute relative errors). The study revealed the importance of
the resolution of the thermal curve recording, especially for the Freeman—Carroll and
Ellerstein methods, with an increase in the relative errors on all the kinetic parameters
when the number of points is decreased [1]. The Freeman—Carroll method, which has
been the subject of criticism, gave accurate results for relative errors on the kinetic
parameters, while for modelling purposes, the LSM values were always higher than
with the Achar-Brindley—-Sharp and multiple linear regression methods. This first
study may at least explain the disagreement between authors in regard to this method.
It is known that this method is sensitive to the scattering of the data; hence the series of
simulations with additional noise presented here will allow investigation of the effect of
experimental errors on the determination of the kinetic parameters.

2. Numerical simulations

Thermal analysis is an important tool in the characterization of reaction kinetics in
thermosetting systems. Our interest in this field is not recent, and since our first
investigation of crosslinking in epoxy-novolac resin [8], we have attempted to show the
various sources of errors that can arise in these kinds of characterizations. Simulations
may be used after evaluation of the level of noise, depending on the apparatus used, and
of the order of magnitude of the thermodynamic and kinetic parameters involved by
the transformation studied. The generation of the simulated data was previously
presented [1]. In this study, the parameters used in the simulations were taken as: heat
of cure Q, —77J (taken as negative for an exothermic reaction); scanning rate V,
5°min~ !; kinetic order n, 2; logarithm of the pre-exponential factor In k, 19; activation
energy E,, 77kJ mol~*. These values were previously obtained from an experimental
polymerization [9] that can be fitted [10] in the 10-80% kinetic interval with the
kinetic homogeneous law. This law is expressed as f(«;)=(l —«,)", where «; is the
degree of conversion at time i. So, each «; can be computed as previously mentioned [ 1],
and the computation is stopped for an «; value near to one (> 0.999999). Because of the
very precise results previously obtained with 6932 points (that is to say 780 points in the
kinetic interval of 10-90% retained for the simulations), this value has been kept in this
work and in that condition; the relative error on the heat of reaction was 9.66 x 10~ for
simulated data without noise, using a linear baseline extrapolation and a trapezoidal
integration [1].

In the case of experimental measurements of temperature and power, simulations
must take into account the effect of noise on these two measurements. To test the effect
of noise in the recovery of reaction kinetic parameters, two types of pseudo-random
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noise can be generated, a pseudo-gaussian random noise and a pseudo-random noise.
The accuracy of the methods was evaluated using different amounts of noise. The noise
values were chosen in regard to the standard deviation of the noise on the power of the
apparatus used (DSC-111 Setaram), which was evaluated in the temperature domain of
our interest to a value of about 0.07.

3. Results of numerical simulations

Evaluation of the kinetic parameters was performed on the artificial created data by
using a computer program described elsewhere [ 7]. In this program, the multiple linear
regression method using a Sestak—Berggren model with two kinetic exponents m and n,
denoted MLR(m,n), was added. This equation was solved using three multiple linear
regression algorithms, the gaussian-elimination, the partial-pivoting and the gauss-
seidel methods. In this case, this method may be performed taking the logarithmic form
of the reaction rate equation

RT

ln(%) =lInk, —£+ mln(x) +nln(1 —a,)

with
%= Hy/Q

where R is the universal gas constant (8.31 J mol ! K1), H, the partial area computed
at time i and T, the absolute temperature at time i.

Simulations performed using non-gaussian noise led to similar conclusions as those
with gaussian noise, so we present here only the results obtained with gaussian noise.
Variations between simulations for the same level of noise were studied, and the
average of five separate simulations was used to obtain the mean relative errors on

Table 1
Kinetic parameters obtained for simulated data without noise [1] using the Achar-Brindley-Sharp (ABS),
multiple linear regression (MLR(n)), Freeman—Carroll (FC) and Ellerstein (EL) methods

na.b In ko a.b Ea a,b r c re LSMd
ABS 2.00 18.99520  76.96786 —1.0000000 236x 1075  Step 102
1.99986 18.99322  76.96193 —1.0000000 968 x 1078  Step 107°
MLR(n}  1.99987 18.99330  76.96216 820x 1078
FC 1.99987 18.99339 7696273  —1.0000000 — 1.0000000 590x 10°°
EL 1.99984 18.99300 7696167 —1.0000000 — 1.0000000 1.12x10°*

2 n, kinetic exponent; In k,, logarithm of pre-exponential lactor; E,, activation energy (kJ mol ™ '),

® Theoretical parameters: n = 2;Ink, = 19; E, = 77kJmol " .

¢ ry, correlation coefficient of the first-step calculation of the Freeman—Carroll and Ellerstein methods; r,
correlation coefficient.

9 LSM, fit of the calculated curve with the simulated one.
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the kinetic parameters. In order to estimate the amplitude of the noise compared
to the signal, a parameter is given (npmr) that represents the noise to peak-maximum
ratio.

To perform comparisons, Table 1 gives the results previously obtained without noise
with the Achar-Brindley—Sharp, Freeman—Carroll, Ellerstein and multiple linear
regression MLR(n) methods [1]. The results obtained with the three other multiple
linear regression algorithms: the gaussian-elimination, the partial-pivoting algorithm
and the gauss-seidel algorithm presented in Table 2 are very different from those
previously obtained in Table 1. The gauss-seidel algorithm is able to find a solution for
a tolerance of 10~'°, but the exponent m obtained is not equal to zero and the kinetic
parameters are different from the reference value. Furthermore, the very good accuracy
between simulated and computed data (LSM) would not allow the elimination of these
methods, in the case of the study of an unknown transformation. Absolute relative
errors are reported in Table 3.

Table 2
Kinetic parameters obtained for simulated data without noise, using various algorithms (GE, PP, GS) for the
multiple linear regression method MLR(m, n)

E,* m® n® Inky°? LSM*
GE/PP* 74.00431 0.03582 1.96451 18.06491 248 % 1078
GS¢ 45.14953 0.38521 1.61957 9.00814 6.02 x 10°°¢

* For abbreviations see Table 1.

®m and n are kinetic exponents.

¢ MLR(m, n), multiple linear regression method with two kinetic exponents; GE, gaussian-elimination; PP,
partial-pivoting; GS, gauss-seidel (tolerance, 10~ !°).

Table 3
Relative errors (RE) for the Achar-Brindley—Sharp (ABS), multiple linear regression (MLR(n), GE, PP, GS),
Freeman—Carroll (FC) and Ellerstein (EL) methods (simulated data without noise)

RE(n)*b° RE(Inky) e RE(E)*>">* LSM*

ABS 5.00x 1073 252 x 107 417 x 1074 236 x 107° Step 1072
7.00 x 1073 357 x 107 494 x 1074 9.68 x 1078 Step 10~ ¢

MLR (n) 6.73x 1073 353 x 107¢ 491 x 1074 8.20x 1078

FC 6.40 x 107° 3.48 x 1074 484 x 1074 590 x 1073

EL 777 x 1073 3.68 x 107 498 x 1074 1.12 x 107#

MLR(m, n)

GE/PP 1.77 x 1072 492 x 1072 389 x 1072 248 x 1078

GS 1.90 x 107! 526 x 107! 414 x 107! 620 x 1076

* For abbreviations see Tables 1 and 2.
b RE(x), relative error on the parameter x.
¢ Total heat of cure @ = — 76999.26 mJ, RE(Q) =9.66 x 10~ 6.
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3.1. Noise on the power signal

In a first step, the noise was only added to the power signal, in order to simulate
experiments where only the power is measured and to separate each effect. This is
effectively performed in some commercial calorimeters. In that case, the temperature
T of a flux-meter differential scanning calorimeter is simply computed from the
temperature at the beginning of the experiment (7).

The results presented in Tables 4-6 give an example of the values obtained for
a simulation performed using additional gaussian noise (mean m=0 and standard
deviation ¢ =0.2). The discrimination between methods is achieved by comparing the
average of the relative errors for various sets of five separate simulations with a same
level of noise, presented in Table 7. If we compare the kinetic parameters recovered
from the simulations with the lowest power noise (6 =0.05, Table 7) and without noise
(Table 3), the activation energy is the parameter least sensitive to the noise (an increase
in the factor of the relative error of about 10); whereas for the logarithm of the
pre-exponential factor, a factor of about 100 is observed in the increase in the relative
error on the pre-exponential factor (not given in the tables) and on the reaction order.

The variations of the LSM vs. the level of noise were not reported in this study but
show a high increase for a level of noise greater than 0.2. The Freeman—Carroll and

Table 4

Kinetic parameters obtained for simulated data with gaussian random noise on the power?, using the
Achar-Brindley—Sharp (ABS), multiple linear regression (MLR(n)), Freeman—Carroll (FC) and Ellerstein
(EL) methods

n® Ink,® E® r°® re LSM®
ABS 194 1856976  75.71 —09999930 881 x 1072  Step 1072
194 1859916 7580 09999931 849 x 1072  Step 107°
MLR(n) 194 1859328  75.78 8.55x 102
FC 196 1887051 7686 —0.6660603  —0.9999897 384 x 10*
EL 193 1840760 7566 —0.8041024  —09999913  1.13x 10?

2 Characteristics of the noise: mean = 0, standard deviation =0.2.
b For abbreviations see Table 1.

Table 5
Kinetic parameters obtained for simulated data with gaussian random noise on the power? using various
algorithms (GE, PP, GS) for the multiple linear regression method MLR(m, n)

E’® m® n® Inky® LSM?®
GE/PP —15.51219 1.09546 0.86958 — 10.05836 443 x 1072
GSP 45.20313 3.67001 1.58259 8.99612 6.21 x 1072

2 Characteristics of the noise: mean = 0, standard deviation = 0.2.
® For abbreviations see Tables 1 and 2.
¢ Tolerance, 107 7.
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Table 6

Relative errors (RE) obtained for simulated data with gaussian random noise on the power, using the
Achar-Brindley—Sharp (ABS), multiple linear regression (MLR(n), GE, PP, GS), Freeman—Carroll (FC)and
Ellerstein (EL) methods

RE(n)*? RE(Inky)*® RE(E,)*® LSM*
ABS 3.00x 1072 226x 1072 1.67 x 1072 8.81x 1072 Step 1072
290 x 102 211 x 1072 1.56 x 1072 8.49 x 1072 Step 107
MLR (n) 292x 1072 2.14 x 1072 1.58 x 1072 8.55x 1072
FC 195x 1072 6.82x 1073 1.78 x 1073 3.84 x 10!
EL 3.57x1072 312x 1072 1.74 x 1072 1.13 x 102
MLR(m,n)
GE/PP 5.65x 107! 1.53 x 10° 1.20 x 10° 443 x 1072 E, ,n<0
GS 209 x 107! 527x 107! 413 x 107! 6.21 x 1072

* For abbreviations see Tables 1-3.
® Total heat of cure @ = — 76 193.39 mJ, RE (Q) = 1.05 x 102,
¢ Characteristics of the noise: mean =0, standard deviation =0.2.

Ellerstein methods led to higher LSM values (as an example 38.4 and 113 respectively
for the Freeman—Carroll and Ellerstein methods in Table 6). This confirms the
hypothesis previously formulated [1] that the Freeman-—-Carroll method may be more
accurate in the determination of the kinetic parameters if the number of data points is
sufficient, but is not the more efficient method for modelling purposes [8,10].

The use of a sharper iterative step involving an increase in the computation time for
the Achar-Brindley—Sharp method (Tables 4 and 6, step 10~ ), induces little decrease in
the relative errors and LSM values. In the presence of noise, the decrease in the LSM
value is weak compared to that obtained with noiseless data.

As with the noiseless data of Table 2, multiple linear regression algorithms per-
formed for two kinetic exponents give an example of the existence of local minima,
leading to negative values for the activation energy and the reaction order (gaussian-
elimination and partial-pivoting algorithms, Table 5). This explains the high values
observed for the relative errors, while the LSM values are of the same order as with the
Achar-Brindley—Sharp and the multiple linear regression MLR(n) methods.

Tables 6 and 7 show that all the methods presented gave a reasonable estimation of
the activation energy and of the reaction order for a noise level of 0.2. Beyond that, the
relative errors are significantly increased, especially for the pre-exponential factor and
for the reaction order, when the noise level is increased from 0.2 to 0.4 (Fig. 1 for E,) and
then from 0.4 to 0.6. When the noise level is increased up to 0.8, the relative error on the
logarithm of the pre-exponential factor and on the reaction order becomes higher for
the Freeman—Carroll method than for the multiple linear MLR(n) method. The
Ellerstein method led to the highest relative errors, while, in most cases, the Freeman—
Carroll method led to the lowest. The Achar-Brindley—Sharp and the multiple linear
MLR(n) methods always led to accurate results. As with noiseless simulation, the
lowest accuracy is found for the pre-exponential factor because, obviously, taking the
antilogarithm of the logarithmic form magnifies the errors. As an example, for a 0.2
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Table 7

Average relative errors obtained for simulated data with various amounts of gaussian random noise on the
power, using the Achar-Brindley-Sharp (ABS), multiple linear regression MLR(n), Freeman—Carroll (FC)
and Ellerstein (EL) methods

A RE(Q)* npmr® Method RE(n)? RE(Inkg)*® RE(E,)*
005 290x 1073 0.36%
ABS 1.20 x 1072 1.03 x 1072 773 x 1073
MLR(n) 1.04 x 1072 793 x 1073 6.01 x 1073
FC 871 x 1073 532x 1073 282x 1073
EL 1.24 x 1072 1.09 x 1072 6.68 x 1073
0.1 500 x 1073 0.82%
ABS 220 x 1072 1.73 x 1072 1.29 x 1072
MLR(n) 2.13 x 1072 1.63x 1072 1.21 x107*
FC 1.78 x 1072 1.43 x 1072 893 x 1073
EL 2.5 x 1072 226 x 1072 1.36 x 1072
0.2 1.15x 1072 1.45%
ABS 4.60 x 1072 349 x 1072 255 %1072
MLR(n) 456 x 1072 344 x 1072 251 %1072
FC 395 x 1072 2.54 x 1072 1.34 x 1072
EL 5.54x 1072 489 x 1072 279 x 1072
04 216x1072 3.18%
ABS 1.31 x 107! 1.04 x 107! 7.58 x 1072
MLR(n) 1.27 x 107! 977 x 1072 712 x 1072
FC 1.10x 107! 737 x 1072 380 x 1072
EL 1.47x 107! 127 x 107! 7.36 x 1072
0.8 3.67 x 1072 6.36%
ABS 2.04 x 107! 1.61 x 107! 1.17 x 107!
MLR(n) 195x 1071 1.47 x 1071 1.07 x 107!
FC 2.02 x 107! 1.58 x 107! 8.30x 1072
EL 227 x 107! 1.94 x 107! 1.07 x 107!

* For abbreviations see Tables 1 and 3.
5 npmr, noise to peak-maximum ratio.
¢ Characteristics of the noise: mean = 0, standard deviation 0 =0.2.

noise level, a mean value of 161% is found for the pre-exponential factor with the
Ellerstein method, while the relative error on its logarithm corresponds only to 4.89%
(Table 7). As the pre-exponential factor is used in the computation of the LSM, this
statement, associated with the low correlation coefficients of the first step (r,, Table 4),
explains the high LSM values obtained with this method. The Freeman—Carroll
method often led to the lowest average relative error for the kinetic parameters, within
an approximate range of 0.3-8% for the activation energy, 0.9-20% for the reaction
order, and 0.5-16% for the logarithm of the pre-exponential factor (Table 7). The
results obtained from the Achar-Brindley-Sharp and multiple linear regression
MLR(n) methods are very similar, these last two methods leading to the lowest LSM
values. As an example, with the multiple linear regression method (MLR(n) Table 7), an
approximate range of 0.6-11% is found for the activation energy, 1-19.5% for the
reaction order, and 0.8-15% for the logarithm of the pre-exponential factor.
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Fig. 1. Average relative errors on the activation energy vs. the standard deviation of gaussian noise applied
on the power, for the multiple linear regression (MLR(n)), the Achar—Brindley—-Sharp (ABS), the Freeman—
Carroll (FC) and the Ellerstein (EL) methods.

The analysis of the standard deviations of the kinetic parameters shows that the
lowest values are found for the reaction order, then for the activation energy, and finally
for the pre-exponential factor. When the noise is increased from ¢=0.05 to ¢=0.2,
a multiplying factor of approximately ten is found for the reaction order and for the
activation energy, while this factor is about twenty for the pre-exponential factor. For
the same level of noise, the different methods give very similar standard deviations
except for that of Ellerstein, for which the values are always higher. There is a tendency
for the Freeman—Carroll method to give the lowest deviations.

The parameter called An has been calculated for the Freeman—Carroll method
according to Jerez [11]. This parameter is expressed as An=0,(1—r?)""?, where o,
represents the standard deviation of the ordinates, and gives an estimation of the
absolute error on the reaction order. Fig. 2 shows a good correlation between various
relative errors on the reaction order for each level of noise and this parameter (divided
by the reference value of the reaction order). Nevertheless, the values given by these two
parameters are different (all these values are the average for 5 sets).

3.2. Noise on the power and temperature signals
In the case of joint power and temperature noise, the standard deviation of the noise

was increased from 0.01 up to a maximum level of 0.4. The Achar-Brindley—Sharp and
multiple linear regression MLR(#r) methods show a similar level of accuracy (Tables
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Fig. 2. Average relativeerrors on the reaction order obtained with the Freeman-Carroll (FC) method vs. the
parameter An, for various standard deviations of gaussian noise (0, 0.05, 0.1, 0.2, 0.4 and 0.8), applied on the
power.

Table 8

Kinetic parameters obtained for simulated data with gaussian random noise on the power and on the
temperature®, using the Achar-Brindley-Sharp (ABS), multiple linear regression (MLR(n)), Freeman—
Carroll (FC) and Ellerstein (EL) methods

n® Ink,® E,® r® r® LSM*®
ABS 2.03 19.18981 77.54 - —0.9999353  1.27 x 10° Step 1072
2.03 19.16683 77.47 - —0.9999353  1.26 x 10° Step 107¢
MLR(n) 2.02 19.10889 77.30 - - 1.26 x 10°
FC —-0.50 —16.51624 3.79 —0.1798115  ~-0.7512439 6.77 x 10?
EL 1.21 7.54782 61.67 —0.0571958 —0.9814389 6.74 x 10?

* Characteristics of the noise: mean =0, standard deviation ¢ = 0.2.
® For abbreviations see Table 1.

8-10). The multiple regression methods with two kinetic exponents led to very different
parameters from those of the reference (Table 9), while the LSM values are the lowest.
The average of the relative errors for five separate sets is presented in Table 11 where the
parameter noted AT gives the amplitude of the noise on the temperature. For the
lowest noise level (a temperature accuracy of AT=0.1 K and a noise to peak-maximum
ratio npmr = 0.082%), similar relative errors are found for the Achar-Brindley-Sharp,
Ellerstein and multiple regression methods, while the relative error on the logarithm of
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Table 9
Kinetic parameters obtained for simulated data with gaussian random noise on the power and on the
temperature ®, using various algorithms (GE, PP, GS) for the multiple linear regression method MLR(m, n)

Line E,"® m® n® Inky® LSM®
GE/PP 0.08729 9.36774 1.09357 —5.12547 436 x 1072
GS* 45.14758 3.91325 1.63778 9.01945 458 x 107!

* Characteristics of the noise: mean = 0, standard deviation ¢ =0.2.
b For abbreviations see Tables 1 and 2.
¢ Tolerance, 10~ °.

Table 10

Relative errors (RE) for simulated data with gaussian random noise on the power and on the temperature?,
using the Achar-Brindley—Sharp (ABS), multiple linear regression (MLR(n), MLR(m, n)), Freeman-Carroll
(FC) and Ellerstein (EL) methods

RE(n)"* RE(In k) e RE(E,)®* LSM*®©

ABS 1.50 x 1072 9.99 x 1073 7.03 x 1073 1.27 x 10° Step 1072
142 x 1072 8.78 x 1073 6.14 x 1073 1.26 x 10° Step 107

MLR (n) 121x 1072 573x 1073 389 x 1073 1.26 x 10°

FC 1.25 x 10° 1.87 x 10° 9.51 x 107! 6.77 x 10°

EL 397x 107! 6.03 x 107! 1.99 x 107! 6.74 x 103

MLR(m,n)

GE/PP 453 x 107! 1.27 x 10° 999 x 107! 436 x 1072

GS 181 x 107! 5.25x 107! 414 x 107! 458 x 107!

® Characteristics of the noise: mean = 0, standard deviation ¢ =0.2.
® For abbreviations see Table 3.
© Total heat of cure Q = — 77233.33mJ, RE(Q) =3.03 x 1073,

the pre-exponential factor of the Ellerstein method is higher. All the values obtained
with the Freeman—Carroll method are higher. As the noise level increases to 0.05, i.e.
AT =0.5K and npmr = 0.36%, this tendency increases drastically, leading to a distin-
guishable set of values between the Freeman—Carroll and Ellerstein methods, and the
other two methods (Fig. 3). So, the Freeman—Carroll method gives an average activa-
tion energy, reaction order and logarithm of the pre-exponential factor which deviate
from the reference values by about 66, 86 and 129%, respectively; for the Ellerstein
method, the errors are respectively 58, 63 and 94%. Because of the scatter of the data
kinetic points, the Freeman—Carroll method is unable to describe the reaction kinetics,
being too susceptible to low temperature and power noises. The example presented in
Table 8 (¢ =0.2) confirms the previous conclusion drawn for the correlation coeffi-
cients r; of the Freeman—Carroll and Ellerstein methods, which explains the very high
LSM values found, and this is in agreement with the results obtained experimentally
[8-10]. This was also observed in the reduced interval (10-80%) for experimental data,
where it has been shown that the reaction order model gives an accurate fit of the data.
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Table 11

Average relative errors obtained for simulated data with various amounts of gaussian random noise on the
power and on the temperature, using the Achar—Brindley—Sharp (ABS), multiple linear regression (MLR(n)),
Freeman—Carroll (FC) and Ellerstein (EL) methods

o RE(Q)® npmr®  AT® Method RE(n)® RE(Ink,)® RE(E)®
0.01 556 x107*  0.082% 0.1
ABS 500x107% 192x107% 145x10°3
MLR(n) 203x107% 158x107* 130x10°?
FC 101x107Y 151x 107 7.72x1072
EL 738x1073 106x1072 6.78x 1073
0.05 141 x 1073 036% 04
ABS 800x107% 638x107% 473x1073
MLR (n) 799%x107%  619x 1073 4591073
FC 8.64 x 107" 129 x10° 6.58 x 107!
EL 6.32x10"' 940x 107! 576x 107!
0.1 559%x 1073 0.82% 0.9
ABS 320x 1072 244 x107%2 181 x10°2
MLR(n) 316 x 1072 239x10°2 1.77x10°2
FC 1.18 x 10° 1.75 x 10° 8.86 x 107!
EL 5.54x 107" 827x107' 553x 107!
0.2 505x 1073 1.45% 1.6
ABS 1.90x 1072 148 x1072 1.10x1072
MLR(n) 197x1072 158x107% 1.17x1072
FC 1.26 x 10° 1.88 x 10° 9.58 x 107!
EL 1.76 x 10° 2.64 x 10° 1.46 x 10°
0.4 205x 1072 3.18% 3.5
ABS 930x 1072 7.08x107%2 517x10°?
MLR(n) 9.18x 1072 694 x10"%2 506x10"?
FC 1.29 x 10° 1.94 x 10° 988 x 107!
EL 1.81 x 10° 2.71 x 10° 1.61 x 10°

® Characteristics of the noise: mean = 0, standard deviation o.
b For abbreviations see Tables 1-3.
¢ Amplitude of the error on the temperature.

For these last two methods the parameters are very different to those of the reference,
even leading to negative values for the Freeman—Carroll method.

3.3. Smoothing data

The interest in a pre-treatment of noisy data such as filtering, or the elaboration of
kinetic methods less sensitive to noisy signals, is obvious for kinetic or modelling
treatments. Smoothing crude data is a simple technique, often used in analytical
chemistry. Here we show the results obtained using such a treatment, and we will give
comparisons with other techniques in a future paper. In the present work, the
convolution method applied used a polynomial with intervals of seven successive
points [12], which was found adequate in regard to the dual effect of smoothing.
Smoothing was also applied on the pure signals: in fact, it is known that running
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Fig. 3. Average relative errors on the activation energy factor vs. the standard deviation of gaussian noise
applied on the power and on the temperature, for the multiple linear regression (MLR(n)), the Achar-
Brindley—Sharp (ABS), the Freeman-Carroll (FC) and the Ellerstein (EL) methods.

averages may distort values that are already smooth. The relative error on the heat of

cure is significantly decreased for noisy data (factor 100) by using this technique.
Results on pure and noisy signals are presented in Tables 12 and 13 in order to

evaluate the filtering ability as well as the effect of smoothing itself. Applied to the pure

Table 12

Relative errors obtained for simulated data without noise, using the Achar—Brindley-Sharp (ABS), multiple
linear regression (MLR(n)), Freeman—Carroll (FC) and Ellerstein (EL) methods, before and after smoothing

data

RE(n)**® RE(inky)>® RE(E,)*" LSM*
ABS 500x 1073 252 x 1074 417 x 1074 236x10°°

5.00x 1073 2.54 x 1074 417 x 1074 2.39x10°° Smooth¢
MLR (n) 6.73 x 1073 353 x 1074 491 x 1074 8.20 x 10~ 8

6.78 x 1073 353 x 1074 492 x 1074 843 x 1078 Smooth®
FC 6.40 x 1073 348 x 1074 484 x 1074 590 x 1073

6.44 x 1073 348 x 1074 484 x 1074 6.02 x 1073 Smooth®
EL 7.77 x 1073 3.68 x 1074 498 x 107# 1.12x 107#

7.83 x 1073 3.69 x 1074 498 x 107* .14 x 1074 Smooth®

* For abbreviations see Tables 1 and 3.
® RE(Q) = 9.66 x 10~ ® before smoothing and Re(Q) = 1.08 x 10~ 3 after smoothing.
¢ Parameters obtained after smoothing data.
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Table 13

Relative errors obtained for simulated data with gaussian random noise on the power?, using the Achar—
Brindley-Sharp (ABS), multiple linear regression (MLR(n)), Freeman—Carroll (FC) and Ellerstein (EL)
methods, before and after smoothing data

RE(n) > RE(In k)¢ RE(E,) > LSM*®
ABS 3.00 x 1072 226 x 1072 1.67 x 1072 8.81 x 1072

1.00 x 1072 1.02 x 1072 7.82 x 1073 214 x 1072 Smooth?
MLR (n) 292 x 1072 214 x 1072 1.58 x 1072 8.55 x 1072

7.90 x 1073 7.12x 1073 551 x 1073 1.67 x 1072 Smooth?
FC 1.95x 1072 6.82x 1073 1.78 x 1073 3.84 x 10!

1.25x 1072 1.40 x 1072 826 x 1073 2.06 x 10! Smooth?
EL 357%x 1072 3.12x 1072 1.74x 1072 1.13 x 102

1.48 x 1072 1.74 x 102 1.11x 1072 1.55 x 10 Smooth?

* Characteristics of the noise, same set as in Table 6.

® For abbreviations see Tables 1 and 3.

°RE(Q) = 1.05 x 10~ 2 before smoothing and RE(Q) = 5.80 x 10~ * after smoothing.
4 Parameters obtained after smoothing data.

signal, relative errors as well as LSM are found to be of the same order or a little less
accurate (Table 12). Little decrease in the relative errors is observed when gaussian
random noise is added onto the power (the same example as in Table 6, m=0, 6 =0.2).
Nevertheless, the results remain of the same order of magnitude. For the Freeman—
Carroll method, the relative errors on the logarithm of the pre-exponential factor and
on the activation energy are increased, while only the relative error on the reaction
order (intercept of the Arrhenius plot) shows a little decrease. The correlation coeffi-
cient of the first step is increased by smoothing the data (we found —0.93273 instead of
—0.66606 in Table 4).

3.4. Discussion

For multiple linear regression algorithms MLR(m,n) performed with two kinetic
exponents, the simulations reveal a very important problem which deals with the
existence of several local minima in the phase space that represent the solutions of the
problem, and are in agreement with the conclusion of Sestak and Malek [13], relative
to the statement that multiple linear regression methods can lead to incorrect results
because any thermal analysis curve can be interpreted within the scope of several
apparentkinetic models (reaction order or Sestak—Berggren) depending on the value of
the apparent activation energy. In our case, this problem was only encountered for the
Sestak—Berggren model (MLR(m,n)).

The precision that could be obtained on the kinetic parameters would depend on the
peak shape, i.e. on the kinetic parameters, and on the inherent noise of the apparatus
(this latter is generally much lower than the maximal values tested here). For fast
reactionsinvolving high energy exchanges, the thermal gradients inside the sample may
induce large errors on the temperature, and so the kinetic parameter accuracy would be
lower. In that case, the increase of thermal gradients represents part of the errors [8, 9],
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and may sometimes be reduced by using a lower heating rate. We proposed [9] the use
of the sample temperature measurement as an interesting way of evaluating thermal
gradients and their effects on kinetic parameters, in order to select the proper
experimental conditions. In such a case, the sample temperature (measured) is not
linearly increased; its value may sometimes be quite constant between two time
intervals leading to very small numerators or zero-value numerators and so to the lack
of application of the Ellerstein method. Furthermore, the kinetic parameters obtained
with the Freeman—Carroll or the Ellerstein method may be very different from those
computed by other methods, because these methods are very sensitive to the presence
of noise, especially on the temperature. This remark concerns particularly the Free-
man—Carroll method, the Ellerstein method always being the less accurate. In the
presence of noise on the power and on the temperature, the Freeman—Carroll and
Ellerstein methods led to very high relative errors (100-270%) for the highest level of
noise tested (6=0.4, AT=3.5, npmr=23%), while for the multiple linear regression
MLR(n) or the Achar—Brindley-Sharp methods, these errors vary from 5 to 9% for all
the kinetic parameters. For the same level of power noise, the relative errors vary from
7 to 13% for these last methods and from 4 to 15% for the former. A lower value for the
multiple linear regression MLR(n) and the Achar-Brindley—Sharp methods is found in
the case of a curve simulated with two noise components (in this case some errors may
compensate themselves, Table 11). In this case, the precision on the temperature is
about 4 K which is low, and we still observe a good accuracy for these last methods. So,
the robustness of the methods vs. noise may be very different. This conclusion confirms
the statement of Flynn [14] that the temperature imprecision is probably the greatest
source of errors in thermal analysis and demonstrates that difference-differential
methods are especially sensitive to this error. Nevertheless, systematic errors in
temperature measurements (as with experimental data) may have much less effect than
random errors [14], if the number of experimental points is sufficient [1].

In the presence of noise, the analysis of the correlation coefficients (Tables 4 and 8)
confirms the great difference between r, (first-step calculation) and r (second-step
calculation). This is in agreement with the results obtained experimentally [8,10], and
explains the differences observed between the Freeman—Carroll and Ellerstein methods
and the others. The correlation coefficient r, may become too removed from unity to
evaluate the activation energy and the reaction order from the slope and intercept of the
Arrhenius line. These methods do not retain the parameters that correspond to the best
linearization of the Arrhenius plot, and so in the presence of noise the validity of the
Arrhenius equation is not verified. This explains the great sensitivity of the Freeman-
Carroll and Ellerstein methods to the presence of noise in the temperature measure-
ments. However, for the Achar—Brindley—Sharp method, the reaction order retained is
the one that gives the best linearization of the Arrhenius plot (involving E,, n and In k),
and then the activation energy and the logarithm of the pre-exponential factor are
deduced. For the multiple linear regression MLR(n) method, the parameters (E,, n and
In k,) are computed by minimizing the residual between the data and the plot of the
Arrhenius line. Indeed, in the Freeman—Carroll or Ellerstein methods, the reaction
order and the activation energy are computed in a first step from one Arrhenius plot
(involving E, and n). Then the logarithm of the pre-exponential factor is deduced, with
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a correlation coefficient of the first-step calculation generally low, and a correlation
coefficient of the second step generally nearest to unity. So, the difference between these
last methods and the Achar—Brindley—Sharp or the multiple linear regression MLR(n)
methods may result in very good agreement between the kinetic parameters computed
by these last kinds of methods in regard to the assumption made.

We can confirm that the use of the LSM values provides a good method for the
choice between the Freeman—Carroll, Ellerstein, Achar-Brindley—Sharp and multiple
linear regression MLR(n) methods.

4. Conclusion

The simulations with additional noise on power and on temperature were used as
a way of selecting kinetic methods for an example of the given kinetic parameters of
a cure. Discrimination between methods was achieved by comparing the average
relative errors, the standard deviations and the fit between the kinetic model and
known data. The differential methods used are not supported by mathematical
approximations so that the multiple linear regression method for a reaction order
model and the Achar-Brindley—Sharp method led to accurate relative errors and LSM
values even when noise is added on both temperature and power signals, with relatively
high amounts of noise. The simulations prompt us to take care using the multiple linear
regression algorithms performed with two kinetic exponents, methods of modellization
rather than kinetic methods for which the LSM values and the relative errors are not
always correlated. The existence of local minima, in the modelling of a thermal curve
constructed using a single-step model, clearly indicates that for the description of
complex phenomena, requiring more than one kinetic exponent, the parameters
obtained with a multiple linear regression method should be modelling parameters,
depending on the experimental conditions, and not real kinetic parameters.

On simulated thermoanalytical curves without noise, the Freeman-Carroll and
Ellerstein methods led to precise results when the highest number of kinetic points was
used; these methods are still accurate with gaussian power noise for the determination
of the kinetic parameters, but not for modelling purposes. Nevertheless, the Ellerstein
method often led to the worst results. When gaussian random noise is added on both
power and temperature, the Freeman-Carroll method is very sensitive to small
amounts of noise. These simulations give an explanation for the high LSM values that
can be obtained for the Freeman—Carroll and the Ellerstein methods and show the
importance of the knowledge of the correlation coefficient of the first-step calculation.
This study clearly shows the limit of these two difference-differential methods for which
the postulated assumption of the linearization of the Arrhenius plot is not always
respected. :

A simple smoothing data technique led to a decrease in the error on the heat of cure
and on the kinetic parameters, with an exception for the Freeman—Carroll method.
Therefore, this technique may be recommended after having quantified the effect of
running averages. In that case, simulations are useful to select the optimal equation
depending on the data that have to be smoothed. A future work will present the
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interesting results obtained in filtering thermoanalytical data, by applying new tech-
niques.
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