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Abstract 

Theoretical data with various amounts of random gaussian errors have been used to test the 
validity of single-peak methods. This procedure was applied to various multiple linear regression 
algorithms with one or two kinetic exponents, and to the Achar-Brindley-Sharp, the Freeman- 
Carroll and the Ellerstein methods. Simulations were performed according to the results 
previously obtained for an experimental polymerization of an epoxy-novolac resin. The test of 
validity of the methods was performed using the LSM parameter which represents the fit between 
the mathematical treatment used in the kinetic model and known data, relative errors and 
standard deviations. The study shows in our case the lack of robustness of the Freeman Carroll 
and of the Ellerstein methods in the presence of noise, and their sensitivity to temperature errors. 
The effect of smoothing has also been studied. 
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1. Introduction 

In our  previous  paper  [1],  a compara t ive  kinetic  s tudy from s imula ted  the rmo-  
analyt ica l  curves was presented.  The  val idi ty  of s ingle-peak me thods  such as the 
mul t ip le  l inear  regression [2,3], the A c h a r - B r i n d l e y - S h a r p  [4],  the F r e e m a n - C a r r o l l  
and  the Ellerstein me thods  [5,6] was discussed.  Assuming  the hypothes is  of  a single- 
step react ion,  the test of val id i ty  of the me thods  was per formed using a p a r a m e t e r  cal led 
L S M  which represents  the fit between the ma themat i ca l  t r ea tment  used in the kinet ic  
mode l  and  known  da t a  [7],  relat ive er rors  and  s t anda rd  deviat ions.  The  p a r a m e t e r  
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LSM is defined as 

L S M = I ~ .  (Y,'exp--Y/,cal~) z 

where N is the number of experimental values and Yrepresents the heat flow measured 
(exp) or calculated (calc) from the kinetic parameters. Relative errors have been 
computed by comparing the values obtained to those of a reference (the values 
mentioned are always absolute relative errors). The study revealed the importance of 
the resolution of the thermal curve recording, especially for the Freeman-Carroll  and 
Ellerstein methods, with an increase in the relative errors on all the kinetic parameters 
when the number of points is decreased [1]. The Freeman-Carroll  method, which has 
been the subject of criticism, gave accurate results for relative errors on the kinetic 
parameters, while for modelling purposes, the LSM values were always higher than 
with the Achar-Brindley-Sharp and multiple linear regression methods. This first 
study may at least explain the disagreement between authors in regard to this method. 
It is known that this method is sensitive to the scattering of the data; hence the series of 
simulations with additional noise presented here will allow investigation of the effect of 
experimental errors on the determination of the kinetic parameters. 

2. Numerical simulations 

Thermal analysis is an important tool in the characterization of reaction kinetics in 
thermosetting systems. Our interest in this field is not recent, and since our first 
investigation ofcrosslinking in epoxy-novolac resin [8], we have attempted to show the 
various sources of errors that can arise in these kinds of characterizations. Simulations 
may be used after evaluation of the level of noise, depending on the apparatus used, and 
of the order of magnitude of the thermodynamic and kinetic parameters involved by 
the transformation studied. The generation of the simulated data was previously 
presented [1]. In this study, the parameters used in the simulations were taken as: heat 
of cure Q, - 77 J (taken as negative for an exothermic reaction); scanning rate V, 
5 ° min 1; kinetic order n, 2; logarithm of the pre-exponential factor Ink 0, 19; activation 
energy Ea, 77 kJ mol 1. These values were previously obtained from an experimental 
polymerization [9] that can be fitted [10] in the 10-80% kinetic interval with the 
kinetic homogeneous law. This law is expressed as f (~ i )=  ( 1 -  ~i)", where ~i is the 
degree of conversion at time i. So, each ~ can be computed as previously mentioned Eli, 
and the computation is stopped for an ~ value near to one ( > 0.999999). Because of the 
very precise results previously obtained with 6932 points (that is to say 780 points in the 
kinetic interval of 10-90% retained for the simulations), this value has been kept in this 
work and in that condition; the relative error on the heat of reaction was 9.66 x 10-6 for 
simulated data without noise, using a linear baseline extrapolation and a trapezoidal 
integration [-1]. 

In the case of experimental measurements of temperature and power, simulations 
must take into account the effect of noise on these two measurements. To test the effect 
of noise in the recovery of reaction kinetic parameters, two types of pseudo-random 
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no ise  can  be gene ra t ed ,  a p s e u d o - g a u s s i a n  r a n d o m  noise  and  a p s e u d o - r a n d o m  noise.  

T h e  a c c u r a c y  of  the  m e t h o d s  was e v a l u a t e d  us ing  dif ferent  a m o u n t s  o f  noise.  T h e  no i se  

va lues  were  c h o s e n  in r e g a r d  to  the  s t a n d a r d  d e v i a t i o n  o f  the  noise  on  the  p o w e r  o f  the  

a p p a r a t u s  used  ( D S C -  111 Se ta ram) ,  wh ich  was  e v a l u a t e d  in the  t e m p e r a t u r e  d o m a i n  of  

o u r  in te res t  to a va lue  of  a b o u t  0.07. 

3. Results of  numerical simulations 

E v a l u a t i o n  o f  the  k ine t ic  p a r a m e t e r s  was  p e r f o r m e d  on  the  ar t i f ic ial  c r ea t ed  d a t a  by 

us ing  a c o m p u t e r  p r o g r a m  desc r ibed  e l sewhere  [7].  In  this p r o g r a m ,  the  m u l t i p l e  l inear  

r eg ress ion  m e t h o d  us ing  a S e s t a k - B e r g g r e n  m o d e l  wi th  two  k ine t ic  e x p o n e n t s  m a n d  n, 

d e n o t e d  MLR(m,n) ,  was  added .  Th is  e q u a t i o n  was so lved  us ing  th ree  mu l t i p l e  l inear  

r eg ress ion  a lgo r i t hms ,  the  gaus s i an -e l im ina t i on ,  the  p a r t i a l - p i v o t i n g  a n d  the  gauss-  

seidel m e t h o d s .  In  this case, this m e t h o d  m a y  be p e r f o r m e d  t a k i n g  the  l o g a r i t h m i c  f o r m  

of  the  r eac t i on  ra te  e q u a t i o n  

in (dc~'~ = in ko Ea \ d t / i  - ~ - i i + m l n ( I x i ) + n l n (  1 - ~ i )  

with  

~i = HI/Q 

where  R is the  un ive r sa l  gas  c o n s t a n t  (8.31 J m o l  - 1 K 1), Hi  the  pa r t i a l  a r ea  c o m p u t e d  

at  t ime  i a n d  T i the  a b s o l u t e  t e m p e r a t u r e  at t ime  i. 

S i m u l a t i o n s  p e r f o r m e d  us ing  n o n - g a u s s i a n  noise  led to  s imi lar  c o n c l u s i o n s  as those  

wi th  gauss i an  noise,  so we p resen t  he re  on ly  the  resul ts  o b t a i n e d  wi th  gauss i an  noise.  

V a r i a t i o n s  be tween  s i m u l a t i o n s  for  the  s a m e  level of  noise  were  s tudied,  a n d  the  

a v e r a g e  of  five sepa ra t e  s i m u l a t i o n s  was used to o b t a i n  the m e a n  re la t ive  e r ro r s  on  

Table 1 
Kinetic parameters obtained for simulated data without noise [-1] using the Achar-Brindley-Sharp (ABS), 
multiple linear regression (MLR(n)), Freeman-Carroll (FC) and Ellerstein (EL) methods 

na,b in ko a,b Eaa ,b  rl c r c LSM d 

ABS 2.00 18.99520 76.96786 - 1.0000000 2.36 x 10 -6 Step 10 2 
1.99986 18.99322 76.96193 1.0000000 9.68 x 10 -s Step 10 6 

MLR(n) 1.99987 18.99330 76.96216 8.20 × 10 8 
FC 1.99987 18.99339 76.96273 - 1.0000000 - 1.0000000 5.90 × 10 s 
EL 1.99984 18.99300 76.96167 - 1.0000000 - 1.0000000 1.12 x 10 4 

a n, kinetic exponent; Ink o, logarithm of pre-exponential factor; E a, activation energy (kJ mol - 1). 
b Theoretical parameters: n = 2; In k 0 = 19; E a = 77 kJ mol- 1. 
c rl ' correlation coefficient of the first-step calculation of the Freeman-Carroll and Ellerstein methods; r, 

correlation coefficient. 
d LSM, fit of the calculated curve with the simulated one. 
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the kinetic parameters. In order to estimate the amplitude of the noise compared 
to the signal, a parameter is given (npmr) that represents the noise to peak-maximum 
ratio. 

To perform comparisons, Table 1 gives the results previously obtained without noise 
with the Achar-Brindley-Sharp, Freeman-Carroll ,  Ellerstein and multiple linear 
regression MLR(n) methods [1]. The results obtained with the three other multiple 
linear regression algorithms: the gaussian-elimination, the partial-pivoting algorithm 
and the gauss-seidel algorithm presented in Table 2 are very different from those 
previously obtained in Table 1. The gauss-seidel algorithm is able to find a solution for 
a tolerance of 10 10, but the exponent m obtained is not equal to zero and the kinetic 
parameters are different from the reference value. Furthermore, the very good accuracy 
between simulated and computed data (LSM) would not allow the elimination of these 
methods, in the case of the study of an unknown transformation. Absolute relative 
errors are reported in Table 3. 

Tab le  2 

Kine t i c  p a r a m e t e r s  o b t a i n e d  for  s imu la t ed  d a t a  w i t h o u t  noise,  us ing  va r i ous  a l g o r i t h m s  (GE,  P P ,  GS)  for  the 

mul t ip le  l inear  regress ion  m e t h o d  M L R ( m ,  n) 

Ea a m b n t, In ko ° a L S M  a 

G E / P P  c 74.00431 0 .03582 1.96451 18.06491 2.48 × 10 8 
G S  c 45.14953 0,38521 1.61957 9 .00814 6.02 x 10 -6  

a F o r  a b b r e v i a t i o n s  see T a b l e  1. 
b m a n d  n a re  kinet ic  exponen t s .  

c M L R ( m ,  n), mul t ip le  l inear  regress ion  m e t h o d  wi th  t w o  kinet ic  exponen t s ;  G E ,  gaus s i an -e l im ina t i on ;  P P ,  

pa r t i a l -p ivo t ing ;  GS,  gauss-seidel  ( to lerance ,  10 ~°). 

Tab le  3 

Relat ive e r ro r s  (RE) for  the  A c h a r - B r i n d l e y  S h a r p ( A B S ) , m u l t i p l e l i n e a r  r e g r e s s i o n ( M L R ( n ) , G E ,  P P ,  GS),  

F r e e m a n  Ca r ro l l  (FC) a n d  Ellerstein (EL) m e t h o d s  ( s imula ted  d a t a  w i t h o u t  noise) 

RE(n) a,b,c RE(In k0) a.b.c RE(E, )  a,b,c L S M  a 

ABS 5.00 x 10 3 2.52 x 10 - 4  4.17 x 10 _4 2.36 x 10 6 Step 10 - 2  

7.00 x 10 - 5  3.57 x 10 4 4.94 x 10 _4 9.68 x 10 -8  S tep  10 6 

M L R ( n )  6 . 7 3 x  10 5 3 . 5 3 x  10 4 4 . 9 1 x  10 - 4  8 . 2 0 x  10 8 
F C  6.40 x 10 -5  3.48 x 10 4 4.84 x 10 _4 5.90 x 10 -5  

E L  7 . 7 7 x  10 5 3 . 6 8 x  10 - 4  4 . 9 8 x  10 _4 1 . 1 2 x  10 4 

M L R ( m ,  n) 
G E / P P  1 . 7 7 x  10 z 4 . 9 2 x  10 2 3 . 8 9 x  10 -2  2 . 4 8 x  10 8 

G S  1 . 9 0 x 1 0  i 5 . 2 6 x 1 0  i 4 . 1 4 x 1 0 - 1  6 . 2 0 x  1 0 - 6  

a F o r  a b b r e v i a t i o n s  see Tab les  1 a n d  2. 
b RE(x) ,  relat ive e r r o r  o n  the  p a r a m e t e r  x. 
c To ta l  hea t  of  cure  Q = - 7 6 9 9 9 . 2 6 m J ,  RE(Q)  = 9 . 6 6  × 10 6. 
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3.1. Noise on the power signal 

In a first step, the noise was only added to the power signal, in order to simulate 
experiments where only the power is measured and to separate each effect. This is 
effectively performed in some commercial calorimeters. In that case, the temperature 
T of a flux-meter differential scanning calorimeter is simply computed from the 
temperature at the beginning of the experiment (To). 

The results presented in Tables 4-6 give an example of the values obtained for 
a simulation performed using additional gaussian noise (mean m = 0  and standard 
deviation tr =0.2). The discrimination between methods is achieved by comparing the 
average of the relative errors for various sets of five separate simulations with a same 
level of noise, presented in Table 7. If we compare the kinetic parameters recovered 
from the simulations with the lowest power noise (a = 0.05, Table 7) and without noise 
(Table 3), the activation energy is the parameter  least sensitive to the noise (an increase 
in the factor of the relative error of about 10); whereas for the logarithm of the 
pre-exponential factor, a factor of about 100 is observed in the increase in the relative 
error on the pre-exponential factor (not given in the tables) and on the reaction order. 

The variations of the LSM vs. the level of noise were not reported in this study but 
show a high increase for a level of noise greater than 0.2. The Freeman Carroll and 

T a b l e  4 

Kine t i c  p a r a m e t e r s  o b t a i n e d  for  s imu la t ed  d a t a  wi th  g a u s s i a n  r a n d o m  noise  on  the p o w e r " ,  us ing  the 

A c h a r - B r i n d l e y  S h a r p  (ABS), mul t ip le  l inear  regress ion  (MLR(n)),  F r e e m a n  C a r r o l l  (FC) a n d  Ellerstein 

(EL) m e t h o d s  

n b In k o b Ea b r l  b r b L S M  b 

ABS 1.94 18.56976 75.71 - 0 . 9 9 9 9 9 3 0  8.81 × 10 2 S tep  10 -2  
1.94 18.59916 75.80 - 0 . 9 9 9 9 9 3 1  8.49 x 10 2 S tep  10 6 

M L R ( n )  1.94 18.59328 75.78 8.55 x 10 2 

F C  1.96 18.87051 76.86 - 0 .6660603 - 0 .9999897 3.84 x l01 

E L  1.93 18.40760 75.66 - 0 . 8 0 4 1 0 2 4  - 0 . 9 9 9 9 9 1 3  1.13 × 102 

" Charac t e r i s t i c s  of  the noise: m e a n  = 0, s t a n d a r d  dev i a t i on  = 0 . 2 .  

b F o r  a b b r e v i a t i o n s  see T a b l e  1. 

T a b l e  5 
Kine t i c  p a r a m e t e r s  o b t a i n e d  for  s imu la t ed  d a t a  wi th  g a u s s i a n  r a n d o m  noise o n  the p o w e r "  us ing  va r i ous  

a l g o r i t h m s  (GE,  P P ,  GS)  for  the mul t ip le  l inear  regress ion  m e t h o d  M L R ( m , n )  

Ea b m b n b l nko  b L S M  b 

G E / P P  - 15.51219 1.09546 0.86958 - 10.05836 4.43 × 10 2 
G S  b 45.20313 3.67001 1.58259 8.99612 6.21 × 10 - 2  

" C h a r a c t e r i s t i c s  o f  the  noise: m e a n  = 0, s t a n d a r d  dev ia t ion  = 0.2. 

b F o r  a b b r e v i a t i o n s  see Tab les  1 a n d  2. 
c To le rance ,  10 7. 
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Tab le  6 

Relat ive e r ro r s  (RE) o b t a i n e d  for  s imula ted  d a t a  wi th  g a u s s i a n  r a n d o m  noise  on  the power ,  us ing  the 

A c h a r - B r i n d l e y  S h a r p ( A B S ) , m u l t i p l e l i n e a r  r e g r e s s i o n ( M L R ( n ) , G E ,  P P ,  GS),  F r e e m a n ~ a r r o l l ( F C ) a n d  

Ellerstein (EL) m e t h o d s  

RE(n)" 'b  RE(In ko) ,.b RE(Ea) ,.b L S M  a 

ABS 3 . 0 0 x  10 z 2 . 2 6 x  10 2 1 . 6 7 x  10 -2  8 . 8 1 x 1 0  2 S t e p l 0  2 

2 . 9 0 x  10 2 2 . 1 1 x  10 : 1 . 5 6 x  10 z 8 . 4 9 x  10 - z  S t e p l 0  6 

M L R ( n )  2 . 9 2 x  10 -2  2 . 1 4 x 1 0  -2  1 . 5 8 x 1 0  2 8 . 5 5 x 1 0  2 

F C  1 . 9 5 x  10 2 6 . 8 2 x  10 3 1 . 7 8 x  10 -3  3 . 8 4 x  10 l 

E L  3.57 x 10 2 3.12 )< ]0  2 1.74 x 10 2 1.13 x 10 z 

M L R ( m ,  n) 
G E / P P  5 . 6 5 x  10 i 1 . 5 3 x  10 ° 1 . 2 0 x  10 ° 4 . 4 3 x  1 0 - z  E ~ , n < 0  
G S  2.09 x 10 i 5.27 x 10 1 4.13 x 10 1 6.21 x 10 -2  

F o r  a b b r e v i a t i o n s  see Tab les  1 3. 
b To ta l  hea t  of  cure  Q = - 76193 .39  mJ ,  RE (Q) = 1.05 x 10 a. 

c Cha rac t e r i s t i c s  o f  the  noise: m e a n  = 0, s t a n d a r d  dev ia t ion  = 0.2. 

Ellerstein methods led to higher LSM values (as an example 38.4 and 113 respectively 
for the Freeman-Carroll  and Ellerstein methods in Table 6). This confirms the 
hypothesis previously formulated [1] that the Freeman-Carroll  method may be more 
accurate in the determination of the kinetic parameters if the number of data points is 
sufficient, but is not the more efficient method for modelling purposes [8,10]. 

The use of a sharper iterative step involving an increase in the computation time for 
the Acha~Brindley-Sharp method (Tables 4 and 6, step 10 6), induces little decrease in 
the relative errors and LSM values. In the presence of noise, the decrease in the LSM 
value is weak compared to that obtained with noiseless data. 

As with the noiseless data of Table 2, multiple linear regression algorithms per- 
formed for two kinetic exponents give an example of the existence of local minima, 
leading to negative values for the activation energy and the reaction order (gaussian- 
elimination and partial-pivoting algorithms, Table 5). This explains the high values 
observed for the relative errors, while the LSM values are of the same order as with the 
Achar-Brindley-Sharp and the multiple linear regression MLR(n) methods. 

Tables 6 and 7 show that all the methods presented gave a reasonable estimation of 
the activation energy and of the reaction order for a noise level of 0.2. Beyond that, the 
relative errors are significantly increased, especially for the pre-exponential factor and 
for the reaction order, when the noise level is increased from 0.2 to 0.4 (Fig. 1 for Ea) and 
then from 0.4 to 0.6. When the noise level is increased up to 0.8, the relative error on the 
logarithm of the pre-exponential factor and on the reaction order becomes higher for 
the Freeman-Carroll  method than for the multiple linear MLR(n) method. The 
Ellerstein method led to the highest relative errors, while, in most cases, the Freeman-  
Carroll method led to the lowest. The Achar-Brindley-Sharp and the multiple linear 
MLR(n) methods always led to accurate results. As with noiseless simulation, the 
lowest accuracy is found for the pre-exponential factor because, obviously, taking the 
antilogarithm of the logarithmic form magnifies the errors. As an example, for a 0.2 
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Table 7 

Average relative errors obtained for simulated data with various amounts of gaussian random noise on the 
power, using the Achar-Brindley-Sharp (ABS), multiple linear regression MLR(n), Freeman-Carroll  ( F C )  

and Ellerstein (EL) methods 

a c RE(Q) a npmr b Method RE(n)" RE(lnko) a RE(E.)" 

0.05 2.90 x 10 3 0 . 3 6 %  

0.1 5.00 × 10 3 0 . 8 2 %  

0.2 1.15 × 10 - 2  1 . 4 5 %  

0.4 2 . 1 6 ×  10 z 3 . 1 8 %  

0.8 3.67 × 10 2 6 . 3 6 %  

A B S  1.20 x 10 z 1.03 x 10 - 2  7.73 × 10 - 3  

M L R ( n )  1.04 x 10 - 2  7.93 × 10 3 6.01 × 10 3 

F C  8.71 × 10 3 5.32 × 10 3 2.82 × 10 3 

E L  1.24 x 10 2 1.09 x 10 2 6.68 N 10 3 

A B S  2 . 2 0 ×  10 - 2  1 . 7 3 ×  10 2 1 . 2 9 ×  10 2 

M L R ( n )  2.13 x 10 2 1.63 × 10 - 2  1.21 × 10 - z  

F C  1.78 x 10 - 2  1.43 × 10 - 2  8.93 × 10 3 

E L  2 . 5 5 ×  10 z 2 . 2 6 ×  10 2 1 . 3 6 x  1 0 - z  

A B S  4.60 × 10 z 3.49 × 10 - 2  2.55 × 10 - 2  

M L R ( n )  4 .56 x 10 z 3.44 x 10 z 2.51 x 10 - 2  

F C  3 . 9 5 x  10 e 2 . 5 4 x 1 0  2 1 . 3 4 x  10 z 

E L  5 . 5 4 x  10 -2  4 . 8 9 × 1 0  z 2 . 7 9 x 1 0  z 

A B S  1.31 x 10 1 1.04 x 1 0 - 1  7.58 × 1 0 - 2  

M L R ( n )  1 . 2 7 x  10 -1 9 . 7 7 ×  10 a 7 . 1 2 × 1 0  2 

F C  1 . 1 0 x  10 -1  7 . 3 7 ×  10 2 3 . 8 0 ×  10 z 

E L  1 . 4 7 ×  10 1 1 . 2 7 x  10 1 7 . 3 6 x  10 2 

A B S  2 . 0 4 × 1 0  -1 1 . 6 1 × 1 0  x 1 . 1 7 x 1 0  1 

M L R ( n )  1.95 × 10 1 1.47 × 1 0 - 1  1.07 × 1 0 - 1  

F C  2.02 × 1 0 - 1  1.58 × 1 0 - 1  8.30 × 10 2 

E L  2 . 2 7 ×  10 i 1 . 9 4 ×  1 0 - 1  1 . 0 7 ×  1 0 - 1  

a For abbreviations see Tables 1 and 3. 

b npmr, noise to peak-maximum ratio. 
c Characteristics of the noise: mean = 0, standard deviation a = 0.2. 

noise level, a mean value of 161% is found for the pre-exponential factor with the 
Ellerstein method, while the relative error on its logarithm corresponds only to 4.89% 
(Table 7). As the pre-exponential factor is used in the computation of the LSM, this 
statement, associated with the low correlation coefficients of the first step (r 1, Table 4), 
explains the high LSM values obtained with this method. The Freeman-Carroll 
method often led to the lowest average relative error for the kinetic parameters, within 
an approximate range of 0.3 8% for the activation energy, 0.9-20% for the reaction 
order, and 0.5 16% for the logarithm of the pre-exponential factor (Table 7). The 
results obtained from the Achar-Brindley-Sharp and multiple linear regression 
MLR(n) methods are very similar, these last two methods leading to the lowest LSM 
values. As an example, with the multiple linear regression method (MLR(n) Table 7), an 
approximate range of 0.6-11% is found for the activation energy, 1-19.5% for the 
reaction order, and 0.8-15% for the logarithm of the pre-exponential factor. 
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Fig. 1. Average relative errors on the activation energy vs. the standard deviation of gaussian noise applied 
on the power, for the multiple linear regression (MLR(n)), the Achar Brindley-Sharp (ABS), the Freeman 
Carroll (FC) and the Ellerstein (EL) methods. 

The analysis of the standard deviations of the kinetic parameters shows that the 
lowest values are found for the reaction order, then for the activation energy, and finally 
for the pre-exponential factor. When the noise is increased from a = 0.05 to a = 0.2, 
a multiplying factor of approximately ten is found for the reaction order and for the 
activation energy, while this factor is about twenty for the pre-exponential factor. For  
the same level of noise, the different methods give very similar standard deviations 
except for that of Ellerstein, for which the values are always higher. There is a tendency 
for the Freeman-Carrol l  method to give the lowest deviations. 

The parameter  called An has been calculated for the Freeman-Carrol l  method 
according to Jerez [11]. This parameter  is expressed as An = ay (1 -  r2) 1/2, where ay 

represents the standard deviation of the ordinates, and gives an estimation of the 
absolute error on the reaction order. Fig. 2 shows a good correlation between various 
relative errors on the reaction order for each level of noise and this parameter  (divided 
by the reference value of the reaction order). Nevertheless, the values given by these two 
parameters are different (all these values are the average for 5 sets). 

3.2. Noise on the power and temperature signals 

In the case of joint power and temperature noise, the standard deviation of the noise 
was increased from 0.01 up to a maximum level of 0.4. The Achar-Brindley-Sharp and 
multiple linear regression MLR(n) methods show a similar level of accuracy (Tables 
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Fig. 2. Average relat ive errors  on the react ion order  ob ta ined  wi th  the F r e e m a n - C a r r o l l  (FC) me thod  vs. the 

p a r a m e t e r  An, for var ious  s t andard  dev ia t ions  of gauss ian  noise (0, 0.05, 0.1, 0.2, 0.4 and  0.8), appl ied  on the 

power.  

Table 8 
Kinetic parameters obtained for simulated data with gaussian random noise on the power and on the 
temperature a, using the Achar Brindley-Sharp (ABS), multiple linear regression (MLR(n)), Freeman 
Carroll (FC) and Ellerstein (EL) methods 

n b l n k o  b Ea  b r l  b r b L S M  b 

ABS 2.03 19.18981 77.54 - 0 . 9 9 9 9 3 5 3  1.27 x 10 ° Step 10 z 

2.03 19.16683 77.47 - 0 . 9 9 9 9 3 5 3  1.26 x 10 ° Step 10 -6 

MLR(n)  2.02 19.10889 77.30 - 1.26 x 10 ° 
FC  --0.50 - 1 6 . 5 1 6 2 4  3.79 -0 .1798115  - 0 . 7 5 1 2 4 3 9  6.77 x 103 

EL 1.21 7.54782 61.67 - 0 . 0 5 7 1 9 5 8  - 0 . 9 8 1 4 3 8 9  6.74 x 103 

a Charac ter i s t ics  of the noise: mean  = 0, s t andard  dev ia t ion  a = 0.2. 
b Fo r  abbrev ia t ions  see Table  1. 

8 10). The mul t ip le  regression me thods  with two kinetic exponents  led to very different 
pa rame te r s  from those of the reference (Table 9), while the L S M  values are the lowest.  
The average of  the relat ive er rors  for five separa te  sets is presented  in Table  11 where the 
p a r a m e t e r  noted  A T  gives the ampl i tude  of the noise on the tempera ture .  F o r  the 
lowest  noise level (a t empera tu re  accuracy  of A T =  0.1 K and  a noise to p e a k - m a x i m u m  
rat io  n p m r  = 0.082%), s imilar  relat ive er rors  are found for the A c h a r - B r i n d l e y - S h a r p ,  
Ellerstein and mul t ip le  regression methods ,  while the relat ive er ror  on the loga r i thm of  
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Table 9 

Kinetic parameters obtained for simulated data with gaussian random noise on the power and on the 
temperature a, using various algorithms (GE,  PP,  GS) for the multiple linear regression method MLR(m,  n) 

Line Ea b m b n b In k o b LSM b 

G E / P P  0.08729 9.36774 1.09357 5.12547 4.36 × 10-  2 

GS  ~ 45.14758 3.91325 1.63778 9.01945 4.58 × 10 1 

a Characteristics of the noise: mean = 0, standard deviation a = 0.2. 

b For abbreviations see Tables 1 and 2. 

c Tolerance,  10 6. 

Table 10 

Relative errors (RE) for simulated data with gaussian random noise on the power and on the temperature a, 

using the Achar-Brindley Sharp (ABS), multiple linear regression (MLR(n),  MLR(m,n)) ,  Freeman Carroll 
(FC) and Ellerstein (EL) methods 

RE(n) bx RE(lnko)  b'~ RE(Ea) b,~ LSM b.c 

ABS 1.50 x 10 2 9.99 x 10 -3 7.03 x 10 -3  1.27 x 10 ° 

1 .42x 10 -2 8 . 78x  10 3 6 . 14x  10 3 1 .26x 10 ° 

M L R ( n )  1 .21x 10 2 5 .73x  10 3 3 . 89x  10 3 1 .26x 10 ° 

FC 1.25 x 10 ° 1.87 x 10 ° 9.51 x 10-1 6.77 x 103 

EL 3 .97x  10 1 6 . 03x  10 I 1 .99x 10-1 6 .7 4 x  103 

M LR (m, n) 

G E / P P  

GS 

4 .53×  10 1 1.27× 100 9 .99×  10-1 4 .36× 10 z 

1 . 8 1 x 1 0  1 5 . 2 5 × 1 0 - 1  4 . 1 4 × 1 0  1 4 . 5 8 x 1 0  1 

Step 10- 2 

Step 10 6 

a Characteristics of the noise: mean = 0, standard deviation a = 0.2. 

b For abbreviations see Table 3. 

c Total heat of cure Q = - 77 233.33 m J, RE(Q) = 3.03 × 10- 3. 

the pre-exponential factor of the Ellerstein method is higher. All the values obtained 
with the Freeman-Carroll method are higher. As the noise level increases to 0.05, i.e. 
AT = 0.5 K and npmr = 0.36%, this tendency increases drastically, leading to a distin- 
guishable set of values between the Freeman-Carroll and Ellerstein methods, and the 
other two methods (Fig. 3). So, the Freeman-Carroll method gives an average activa- 
tion energy, reaction order and logarithm of the pre-exponential factor which deviate 
from the reference values by about 66, 86 and 129%, respectively; for the Ellerstein 
method, the errors are respectively 58, 63 and 94%. Because of the scatter of the data 
kinetic points, the Freeman Carroll method is unable to describe the reaction kinetics, 
being too susceptible to low temperature and power noises. The example presented in 
Table 8 (a = 0.2) confirms the previous conclusion drawn for the correlation coeffi- 
cients r I of the Freeman-Carroll and Ellerstein methods, which explains the very high 
LSM values found, and this is in agreement with the results obtained experimentally 
[8-10].  This was also observed in the reduced interval (10-80%) for experimental data, 
where it has been shown that the reaction order model gives an accurate fit of the data. 
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Table 11 
Average relative errors obtained for simulated data with various amounts of gaussian random noise on the 
power and on the temperature, using the Achar Brindley Sharp(ABS), multiple linear regression (MLR(n)), 
Freeman Carroll (FC) and Ellerstein (EL) methods 

a" RE(Q) b npmr b AT c Method RE(n) b RE(In ko) b RE(Ea) b 

0.01 5.56 × 10 4 0.082% 0.1 

0.05 1.41 × 10 3 0.36% 0.4 

0.1 5.59 × 10 3 0.82% 0.9 

0.2 5.05 × 10 -3 1.45% 1.6 

0.4 2.05 x 10 2 3.18% 3.5 

ABS 5.00 × 10 3 1.92 × 10 -3 1.45 × 10 3 
MLR(n) 2.03 × 10 3 1.58 :,,: 10 -3 1.30 × 10 3 
FC 1.01× 10 - l  1.51x10 1 7.72:,,:10 2 
EL 7.38 × 10 3 1.06 × 10 2 6.78 × 10 -3 

ABS 8.00 × 10 3 6.38 × 10 -3 4.73 :,,: 10 -3 
MLR(n) 7.99 × 10 -3 6.19 × 10 3 4.59 x 10 3 
FC 8.64x 10 ~ 1.29× 10 ° 6 .58×10-1 
EL 6.32:,,:10 - I  9.40:,,:10 1 5.76:,,:10 1 

ABS 3.20 x 10 2 2.44 x 10 -2 1.81 x 10 -z 
MLR(n) 3.16 × 10 2 2.39 × 10 2 1.77 × 10 2 
FC 1.18 x 10 ° 1.75 × 100 8.86 x 10 1 
EL 5.54:,,:10 -1 8.27:,:10 t 5.53:,,:10 1 

ABS 1.90 × 10 -2 1.48 × 10 -2 1.10 × 10 -2 
MLR(n) 1.97 × 10 2 1.58 × 10 -2 1.17 × 10 -2 
FC 1.26 x 10 ° 1.88 × 10 ° 9.58 x 10-1 
EL 1.76 x 10 ° 2.64 x 10 ° 1.46 × 10 ° 

ABS 9.30 × 10  - 2  7.08 x 10 2 5.17 × 10 2 
MLR(n) 9.18 × 10 2 6.94 × 10 -2 5.06 × 10 -z 
FC 1.29 × 10 ° 1.94 × 10 ° 9.88 x 10 1 
EL 1.81 × 10 ° 2.71 x 10 ° 1.61 x 10 ° 

Characteristics of the noise: mean = 0, standard deviation a. 
b For abbreviations see Tables 1 3. 
c Amplitude of the error on the temperature. 

F o r  t h e s e  l a s t  t w o  m e t h o d s  t h e  p a r a m e t e r s  a r e  v e r y  d i f f e r en t  to  t h o s e  o f  t h e  r e f e r e n c e ,  

e v e n  l e a d i n g  to  n e g a t i v e  v a l u e s  fo r  t h e  F r e e m a n - C a r r o l l  m e t h o d .  

3.3. Smoothin9 data 

T h e  i n t e r e s t  in  a p r e - t r e a t m e n t  o f  n o i s y  d a t a  s u c h  as  f i l t e r ing ,  o r  t h e  e l a b o r a t i o n  o f  

k i n e t i c  m e t h o d s  less  s e n s i t i v e  to  n o i s y  s igna l s ,  is o b v i o u s  f o r  k i n e t i c  o r  m o d e l l i n g  

t r e a t m e n t s .  S m o o t h i n g  c r u d e  d a t a  is a s i m p l e  t e c h n i q u e ,  o f t e n  u s e d  in  a n a l y t i c a l  

c h e m i s t r y .  H e r e  w e  s h o w  t h e  r e s u l t s  o b t a i n e d  u s i n g  s u c h  a t r e a t m e n t ,  a n d  w e  wil l  g ive  

c o m p a r i s o n s  w i t h  o t h e r  t e c h n i q u e s  in  a f u t u r e  p a p e r .  I n  t h e  p r e s e n t  w o r k ,  t h e  

c o n v o l u t i o n  m e t h o d  a p p l i e d  u s e d  a p o l y n o m i a l  w i t h  i n t e r v a l s  o f  s e v e n  s u c c e s s i v e  

p o i n t s  [ 1 2 ] ,  w h i c h  w a s  f o u n d  a d e q u a t e  in  r e g a r d  to  t h e  d u a l  effect  o f  s m o o t h i n g .  

S m o o t h i n g  w a s  a l s o  a p p l i e d  o n  t h e  p u r e  s igna l s :  in  fact ,  it is k n o w n  t h a t  r u n n i n g  
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Fig. 3. Ave rage  relat ive e r r o r s  o n  the  ac t i va t i on  ene rgy  f ac to r  vs. the  s t a n d a r d  dev i a t i on  of  g a u s s i a n  noise  

app l i ed  on  the  p o w e r  a n d  o n  the t e m p e r a t u r e ,  for  the  mul t ip le  l inear  regress ion  (MLR(n)),  the  A c h a r -  

Br indley  S h a r p  (ABS), the  F r e e m a n - C a r r o l l  (FC) a n d  the  Ellerstein (EL) m e t h o d s .  

averages may distort values that are already smooth. The relative error on the heat of 
cure is significantly decreased for noisy data (factor 100) by using this technique. 

Results on pure and noisy signals are presented in Tables 12 and 13 in order to 
evaluate the filtering ability as well as the effect of smoothing itself. Applied to the pure 

T a b l e  12 

Relat ive e r ro r s  o b t a i n e d  for  s imu la t ed  d a t a  w i t h o u t  noise,  us ing  the A c h a ~ B r i n d l e y  S h a r p  (ABS), mul t ip le  

l inear  regress ion  (MLR(n)),  F r e e m a n  Ca r ro l l  (FC) a n d  Ellerstein (EL) m e t h o d s ,  before  a n d  af ter  s m o o t h i n g  

d a t a  

RE(n) ,.b RE(In ko) a,~ RE(E, )  a,b L S M  ~ 

ABS 5.00 x 10 3 2.52 x 10 - 4  4.17 x 10 - 4  2.36 x 10 6 

5.00 x 10 -3  2.54 x 10 - 4  4.17 x 10 , 4  2.39 x 10 6 S m o o t h  c 

M L R  (n) 6.73 x 10 -5  3.53 x 10 - 4  4.91 x 10- '* 8.20 x 10 - s  

6.78 x 10 5 3.53 x 10 _4 4.92 x 10 - 4  8.43 x 10 8 S m o o t h  c 

F C  6.40 x 10 - s  3.48 x 10 _4 4.84 x 10 - 4  5.90 x 10 5 

6.44 x 10 5 3.48 x 10 _4 4.84 x 10 - 4  6.02 x 10 s S m o o t h  ~ 

E L  7.77 x 10 -5  3.68 x 10 _4 4.98 x 10 , 4  1.12 x 10 4 

7.83 x 10 -5  3.69 x 10 - 4  4.98 x 10 , 4  1.14 x 10 4 S m o o t h  c 

F o r  a b b r e v i a t i o n s  see Tab les  1 a n d  3. 
b RE(Q)  = 9.66 × 10 _6 before s m o o t h i n g  a n d  

P a r a m e t e r s  o b t a i n e d  af te r  s m o o t h i n g  da t a .  

Re(Q) = 1.08 × 10 - s  af ter  s m o o t h i n g .  
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T a b l e  13 

Rela t ive  e r ro r s  o b t a i n e d  for  s imu la t ed  d a t a  wi th  g a u s s i a n  r a n d o m  noise on  the  p o w e r  a, us ing  the A c h a r  

Br indley  S h a r p  (ABS), mul t ip le  l inear  r eg ress ion  (MLR(n)),  F r e e m a n  Ca r ro l l  (FC) a n d  Ellerstein (EL) 

m e t h o d s ,  before  a n d  af ter  s m o o t h i n g  d a t a  

RE(n) b,c RE( ln  k0) bx RE(E . )  b.¢ L S M  b 

ABS 3.00 × 10 2 2.26 × 10 2 1.67 × 10 -2  8.81 × 10 2 

1.00 × 10 2 1.02 × 10 z 7.82 × 10 -3  2.14 × 10 2 S m o o t h  d 

M L R ( n )  2 . 9 2 x 1 0  2 2 . 1 4 × 1 0  2 1 . 5 8 x 1 0 - 2  8 . 5 5 × 1 0  2 

7.90 x 10 -3  7.12 x 10 3 5.51 x 10 -3  1.67 x 10 2 S m o o t h  d 

F C  1 . 9 5 x  10 z 6 . 8 2 x  10 3 1 . 7 8 x  10 _3 3 . 8 4 x  10 l 

1.25 x 10 -2  1.40 x 10 2 8.26 x 10 _3 2.06 x 101 S m o o t h  a 

E L  3 . 5 7 x  10 2 3 . 1 2 x 1 0  z 1 . 7 4 x 1 0 - 2  1 . 1 3 x 1 0 2  

1 . 4 8 x  10 -2  1 . 7 4 x  10 2 1.11 x 10 _2 1 . 5 5 x  101 S m o o t h  a 

a C h a r a c t e r i s t i c s  o f  the noise,  s ame  set as in Tab le  6. 

b F o r  a b b r e v i a t i o n s  see Tab l e s  1 a n d  3. 

¢ RE(Q)  = 1.05 x 10 2 before  s m o o t h i n g  a n d  RE(Q)  = 5.80 × 10 4 a f te r  smoo th ing .  

d P a r a m e t e r s  o b t a i n e d  af ter  s m o o t h i n g  da ta .  

signal, relative errors as well as LSM are found to be of the same order or a little less 
accurate (Table 12). Little decrease in the relative errors is observed when gaussian 
random noise is added onto the power (the same example as in Table 6, m = 0, a = 0.2). 
Nevertheless, the results remain of the same order of magnitude. For the Freeman 
Carroll method, the relative errors on the logarithm of the pre-exponential factor and 
on the activation energy are increased, while only the relative error on the reaction 
order (intercept of the Arrhenius plot) shows a little decrease. The correlation coeffi- 
cient of the first step is increased by smoothing the data (we found -0.93273 instead of 
-0 .66606 in Table 4). 

3.4. Discussion 

For multiple linear regression algorithms MLR(m,n) performed with two kinetic 
exponents, the simulations reveal a very important problem which deals with the 
existence of several local minima in the phase space that represent the solutions of the 
problem, and are in agreement with the conclusion of Sestak and Malek [13], relative 
to the statement that multiple linear regression methods can lead to incorrect results 
because any thermal analysis curve can be interpreted within the scope of several 
apparent  kinetic models (reaction order or Sestak-Berggren) depending on the value of 
the apparent activation energy. In our case, this problem was only encountered for the 
Sestak-Berggren model (MLR(m,n)). 

The precision that could be obtained on the kinetic parameters would depend on the 
peak shape, i.e. on the kinetic parameters, and on the inherent noise of the apparatus 
(this latter is generally much lower than the maximal values tested here). For fast 
reactions involving high energy exchanges, the thermal gradients inside the sample may 
induce large errors on the temperature, and so the kinetic parameter  accuracy would be 
lower. In that case, the increase of thermal gradients represents part  of the errors [-8, 9], 
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and may sometimes be reduced by using a lower heating rate. We proposed [9] the use 
of the sample temperature measurement as an interesting way of evaluating thermal 
gradients and their effects on kinetic parameters, in order to select the proper 
experimental conditions. In such a case, the sample temperature (measured) is not 
linearly increased; its value may sometimes be quite constant between two time 
intervals leading to very small numerators or zero-value numerators and so to the lack 
of application of the Ellerstein method. Furthermore, the kinetic parameters obtained 
with the Freeman Carroll or the Ellerstein method may be very different from those 
computed by other methods, because these methods are very sensitive to the presence 
of noise, especially on the temperature. This remark concerns particularly the Free- 
man Carroll method, the Ellerstein method always being the less accurate. In the 
presence of noise on the power and on the temperature, the Freeman Carroll and 
Ellerstein methods led to very high relative errors (100-270%) for the highest level of 
noise tested (a=0.4,  AT=3.5, n p m r = 3 % ) ,  while for the multiple linear regression 
MLR(n) or the Achar Brindley-Sharp methods, these errors vary from 5 to 9% for all 
the kinetic parameters. For the same level of power noise, the relative errors vary from 
7 to 13% for these last methods and from 4 to 15% for the former. A lower value for the 
multiple linear regression MLR(n) and the Achar-Brindley-Sharp methods is found in 
the case of a curve simulated with two noise components (in this case some errors may 
compensate themselves, Table 11). In this case, the precision on the temperature is 
about 4 K which is low, and we still observe a good accuracy for these last methods. So, 
the robustness of the methods vs. noise may be very different. This conclusion confirms 
the statement of Flynn [14] that the temperature imprecision is probably the greatest 
source of errors in thermal analysis and demonstrates that difference-differential 
methods are especially sensitive to this error. Nevertheless, systematic errors in 
temperature measurements (as with experimental data) may have much less effect than 
random errors [14], if the number of experimental points is sufficient [-1]. 

In the presence of noise, the analysis of the correlation coefficients (Tables 4 and 8) 
confirms the great difference between r a (first-step calculation) and r (second-step 
calculation). This is in agreement with the results obtained experimentally [8,10], and 
explains the differences observed between the Freeman Carroll and Ellerstein methods 
and the others. The correlation coefficient r I may become too removed from unity to 
evaluate the activation energy and the reaction order from the slope and intercept of the 
Arrhenius line. These methods do not retain the parameters that correspond to the best 
linearization of the Arrhenius plot, and so in the presence of noise the validity of the 
Arrhenius equation is not verified. This explains the great sensitivity of the Freeman-  
Carroll and Ellerstein methods to the presence of noise in the temperature measure- 
ments. However, for the Achar-Brindley Sharp method, the reaction order retained is 
the one that gives the best linearization of the Arrhenius plot (involving E a, n and In ko), 
and then the activation energy and the logarithm of the pre-exponential factor are 
deduced. For the multiple linear regression MLR(n) method, the parameters (Ea, n and 
In ko) are computed by minimizing the residual between the data and the plot of the 
Arrhenius line. Indeed, in the Freeman-Carrol l  or Ellerstein methods, the reaction 
order and the activation energy are computed in a first step from one Arrhenius plot 
(involving E a and n). Then the logarithm of the pre-exponential factor is deduced, with 
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a correlation coefficient of the first-step calculation generally low, and a correlation 
coefficient of the second step generally nearest to unity. So, the difference between these 
last methods and the Achar-Brindley-Sharp or the multiple linear regression MLR(n) 
methods may result in very good agreement between the kinetic parameters computed 
by these last kinds of methods in regard to the assumption made. 

We can confirm that the use of the LSM values provides a good method for the 
choice between the Freeman-Carroll ,  Ellerstein, Achar-Brindley Sharp and multiple 
linear regression MLR(n) methods. 

4. Conclusion 

The simulations with additional noise on power and on temperature were used as 
a way of selecting kinetic methods for an example of the given kinetic parameters of 
a cure. Discrimination between methods was achieved by comparing the average 
relative errors, the standard deviations and the fit between the kinetic model and 
known data. The differential methods used are not supported by mathematical 
approximations so that the multiple linear regression method for a reaction order 
model and the Achar-Brindley-Sharp method led to accurate relative errors and LSM 
values even when noise is added on both temperature and power signals, with relatively 
high amounts of noise. The simulations prompt us to take care using the multiple linear 
regression algorithms performed with two kinetic exponents, methods of modellization 
rather than kinetic methods for which the LSM values and the relative errors are not 
always correlated. The existence of local minima, in the modelling of a thermal curve 
constructed using a single-step model, clearly indicates that for the description of 
complex phenomena, requiring more than one kinetic exponent, the parameters 
obtained with a multiple linear regression method should be modelling parameters, 
depending on the experimental conditions, and not real kinetic parameters. 

On simulated thermoanalytical curves without noise, the Freeman-Carroll  and 
Ellerstein methods led to precise results when the highest number of kinetic points was 
used; these methods are still accurate with gaussian power noise for the determination 
of the kinetic parameters, but not for modelling purposes. Nevertheless, the Ellerstein 
method often led to the worst results. When gaussian random noise is added on both 
power and temperature, the Freeman-Carroll  method is very sensitive to small 
amounts of noise. These simulations give an explanation for the high LSM values that 
can be obtained for the Freeman-Carroll  and the Ellerstein methods and show the 
importance of the knowledge of the borrelation coefficient of the first-step calculation. 
This study clearly shows the limit of these two difference-differential methods for which 
the postulated assumption of the linearization of the Arrhenius plot is not always 
respected. 

A simple smoothing data technique led to a decrease in the error on the heat of cure 
and on the kinetic parameters, with an exception for the Freeman-Carroll  method. 
Therefore, this technique may be recommended after having quantified the effect of 
running averages. In that case, simulations are useful to select the optimal equation 
depending on the data that have to be smoothed. A future work will present the 
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in te res t ing  resul ts  o b t a i n e d  in f i l ter ing t h e r m o a n a l y t i c a l  data ,  by  app ly ing  new tech-  

niques.  
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