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Abstract 

The Gibbs free energy difference (A G) between the undercooled liquid and the corresponding 
equilibrium solid phases and the viscosity (~/) of the undercooled liquid are key variables in the 
metastable solidification of glass-forming melts. Novel expressions have been developed for A G 
recently by the authors using the hole theory of liquids as well as by expanding the free energies of 
liquid and solid phases in the form of the Taylor series. These expressions have also been used to 
derive the temperature-dependence of the viscosity of the undercooled melts. The present article 
summarises the procedures for obtaining the expressions for AG; their application in obtaining 
the temperature-dependence of the viscosity and relaxation phenomenon are also discussed. The 
procedure for the estimation of the ideal glass transition temperature has been reviewed to- 
gether with its importance in the glass-forming ability of materials. Glass formation has been 
discussed in terms of minimum volumes of constituent atoms, concentration~:oncentration 
fluctuations, driving force for nucleation and phase diagram features. The glass-forming ability 
of materials is also explained in terms of the ratio of specific heat difference to the entropy 
difference between liquid and solid phases at the melting point. Finally an attempt has been made 
to review the procedure for the estimation of the heat of crystallisation in terms of the viscosity of 
the melt. 
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1. Introduction 

Undercooling of melts is recognised as an important route for the production of 
novel metastable phases and microstructures. Their ease of formation and thermal 
stability are dependent on the thermodynamic properties of various metastable and 
stable phases which can occur in a given alloy system. Measurements of the ther- 
modynamic properties of undercooled melts at large departures from equilibrium are 
always difficult and sometimes impossible. Consequently, development of methods for 
assessing the thermodynamic properties of undercooled liquids (more generally for 
stable phases in the temperature ranges where they are metastable) is useful and 
important. These methods also naturally lead to a description of the viscous behaviour 
of such phases. In this communication, we shall outline procedures developed for this 
purpose. 

Undercooling of liquids leads to the formation of glasses if nucleation of crystalline 
phases can be avoided. The glass transition temperature depends, among other things, 
on the rate of cooling. To avoid an entropy catastrophe, Kauzmann [1] proposed the 
existence of an ideal glass transition temperature. The availability of a thermodynamic 
description of undercooled liquids also enables one to estimate the ideal glass transi- 
tion temperature. Empirical relationships expressing the temperature-dependence of 
the viscosity also lead to alternative estimates of this temperature. Procedures for 
evaluating the ideal glass transition temperature are discussed and values compared 
with experimental observations. 

We have next considered various factors governing glass formability. An evaluation 
of the critical cooling rate for glass formation is also discussed. The review concludes 
with an estimation of the enthalpy of crystallisation of glasses. 

2. Thermodynamic parameters of undercooled melts 

Experimental measurements of the thermodynamic parameters of the undercooled 
melts can be made only in a restricted range of temperature below the melting 
temperature T m because of their strong tendency to crystallise. The behaviour of 
the thermodynamic parameters from T m to the glass transition temperature Tg can 
only be predicted by extrapolation of high temperature data [2, 3] to the low 
temperature region. The Gibbs free energy difference A G between undercooled 
liquid and the corresponding equilibrium solid phases is an important parameter 
in the study of the nucleation and growth processes. It also plays a significant role in the 
study of the stability of amorphous phases. Elementary thermodynamic relations can, 
in principle, be used to estimate A G and other thermodynamic parameters from 
a knowledge of the experimental data of the specific heat difference A Cp between the 
phases. As indicated above, the metastability of the liquid precludes the experimental 
determination ofA Cp. Because of experimental difficulties, some expressions have been 
proposed [4-8] for estimation of A G. Most of these expressions are based on various 
types of assumption related to either the temperature-dependence of A Cp or its 
magnitude. 
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We [9] have recently reported a better expression for A G by deriving the tempera- 
ture-dependence of A Cp in the framework of the hole theory of liquids. It has also been 
demonstrated [10 12] that an accurate description of AG can also be provided by the 
use of the Taylor series expansion. These methods can be applied to estimate other 
thermodynamic parameters. Both procedures have been reviewed in the present 
section. 

2.1. The hole theory of liquids 

According to the hole theory, the liquid state is described as a quasi-crystalline lattice 
with a considerable number of vacant sites or holes; the number of holes is usually 
derived by minimising the change in the free energy due to introduction of holes into 
a lattice. Following earlier work of Frankel [13] as well as Hirai and Eyring [14, 15], 
the change in the free energy A G associated with the introduction o fN  h holes in a lattice 
having N, atoms or molecules at a temperature T can be expressed as 

A G = N h ( e ' h + P V h ) + k T  N h l n g h + n g a + N a l n N h + n N a  j r A S  h (1) 

where e~ represents the energy required for the formation of a hole of volume Vh; 
n = va/v h, represents the relative volume of hole and atoms; v a is the hard core volume 
per a tom or molecule; p represents the external pressure; k stands for the Boltzmann 
constant and AS h is the change in the entropy associated with the formation of a hole. 
Following Flory [16] and Sanchez [17] and minimising AG, Dubey and Rama- 
chandrarao [9] obtained N h as 

g h = nNag/(1 - g) (2) 

[ (e'h+pVh) A 1 (3) g = exp k T 

with A = 1 - 1In. An expression for ACp can be obtained by realising that ACp = 
dAH/d  T, where AH is the change in enthalpy. As a result ACp takes the form 

A Cp = n R(eh/R T)2 g (4) 

where e h is the hole formation energy per mole and R is the gas constant. 
An expression for A G can be obtained by utilising the above equation for A Cp and 

the thermodynamic relationships 

AG = A H -  T A S  (5) 

;? AH = AHm - AC,  d T (6) 

AS = ASm - (ACp/r)d  T (7) 

where AH m and AS m are enthalpy of fusion and entropy of fusion, respectively, AH 
represents the enthalpy difference between the undercooled liquid and equilibrium 
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solid and AS is the entropy difference between the phases. The resulting expression for 
A G is given by 

AG = ASmA T -  nR [-?3A Tg m - T(g m - g)] (8) 

with A T = T m - T, 7 = (eh/R To), 6 = (To/Tin), gm is the value ofg at T =  T m, and T O is the 
ideal glass transition temperature. Expanding the exponential terms of g and gm in 
Eq. (8) yields 

AG~-ASmAT- P 2T  L 3 T t-,=4 ~ ( - 1 ) " ~ y 6 ~ - )  (9) 

where AC~ represents the value of AC e at T =  T m. During the analysis of A G for 
a variety of materials, it is observed that the magnitude of the summation term in the 
above equation is negligible in comparison to other terms in the same bracket and can 
be ignored. Thus, the expression for A G can be expressed as 

A G = A S m A T - ~ - A T  2 1 3 

The magnitude of y6 for a variety of substances varies little and is less than unity. At the 
same time, the contribution of term y~$/3A TIT  is very small compared to unity in the 
temperature range T m to Tg and can be neglected without much loss of accuracy. As 
a result, Eq. (10) can be approximated as 

A T  2 
A G = A S m A T - A C ~  2 T  (11) 

The expression for AG reported in Eq. (11) requires AS m, AC~ and T m all of which 
can be measured easily. At the same time, it does not contain any parameter related to 
holes. It is interesting to compare the expression for A G reported by Dubey and 
Ramachandrarao with the earlier expressions. The first term in Eq. (11) represents the 
linear approximation for AG reported by Turnbull [4] 

A G = ASmA r (12) 

on the basis of the assumption A Cp = 0. Hoffman [5] assumed a constant but non-zero 
A Cp and proposed 

A G = ASmA T(T/Tm) (13) 

Thompson and Spaepen [6] also assumed a constant value of A Cp and related it to 
entropy of fusion through a relationship 

1 
ACp = ~AS m and c~- 

ln(Tm/To) 

They reported an expression for A G which takes the form 

2T  
A G = A S m A T - -  for c~= 1.0 (14) 

T m + T  
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The expressions reported in Eqs. (9~(11) are capable of explaining the temperature 
dependence ofA G very satisfactorily in the temperature range Tg to T m for the variety of 
materials, metallic glasses, oxide glasses and polymeric glasses as shown in Figs. (la), 
(lb) and (lc), respectively. It gives a very good response for pure metals also, as 
illustrated in Fig. 1 (d) for Ga. In Table 1A, an attempt is made to compare the values of 
AG obtained by the use of earlier expressions and Eq. (9) which clearly shows the 
greater accuracy of the expression for A G reported by Dubey and Ramachandrarao 
[9]. 

In a similar way, the expression for AH can also be derived with the help of Eqs. (4) 
and (6) and the resulting expression can be expressed as 

A H  = A H  m -  neh(g m -  g) (15) 

equivalently, 

AH=AHm__ACp Tm__~[l 76(AT'~ I " 11 
- - T \ T - / /  = 3 ~.. 

(16) 

Neglecting the lower value terms, one gets 

AH=AHm-AC;Tm 1-7 (17) 

One can also derive an expression for the entropy difference AS between the 
undercooled liquid and equilibrium solid with the aid of Eq. (4) and (7) and expression 
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Fig. l(a). The temperature-dependence of the Gibbs free energy difference between the undercooled liquid 
and the equilibrium solid phases in Auo.77 Geo. 136 Sio.o94. The experimental values are based on experimen- 
tal AC; data [3, 89]. 
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Fig. 1 (b). The temperature-dependence of the Gibbs free energy difference between the undercooled liquid 
and the equilibrium solid phases in B20 3. The experimental values are based on the measured value of A Cp 

[90,91]. 

obtained can be expressed as 

AS=ASm--nR[(1 +76)gm--(  l+)~'6~)g]Tm~ ~ (18) 

which can be approximated as 

(T m + T) (19) 
AS=ASm-AC~AT 2T 2 

The expressions for AH and AS play an important role in the study of the 
temperature-dependence of the viscosity of glass-forming liquids. These are discussed 
in more detail in the next section. 

2.2. The Taylor series expansion method 

An expression for AG has also been obtained by the authors [10] by expanding the 
free energies of the phases viz., undercooled liquid and solid, around their values at T m 
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Fig. l (c). The temperature-dependence of the Gibbs free energy difference between the undercooled liquid 
and the equilibrium solid phases in o-terphenyl. The experimental values were obtained using measured A Cp 
data [92]. 
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Fig. l(d). The temperature-dependence of the Gibbs free energy difference between the undercooled melt 
and the equilibrium solid phases in Ga. The experimental values were obtained using experimental A Cp data 
[89,93]. 
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Table 1A 
Free energy differences A G between the liquid and equilibrium solid phases of Auo.814 Si0 186 obtained from 
various expressions. The experimental values are based the measured values of A Cp [2] 

T/K AT/K AG/(J mol 1) 

Turnbull [4] Hoffmann [5] JC [7] TS [6] Eq. (9) Experimental 

600 36 557 526 549 541 549 550 
500 136 2105 1655 1979 1833 1971 1973 
400 236 3653 2298 3237 2821 3183 3194 
300 336 5202 2454 4266 3334 4067 4076 
290 346 5356 2442 4354 3355 4131 4163 

(Tg) 

Table 1B 
Free energy difference between the undercooled liquid and corresponding equilibrium solid phases obtained 
using Eq. (24). The experimental values are obtained using experimental A Cp [40, 97-104] 

AG/(J mol 1) 

Glycerol o-Terphenyl 1, 3, 5-Tri-e- 2-Methylpentane Ethanol 
naphthylbenzene 

T/T m Calc. Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. Exp. 

0.95 889 889 883 884 2066 2068 305 305 246 246 
0.90 1713 1716 1686 1693 3996 4009 591 592 480 480 
0.85 2470 2478 2390 2415 5757 5802 854 859 700 703 
0.80 3150 3169 2977 3036 7313 7422 1090 1103 905 911 
0.75 3747 3786 3425 3543 8626 8843 1295 1320 1093 1105 
0.70 4253 4322 1462 1508 1261 1282 
0.65 4649 4772 1406 1440 

Tg/T m 4761 4890 3487 3619 9185 9479 1554 1619 1575 1640 

in the form of Taylor's series expansion as 

i 10Gi 1 632G i A T Z _ I  633G i 1 634G i 
G i = G m - -  ~ - T  Tm A T + R !  t~r2  Tm - "  ~ - T m  A T 3  +~ ' I  ~ T ~ T m  A T 4  

(20) 

where i stands for phases L and S corresponding to undercooled liquid and equilibrium 
solid phases, respectively, and derivatives are taken at T = T m. The expansion of series 
extends the free energy versus temperature (G vs T) curves of each phase into their 
metastable regions. Using the appropriate forms of the thermodynamic derivatives of 
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G i and noting that G L - G s is zero at T =  T m, Eq. (20) can be expressed [10] as 

AC? 2 [- A T  AT 2 AT 3 1 
A G : G L - G S : A S m A T - ~ m A T  [ l + ~ + ~ m 2 + l ~ m  3 + ' ' "  

1 + l + ~ m  + l ~ m 2  + "" (21) 

Each series in the parentheses is a logarithmic series and can be summed to yield 

AT 2 t?ACp AT 3 (22) 
A G = A S m A T - A C ~ ( T m + T ~ ) +  8T r~ (Tin + T) 

It should be noted that while summing the series, where necessary the approximation 

ln(Tm/T ) = 2A T/(T m + T) (23) 

is used to simplify the expression. The contributions due to third term and other high 
order terms are very small compared to the contribution due to first two terms and it is 
sufficient to use 

AT 2 
A G = A S m A T - A C p  Tm+ T (24) 

for the estimation of A G. 
The expression for A G stated in Eq. (24) has been used successfully to estimate the 

Gibbs free energy change of the variety of materials and very good agreement is found 
between the calculated and experimental values of A G which can be seen in Table 1B 
for polymeric materials [18]. 

A similar Taylor's series expansion can also be carried out to get an expression for A S 
and the resulting expression takes the form 

AS=ASm__ZAC;  a r  aA G a_T2 1 ~:a G A r  ~ 
rm + ,~+  "'" ~ r  rm(rrn-..[-r) 4 ~?r 2 T ~  + (25) 

The expression for AS stated in Eq. (25) can be used to estimate the iso-entropic 
temperature or ideal glass transition temperature. At the same time, it can also be used 
in the study of relaxation behaviour of glass-forming liquids, which will be discussed in 
the next section. 

3. Viscous  behaviour o f  g la s s - forming  me l t s  

The theories of viscosity proposed by Cohen and Turnbull [19] and Hirai and 
Eyring [14, 15] are basically diffusion theories and the viscosity q and self-diffusion 
coefficient D can be related by the equation 

k T 2 ~z (26) 
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where k is the Boltzmann constant, N a is the Avogadro number and V is the molar 
volume. The free volume theory of viscosity is based on the idea that a certain critical 
volume must be available to a molecule before it performs a diffusive motion. The 
importance of the free volume in molecular transport has been stressed by a number of 
investigators [19 25]. Doolittle [20] proposed an empirical relationship for viscosity 
based on the free volume concept and expressed it as 

tl = A exp(B/ fT)  (27) 

where A and B are constants and fT  represents the relative free volume fraction. 
A theoretical explanation of the Doolittle equation was given by Cohen and Turnbull 
[19, 21, 22] as well as Bueche [26]. 

Usiiag the molecular kinetic theory, Adam and Gibbs [27] reported a procedure to 
develop an expression for the temperature-dependence of t/ on the basis of the 
configurational entropy of liquids. Ramachandrarao and co-workers [18, 28-30] have 
studied the viscous behaviour of the glass-forming melts in the framework of both the 
free volume concept and the configurational entropy concept of Adams and Gibbs 
[27]. They also rederived the WLF equation [31 33] to study the relaxation behaviour 
of glass-forming melts. These procedures are reviewed in the present section. 

3.1. The free volume approach 

Defining the free volume in the term of the excess volume arising from holes, 
Ramachandrarao et al. [28] were able to express the relative free volume fraction fw as 

f r / f m = l  + sin [ 2 { ( T -  T I ) / ( T  m --  To)}J (28) 

where fm stands for the relative free volume fraction at T =  T m. Consequently, use of 
Eq. (26) gives an expression for q. Taking the proper value of constants they reported 
the temperature-dependence of the viscosity of metallic glass Auo. v 7 Geo.136 Sio.o94 as 

0.3919 
logt/10 = 1.8968 + f ~  (29) 

which explains experimental data at both low and high temperatures and its response is 
much better compared to those given by expressions reported by Chen and Turnbull 
[3] and Polk and Turnbull [34], as can be seen from Fig. 2(a). 

Following the earlier work of Ramachandrarao et al. [28] and defining the free 
volume fraction with reference to the ideal glass transition temperature T o, Dubey and 
Ramachandrarao [29] expressed f r  as 

f T -  VT - VT° - g - go (30) 
Vro 1 - g  

where V r and Vwo are the volumes of the liquid at temperatures T and To, respectively, 
g and go are the volume fractions of holes at temperatures T and T o, respectively, and 
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Fig. 2(a). The temperature-dependence of the experimental [-3] and calculated viscosity of an 
Au0.77 Ge0.136 Sio.o94 alloy. Curve 1 is from an equation given by Chen and Turnbull [3], curve 2 is based on 
an expression reported by Polk and Turnbull [34] and curve 3 is based on Eq. (29). Points (*) represent 
experimental data. 

are the same as defined in Eq. (3). Substituting for fT in Eq. (27) and taking g as in 
Eq. (3), one gets 

rl= Atexp~! l_-9)Bl l= A2ex p B2 
( g--go ) (g--go) 

(31) 

where As and Bs are constants .  By a p p r o p r i a t e  subs t i tu t ion  o fg  and go in the terms for 
t h e r m o d y n a m i c  pa rame te r s  AG, A H  and AS as s tated earl ier  in Eqs. (8), (15) and  (18), 
D u b e y  and R a m a c h a n d r a r a o  [29] expressed t / in  the form 

nehB 3 
l n t / =  l n A  3 + [- AG - a G q 7  | (32) 

TAS L1 + TAS ] 

equivalent ly ,  

nehB4 (33) 
lnt l=lnA4 + A H _ A H o  
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where As and Bs are constants. A G O and A Ho represent the values of the corresponding 
parameters at T o. Substitution of Eq. (11) for AG in Eq. (32) gives 

m A_~m . Bs~h(1 -- A C  e / A S , , )  + B6 (TIn~T) z (34) l n r / = l n A  5 + RT-  

The above results clearly show that even the use of the concept of the free volume 
results in an expression for viscosity in terms of thermodynamic parameters. These 
expressions are capable of predicting the correct temperature-dependence of r/of the 
glass-forming melts; this has been illustrated in Figs. 2(b) and 2(c) for the metallic glass 
Auo.v7 Geo.136Sio.o94 and o-terphenyl, respectively [29]. 

3.2. The  configurational entropy approach 

In view of the molecular-kinetic theory proposed by Adam and Gibbs [27], the 
viscosity ~/of glass-forming liquids can be expressed as 

ln t t=  A exp (TTS~)  (35) 

where A and C are constants and ASc, the configurational entropy is given by 

sc -- f[C~(liquid) - Cv(glass)] d In r (36) A 

Most often, the experimentaly determined value of A Cp(glass) is very close to that of 
the crystal and shows similar temperature-dependence [35]. As a result of it, the 

140 

Ioo  

a-~6 o 
_o 

- 2  t - ~ ' 
0".5 10 15 2 0  2 5  

( 6 H - / ~ H o  ~-I ( M O L E  CAL-°~tO 3) 

Fig. 2(b). The variation of the viscosity of the undercooled melt of an Auo 77Geo.136Sio.o94 alloy with the 
thermodynamic function (AH-AHo) 1. Circles are experimental data [3] while solid line represents 
calculated values using Eq. (33). 
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Fig. 2(c). The variation of the viscosity of the undercooled melt of o-terphenyl with the thermodynamic 
function (AH-AHo)  1 Circles represent experimental data [92,94] while the solid line represents the 
calculated values obtained using Eq. (33). 

expression for AS stated in Eq. (25) can be used in place of AS c. As pointed out by 
Kauzmann, AS vanishes at the ideal glass transition temperature T o. Replacing T by T O 
in Eq. (25) gives 

0ACp AT 2 1 ~ AT°3 + = 0  (37) ATo + . . . .  
ASm-2AC~Tm+T o aT TmTm+To 4 e T  2 rmTm+To 

with AT o= T m -  T O 
Using Eq. (25) and (37) together with Eq. (23), one can express AS as 

gACp [Tmln(Y/To)-ATo] + ... AS=AC~ln(Tm/T°)- ~ Tm (38) 

Substitution of Eq. (38) for AS in Eq. (35) and consideration of higher derivatives of 
ACp yields an expression for ~/of the form 

B(I + To/T ) 
Inq=lnA+(T_To)[I+AI(T_To)+A2(T_To)2+A3(T_To)3+...] (39) 

where B =  C/2AC~, A 1, A2, A3, etc. are constants and depend on A C ;  and its 
derivatives with respect to T at T =  T m and T o. 

When A Cp varies linearly with temperature, as reported by several workers, [36-40], 
Eq. (39) reduces to 

C (1 + To/T ) 
- -  i aATo( 1 T_To~I (40) lnq=lnA+2AC;(T-To) 1-- Tm \ 2AToJ  
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with 

when ACp is independent of temperature, Eq. (39) reduces to 

C' 
lnr /= lnA -t 2 ( r -  To) (1 + T°/T) (41) 

with C'= C/AC;. In the vicinity of the glass transition temperature Tg, To/T is 
approximately 0.75, and Eq. (39) reduces to the frequently used Vogel-Fulcher equa- 
tion [,41,42] 

C" 
In ~/= in A -t (42) 

(T-To)  

with 

C" = 0.875C'. 

In general C" (constant) of the Vogel-Fulcher equation should be temperature- 
dependent at least to the extent of 

C = (1 + To/T ) (43) 

These results clearly show that the Vogel-Fulcher equation is, in fact, an approxi- 
mate expression arising from the more general expression of the form stated in Eq. (39) 
obtained by Dubey and Ramachandrarao [-18]. The complexity of the viscous behav- 
iour and consequently the curvature in the in t/vs 1/T curve are due to the temperature- 
dependence of A Cp. All other constants except A and B can be estimated from 
thermodynamic parameters and they depend on A Cp and its derivatives. It should also 
be noted that Eq. (39) with a single set of A and B is capable of explaining the 
temperature-dependence of t/in the entire temperature range of interest. To show the 
validity of Eq. (39), the variation of calculated and experimental values of r/ with 
function 

1 + To/T 
f(T) = 

(T TO)[1-~ATO(1Tm ~ T-W°~2AWoJj 

is shown in Figs. 2(d) and 2(e) for 1,3, 5-tri-~-naphthylbenzene and 2-methylpentane. 
For both materials A Cp is a linear function of T. These figures show the applicability of 
expression stated in Eq. (39) for viscosity with a single set of constants over a wide range 
of viscosity 1013-10 1 poise. 

3.3. Relaxation behaviour of #lass-formin9 melts 

Modifying the molecular kinetic theory of Gibbs and DiMarzio [43], Adam and 
Gibbs [27] studied the temperature-dependence of relaxation behaviour of the glass- 
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Fig. 2(d}. Comparison of the temperature-dependence of the viscosity of an undercooled liquid as obtained 
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Fig. 2(e). Comparison of the temperature-dependence of the viscosity of undercooled liquid as obtained 
from Eq. (40) (-) with experimental values (©) [96] for 2-methylpentane. 

forming liquids in the framework of configurational  entropy and they obtained 
a relationship akin to the well-known Wi t l i am-Lande l -Fer ry  (WLF) empirical equa- 
tion [31 33]. The W L F  equat ion takes the form 

C I ( T -  T~) (44) 
- l ° g a r ~ ( T )  - C 2 + ( T -  T~) 
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where ar~(T) = r(T)/r(T~), is the ratio of the relaxation times at temperature T and at 
some reference temperature T~. C 1 and C 2 are constants. Changing the reference 
temperature from T, to any other reference temperature. T'~, changes C a and C 2 in 
a correlated fashion to a new set of values C' 1 and C' 2 as 

C1C2 
C' 1 = (45) 

C 2 - -  ( T  s - -  T 2) 

C 2 = C 2 - ( T  S -- T~) (46) 

Considering A Cp as independent of temperature above Tg, Adam and Gibbs reported 
the values of constants C1 and C 2 in terms of the potential energy hindering the 
cooperative rearrangement per monomer segment (A/0, the configurational entropy 
AS(Ts) at T = T~, the Kauzmann temperature, To, the critical configurational entropy 
(S*), and AC~ "~ (ACp at Tg). 

Using the expression for AG based on the Taylor series expansion reported by Lele 
et al. [10] and following the earlier work of Adam and Gibbs [27], Dubey et al. [30] 
studied the temperature-dependence of the relaxation phenomena of glass-forming 
liquids by rederiving the WLF equation. In view of Adam and Gibbs model, one can 
express 

- - l n a T ' ( r ) = - -  -T~ASc(T~ ) TAS~(T 

where k is the Boltzmann constant. Differentiating A G as stated in Eq. (24) with respect 
to T one gets 

A m ] -  4T2_T_~)z 1] (48) 
A S :  A S  m -- Cp LiZm 

At the iso-entropic temperature, T o, AS becomes zero. Hence we can eliminate AS,, and 
express AS by 

4rm2ACp ~(2T m +To+ - r ) ( r -  To) ] (49) 
AS = (Tin 4- To) 2 L (Tm 4- T)2 

We can consider the entire AS to be the difference in configurational entropy 
between the melt and glass. This is in conformity with the experimental finding that the 
heat capacities of the polymer in its crystalline and amorphous states are almost 
identical [44, 45]. Use of Eqs. (47) and (49) furnishes 

A/~Sy ~ 1 (T-- L )  (50) 
-- In aTe(T)-- k T~AS~(T~) D 

with 

1 -~To/(Tm+ To) 1 (51) 
D = ( T -  T~)+(Ts- To) l -  1 +3[(Ts__-T~)/(~m+~)o)jTL/(T__To ) 

The shift factor for the use of Tg as a reference temperature can be obtained replacing 
T s by Tg in Eqs. (50) and (51). To satisfy Eqs. (45) and (46), it is necessary to replace T in 
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the coefficients of(T, - To) by Tg and of(Tg - To) by T~. Consequently this furnishes 

C ~ ( T -  Ts) (52) 
- I n  ar~(T) = ( T -  T~) + 7(T s - To) 

and 

with 

c i ( r -  T¢) 
- l n a T f l T ) = ( T -  Tg) + f l ( T g -  To) (53) 

1 -~TO/(T  m + To) 
~ = 1  I + 3 [ ( T _ T o ) / ( T m + T o ) ] + T s / ( T g _ T O )  (54) 

1 -32TO/(T m + To) (55) 
f l=  1 - 1 + 3 [ ( r g -  TO)/(Tm+ To)+ Tg/(T S - To) 

The WLF equation is generally valid in the temperature range Tg + 50 K and the 
change in the magnitude of the coefficient o f ( ~  - T o) in the denominator of the above 
stated Eq. (50) is very small in the temperature range cited above. As a result, replacing 
T by T s or Tg yields an average value of the coefficient. Consequently, ~ and/3 can be 
taken as constants. Comparing Eqs. (52) and (53) with the WLF equation, gives the 
expressions 

A~,s* 1 
C l =  k TsASo(Ts) (56) 

C2 = c~(Ts - To) (57) 

a , s *  1 
C i =  k TgASc(Tg) (58) 

C' 2 = fl(rg - TO) (59) 

As suggested by Kauzmann [1], when kinetic processes do not intervene an 
undercooled melt is forced to exhibit glass transition at the ideal glass transition 
temperature T o. As a result, it is quite reasonable to assume that A Cp attains its 
theoretical maximum at T =  T O and it gives T O = Tin~2. This has been found true for 
a large number of glass-forming melts [46]. Under this condition, expressions for :~ and 
/3 reduce to the simplified forms 

1 

c~ = (60) 
1 + (To/Ts)(Tg -- TO)/(Tg + To) 

1 
13 = (61) 

1 + (TO/T~)IL - To)/IL + To) 

A relationship between T~ and Tg can also be derived with the help of Eqs. (60) and 
(61) as 

1 ~ /3 C 2 (62) T ~ -  T g -  1 [3 
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Dubey et al. [30] have analysed a number of polymeric materials and have reported 
values of ~ and fl of 0.921 _+ 1.4% and 0.854 + 2.4%, respectively. The constancy of 

and fl implies that T i T  o and Tg /T  o vary in a correlated fashion. The average values of 
and fl predict T~--Tg : 50.6 K which is very close to the value T~ Tg = 50 K 

obtained using the WLF equation, whereas Adam and Gibbs reported T~ - Tg = 55 K. 
These findings together with constancy of product C 1 C 2 explain why WLF equation is 
so successful despite its empirical nature. These expressions are very useful for 
estimating the ideal glass transition temperature T o using relaxation data. 

4. The ideal glass transition temperature 

As pointed out by Kauzmann [1] a liquid loses its entropy at a faster rate than the 
equilibrium solid, resulting in the two phases having the same entropy at some 
temperature T O which is well above the absolute zero and below the Tg. T o is also known 
as the iso-entropic temperature or the Kauzmann temperature. Ifa liquid maintains its 
configurational equilibrium on cooling to the temperature region where it attains 
a large viscosity, then below T o the liquid will have lower entropy than the solid. Such 
a state cannot be achieved and the 'equilibrium' liquid must therefore transform into 
a solid at T o despite kinetic hindrances. Such a transformation should be of the 
second-order as argued by Gibbs and DiMarzio [43] as well as Adam and Gibbs [27]. 
On the other hand, Cohen and Grest [47] considered it to be a first-order transition. T o 
is an important parameter in the study of the thermodynamic and viscous behaviour of 
glass-forming liquids. Expressions for AS derived by Dubey and coworkers [9, 10] 
based on the hole theory (Eq. (18)) as well as the Taylor series expansion (Eq. (25)) can 
be used to estimate T o using thermodynamic data while Eqs. (39) and (50) are useful for 
estimation of T o using relaxation data. 

4.1. T o Based on thermodynamic  data 

As discussed earlier, A S becomes zero at T = T o. Recalling Eq. (18) and equating it to 
zero yields 

ASm = A C ;  F(1L ~÷-02) .=3 ~ (1 - 0 )  ~Nn! ' ) (N-0  N1 ÷0),[7)6,N_ z]J 

with 

3 = To /T  m (63) 

Eq. (63) cannot be solved analytically without approximation. At the same time, it can 
be realised that contribution due to the summation term is relatively small compared to 
the first term. Ignoring the lower value terms, an expression for estimation of T o can be 
obtained as 

A C ; ~ F l - 6 2  7 '6 (2+8) (1 -8 )  2 ] 
~ m  1 282 6 83 -- 1 = 0 (64) 
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which clearly shows that 6, i.e. To/T m is mainly controlled by the ratio A Cv/A S m which 
can be measured easily. Dubey and Ramachandrarao [48] estimated the value of the 
ideal glass transition temperature T O for a variety of materials and found the calculated 
values are very close to extrapolated values based on experimental measurements, as 
can be seen from Table 2. 

In a similar way an expression for AS based on the Taylor series expansion stated in 
Eq. (38) can also be used for the estimation of T O as 

OACp ~ f m T OACp ;ln(To~=0 (65) 
A S m - T m ~ T - T m + ( A C p -  I OT TmJ \TmJ 

The above stated equation is transcendental and can be solved by iterative pro- 
cedures. However, to have an analytical expression, Eq. (65) can be solved in the 
framework of the approximation stated in Eq. (23) and the resulting expression can be 
expressed as 

I l (ASm+2AC•)_+ ( A S m + 2 A C ~ )  2 - 8 A S m T  m ~ -  TmJ 

T° = T m -  2 0ACp (66) 

I o r  17- , 

If Tm[OACp/OT]r m is small enough compared to the other terms in Eq.(65), the 
expression for T O stated in Eq. (66) can further be simplified to yield 

T F 2D 1 
To : m L2 D _]_ 1 I (67) 

Table 2 
The ideal glass transition temperature T O obtained using Eqs. (63) and (64) and AC~/AS m of the glass- 
forming materials 

No. Substance Melting AC~/AS m 6 = To/T m Calculated Extrapolated 
temp. T/K value of To/K value of To/K 

1 B20 3 723 0.6373 0.4695 339 411 
2 Ca(NO3)2"4H20 315.5 2.0196 0.6434 203 202 
3 Cd(NO3)2-4HzO 333.4 1.7730 0.6081 202 198 
4 ZnCl 2 591 1.3687 0.4488 265 260 
5 As2S 3 585 1.2466 0.4423 259 270 
6 H2SO4"3H20 236.72 1.2510 0.5497 130 135 
7 CH3COOLi  560 2.1292 0.6705 376 381 
8 (CH3COO)2 Mg 335 1.8810 0.5943 199 209 
9 Glycerol 293 1.2667 0.4598 135 132 

10 Ethanol 158.5 0.7927 0.3891 62 58 
11 2-Methylpentane 119.55 0.9819 0.5091 61 59 
12 o-Terphenyl 328 1.4180 0.6121 200 248 
13 Mgo.814Gao.186 696 0.3845 0.3800 265 
14 Auo.814Sio.ls 6 636 0.5010 0.3145 200 200 
15 Auo,vvGeo.136Sio.x94 625 0.3956 0.3168 198 241.3 
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where D = A C~/A S m. The values of T o were estimated by Dubey and Ramachandrarao 
[18] for several materials using Eq. (66) and the results obtained, reported in Table 3, 
showed good agreement with experimental values. 

4.2. T o based on relaxation data 

As discussed earlier, viscosity data can also be used to estimate T O . From reports of 
earlier investigators [17,49, 50], it is often found that C 2 = T g -  T ~, where T ~ is the 
characteristic temperature of the Vogel-Fulcher equation [41,42] and is the same as T O 
of the empirical WLF equation [31, 33]. 

As discussed in an earlier section Dubey et al. [30] suggested that to estimate T o 
correctly from viscosity data obtained at temperatures greater than Tg it was necessary 
to incorporate either ~ or/~ (depending on the reference temperature used, T s or Tg respec- 
tively) in the WLF equation, i.e. one has to u s e  C 2 = ~(T s - T o) and C 2 = f l (Tg - To) as 
stated in Eqs. (57) and (59), respectively. Considering the universal nature of C 2 and 
using the values of T s and Tg compiled by William and co-workers [31 33], Dubey 
et al. [30] calculated T o for a large number of polymeric materials; their results are 
shown in Table 4. 

Finally, it is necessary to compare the values of T o derived from viscosity data with 
the values obtained from thermodynamic data. However, thermodynamic data are 
relatively scarce and we have attempted such a comparison for a few polymers only. 
The results obtained are reported in Table 5, which shows excellent agreement between 
T O derived from thermodynamic data and that from viscosity or other relaxation data. 
These values are far better than those evaluated from the Adam and Gibbs model. 

5. The glass-forming ability of materials 

The rapid solidification technique has established that all kinds of materials can form 
glasses irrespective of their bonding. The criteria of glass-forming ability of materials 
based on thermodynamic and structural concepts have, however, tended to be specific 
to classes of materials. For example, glass formation from oxides [51] can be explained 
on the basis of relative sizes of cationic and anionic atoms, Zachariasen's random 
network hypothesis, Smekal's mixed bonding, Sun's bond strength, etc., whereas low- 
order symmetry of the molecules, slow rotational isomerization from the liquid state to 
that required for crystallisation, and a high liquid viscosity are mainly responsible for 
glass formation in polymers [52]. In metallic systems a large number of binary, ternary 
and more complex alloys are known to yield the glassy structure, whereas it is still 
difficult to produce pure metal glasses. A variety of parameters such as the stabilisation 
of dense random packing by the metalloid, electronegativity, size difference between 
constituent atoms, etc., are supposed to be the controlling factors for glass formation in 
metallic materials [53-55]. Uhlmann and his co-workers [56, 57] studied the glass- 
forming ability of materials in terms of the kinetic concept using the formal theory of 
transformation, kinetics proposed by Johnson and Mehl [58] and Avrami [59]. 
Plotting the time temperature-transformation (T-T-T) diagrams, they estimated the 
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Table 5 
The ideal glass transition temperature T O for polymers. To T M  is the value based on the thermodynamic data, 
while To ~ is the value from relxation data using Eqs.(56}~62). T wLv is the value obtained using the 
conventional WLF equation and T A~ is value derived using Adam and Gibbs equation 

Material TjK TmlK ToC"'iK T"iK To w'-'<'K ToAC'iK 

Polyethylene 231 414 143.9 144.8 157.8 158.8 
Hevea rubber 200 421 132.8 135.8 146.4 171.2 
Polystyrene 354 513 299.3 300.3 306.4 331.1 
Poly(propylene oxide) 198 348 171.0 169.1 174.0 190.1 

critical cooling rate R c and suggested that materials can be classified with reference to 
their glass-forming ability on the basis of the magnitude of R c. 

Ramachandrarao and co-workers [60 63] studied the glass-forming ability of 
metallic materials in terms of minimum volume as well as concentration fluctuations. 
In view of Turnbull's [64] suggestions, Dubey and Ramachandrarao [65] reported the 
ease of glass formation on the basis of driving force for nucleation and phase diagram 
features. Using the kinetic concept, they [48] also studied the glass-forming ability of 
materials by deriving an expression to evaluate the nose temperature (Tn) of the T T-T 
diagram and reported that A C ~ / A S  m and 6( = To/Tm) are mainly responsible for fixing 
the values of T.. Thus glass-formation from materials can also be studied in terms of 
A C ~ / A  S m and the ideal glass transition temperature. These investigations are reviewed 
in this section. 

5.1. Min imum volume criterion 

From the results of several investigations [64, 66 69] related to the size differences of 
the constituent atoms, it is found that change in the atomic volume of the constituent 
elements play a significant role in the glass-forming ability of materials. It helps glass 
formation by reducing crystal growth and the homogeneous nucleation frequency by 
enhancing the viscosity of liquids. Consequently, the critical cooling rate for glass 
formation is lowered. In view of these findings Ramachandrarao [60] postulated that 
an alloy with the smallest possible molar volume should be the most prone to form 
a glass on rapid solidification, by virtue of its high viscosity. The Varley model [70] can 
be employed to estimate the volume change (A V) associated with alloying which helps 
to establish a relationship between atomic volume, atomic fraction and compres- 
sibility. If one considers a system consisting of N A solvent and N B solute atoms with 
atomic volumes V A and V~, respectively, the change in the mean atomic volume A V is 
given by [70] 

A v =  X A X . ( V A  -- V ~ ) ( V . ~ o .  -- VA~o~) 

VB(DBX A -~- VA(DAX B (68) 

where (~0 A and q~n are isothermal compressibilities of pure A and B, respectively, and X a 
and X n are atomic fractions of solvent and solute, respectively. As stated earlier, 
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a decrease in the mean atomic volume enhances the viscosity, and a liquid of certain 
composition showing maximum decrease in volume can be expected to have the 
maximum viscosity. Thus the critical composition )(B can be evaluated by differen- 
tiating Eq. (68) and equating the results to zero. Then )(R is given by 

1 
X B - (69) 

- ~/ VB~OB 

The use of Eq. (68) in the framework of the ideal volume Via yields Eq. (69) for )( R as 

1 (70)  
X B - I _ + ~  

Ramachandrarao [60] estimated 328 for a large number of alloys and found that the 
composition at which the binary liquid alloy volume is minimum invariably lies within 
the experimentally observed range of glass-forming composition in about 35 binary 
systems based on noble, alkaline earth and transition metals. 

5.2. Criterion based on concentrat ion f luc tuat ions  

Glass formation in metallic systems was first correlated by Turnbull [64] with the 
existence of deep eutectics in such systems. More generally, glass formation can be 
considered to be a reflection of the enhanced stability of the liquid phase in alloys. 
A quantitative measure of the liquid stability is provided by the concentration 

(o) Bhatia and concentration fluctuation structure factor in the longwave length limit, Scc. 
Thornton [71] have shown that 

S,c o) = Na ((A C) 2 ) (71) 

where ( ( AC ) : )  stands for the mean square fluctuations in concentration and AC is 
defined as 

A C  = X 2 A N I  - X 1 A N 2  (72) 
N~ 

where N a is the Avogadro number. The fluctuations in particle density of components 
1 and 2 of a binary system are denoted by AN~ and AN 2, respectively, whereas the 
atomic fractions are denoted by X 1 and X 2. Bhatia and Thornton have further shown 
that 

R T  
Sic 0 ) -  021~Gm/(~Z 2 (73) 

where A G  m is the free energy of mixing per mole at temperature T. Experimentally, 
S~ °) can be found by diffraction experiments or through thermodynamic measure- 
ments. Ramachandrarao et al. [61] first attempted a correlation between the glass- 
forming composition range with the composition dependence of S~ °). It is well known 
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that S~ °l tends to zero for liquids of compound forming systems at the stoichiometry of 
the compound while for ideal solutions 

S~ t°) = X1 X2 (74) 

Ramachandrarao et al. [61 ] analysed the composition-dependence of S~ °l for a number 
of binary systems and showed that if glass formation occurred, it was confined to 
a composition range where the S~ °~ values were close to S~ t°'. This condition is 
necessary but not sufficient. Further, it is independent of the absence or occurrence of 
compound formation. 

For a non-compound forming system, this criterion suggests that glass formation 
can occur over a wide composition range if the deviation from ideal solution behaviour 
is small. An example for this type is provided by the Pb-Sb system. For a system having 
a compound with stoichiometry AoB, Lele [72] has shown that 

~X2(1 - p X 2 ) [ l  - ( p +  1)Xz] for X 2 < 1/(1 +p)  
S~°)= (75) 

~ X 2 ( 1 - X 2 ) [ ( I + p ) X  2 1] for X 2 > l / ( l + p )  

where it was assumed that the liquid is fully associated in the terms of the model for 
associated solutions. This implies that for A~B)-rich liquids, the only species present 
are A(B) and ApB. The S~ °) values for such solutions are equal to those for ideal 
solutions only when 

2 
X2 - (76) 

p + l  

Systems such as A1 La, Mg-Ca and Mg-Zn show a minimum in S~ °~ at a stoichiometry 
corresponding to AzB. Glass formation is thus expected around X 2 = 0.66 and is, 
indeed, observed. 

A more subtle effect is produced when interactions between the associates or 
complexes and the unassociated atoms are important. A comparison of the Mg Ba and 
Mg Sr systems throws light on this aspect. Glass formation is known to occur only in 
the latter. Sastry et al. [62] analysed the thermodynamic data for liquid alloys for these 
systems and showed the existence of complexes with stoichiometries Mg 2Ba and 
Mg2Sr respectively. Glass formation could thus be expected at XMg = 1/3 for both 
systems. However, analysis using the regular associated solution model [63] showed 
strong repulsive interactions between the complex and unassociated atoms Mg-Ba and 
attractive interactions in Mg St. As a result, the lowering of the free energy of mixing at 
the likely glass-forming composition was greater for Mg-Sr liquids than that for 
Mg Ba liquids. This favours glass formation in Mg Sr alloys. 

5.3. Criterion based drivinq jbrce for nucleation 

In view of the Turnbull [-64] findings, Donald and Davies [73] tried to extend the 
applicability of the concept of the eutectic depth by defining the ideal liquidus 
temperature T~ ° as a weighted mean of the melting temperature of the component 
metals; this also failed to predict the glass-forming ability of materials. Whang [74] 
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suggested plotting the empirical reduced liquidus temperature TLR versus reduced 
eutectic composition XER to measure the glass-forming ability in systems showing 
extended solid solubility. He defined TLR as (T~ ° T L ) / T  L where T L is the observed 
liquidus temperature and 

T~ = fA TA + .L TB (77) 

where f a  andJB are atomic fractions of components A and B with melting temperatures 
T a and T B respectively. It should be noted that T~ is the same ideal liquidus 
temperature as defined by Donald and Davies. In general, Whang's approach predicts 
a wider glass-forming range than is experimentally observed. 

On the basis of these findings, it can be concluded that the miscibility in solid 
enhances the entropy of the phase and stabilises it with respect to pure metal and also 
counteracts the entropic stabilisation of the liquid. Consequently, it leads to elevation 
of the liquidus temperature and a decrease in the liquidus slope, which makes us realise 
the importance of the solidus slope also. Thus it is necessary to consider both the slopes 
on either side of the eutectic. Dubey and Ramachandrarao [65] presented such a model 
and rationalised the asymmetries observed in respect of glass-forming composition 
ranges near the eutectic, using the driving force for nucleation together with phase 
diagram features of materials. 

Following Lupis [75] as well as Ramachandrarao and Dubey [76], the driving force 
for nucleation can be expressed as 

(D T) 2 
D G -  

2(X L - g e )  2 

~ ( A S  a L)2 ~L(AsL  ~)2 

~ 2 G ~ I  q ](92GL 

[~ x~ [x'~=x~ 

+ O [(D T) 3 ] (78) 

w h e r e D T = T  K T 

A S  a L ~ S L L ~ L --  X l S  1 X 2 S  2 (79) 

A S  L ~ = S  ~ X~IS1 - X~2S2 (80) 

,~c~ --  XL --  X2 (81) 
Xe L -- X2 

,,~I. = ] ,/~ __ X 2 _ -  X~ (82) 
x ~  - x ~  

G L and G ~ are molar free energies of the L and a-phase, respectively. X~ and 
X~ represent the concentrations of component  2 in the ~ and L phases, respectively, 
that are in equilibrium at temperature T. X 2 is the concentration of component  2 in the 
alloy being considered. S~, L ~ S 2, S 1 and S 2 are the partial molar entropies of components 
1 and 2 in the L and :~ phases. AS ~ k and zXS t = are also known as entropies of solution. 
[(D T) 3 ] represents higher order terms of D T. 
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It is easy to show that the liquidus and solidus slopes, m L and G ,  respectively, are 
given by 

~2GL L ~t 
X 2 - - X  2 

m L = (?xL  2 A S  L a (83)  

and 

~2 G o L 
X 2 - - X  2 

m~ = 0X~2 A S  a L (84) 

Consequently, Eq. (78) takes the form 

. , ~..(DT)2 ~ 2LASL~. - -  -~ 2~AS~L 1 (85) D G -  
2 { X ; ~ A e )  L mr. m~ 

The term, O[(D T) 3] is ignored due to its small contribution. The above equation is 
valid at deviations from the equilibrium that are not too large. The above equation 
clearly states that the free energy change is controlled by both solidus and liquidus 
slopes. Besides, the expected fractions of solid and liquid phases as well as the entropies 
of solutions AS L ~ and AS ~ i. play a significant role. 

The second derivative of molar free energies of the ~ and L phases with respect to 
composition are always greater than or equal to zero. At the same time, 2 ~ and 2 L are 
positive fractions. Consequently, the terms in the square bracket of Eq. (78) are always 
positive; when the ~ phase is a solid solution with considerable solubility, ~2 Ga/~X2 2 
will have a smaller value than for the pure metals. It will enhance the driving force for 
nucleation and lead to the attainment of a large degree of undercooling. As a result, the 
tendency of glass formation will decrease with increased solubility; alloys with a solid 
solution as a primary phase are, therefore, less prone to glass formation. 

If one of the components of a eutectic alloy happens to be an intermetallic com- 
pound with fixed stoichiometry, (~2G/~X2) of the respective phase will be infinity 
leading to a decrease in the driving free energy. Thus for alloy compositions where 
the melt normally nucleates a stoichiometric intermetallic phase shows a greater 
tendency to glass formation. At the same time, eutectics with a solid solution and an 
intermediate phase should exhibit an asymmetry in the glass-forming composition 
range. These findings are in agreement with the experimental observations as shown in 
Fig. 3. 

5.4. Critical cooling rate and AC~/AS  m 

Following Uhlmann [56], the time (t) for the transformation of a fraction (x) of the 
undercooled liquid can be expressed as 

F3X ]1/4 
t = L~ I U3 j (86) 
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Fig. 3. Glass-formation ranges observed on melt-quenching a selected system. 

where I is the homogeneous nucleation frequency and U is the growth rate in the liquid. 
I and U are given by 

and 

D,~N~ (_AG*~ 
I = ~ exp 

a o k T /  
(87) 

e,p( ] 188, 
where O n and Og a re  the coefficients of atomic diffusion involved in the processes of 
nucleation and growth, respectively, a o is the average atomic or molecular radius, N~ is 
the number density of atoms, and f is the fraction of sites at the interface on which 
growth can occur. A G is the driving force for the growth which is the Gibbs free energy 
difference between the liquid and solid phases as given in Eq. (10). AG* is the free 
energy barrier for the formation of a critical nucleus. 

Generally, Dg and D, are taken to be the same and can be related to the shear 
viscosity t/T of the liquid through the Stockes-Einstein relationship [77] 

kT 
Dg = D n = D = - -  (89) 

3~tqo~/r 
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For a spherical nucleus, AG* is given by 

16770~ 
AG*=--- 

3AG, (90) 

where A G, is the Gibbs free energy difference between the phases per unit volume, and 
0 is the solid-liquid interfacial energy and is difficult to estimate theoretically. Usually 
0 is evaluated by equating AG*/K T to 50 at AT= 0.2T,. With all these assumptions 
and substitution, I and U can be expressed as 

I= Lvexp[ (F)*T] 
3na,3qT 

u=g [l-ev(-g)] 

(91) 

(92) 

The nose of the T-T-T curve is evaluated by the condition d t/d T= 0. Using the 

expressions for AG and Y/~ given in Eqs. (10) and (31) and realising the above stated 
condition, Dubey and Ramachandrarao [48] derived an equation for the estimation of 
the nose temperature T, analytically with the aid of Eqs. (86), (91) and (92) which can be 

expressed as 

with 

X 

(93) 

(94) 

(95) 

(96) 

(97) 
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and A 7". = T m - T n, r/Tg and g/Tin are the viscosities of the undercooled liquid at Tg and 
Tm, respectively, K 1 can be taken as unity [56] and e is estimated by normalising AG* 
as already discussed. AH(T,)  and AG(T,) represent the values of the corresponding 
thermodynamic parameters at the nose temperature T n. Thus, except for T., all the 
terms in Eq. (93) are either measurable (AC~, ASm, Tin, Tg, ~rm and r/rg) or evaluable (T O 
and "/8). T n can be evaluated by an iterative procedure. The method has further 
advantage that a knowledge of the temperature-dependence of viscosity is not required 
in the estimation of To. Knowing T n, the critical cooling rate R e can be evaluated from 
relationship 

R c -- r m -  Tn (98) 
t, 

w h e r e  t n is the time for the crystallisation of volume fraction 10-6 of the liquid at 
temperature T n and can be evaluated with the aid of Eqs. (86)-(88). The values of T, and 
R e are reported in Table 6 along with the values obtained on the basis T - T - T  diagram 
as suggested by Uhlmann. The variation of R c with 8 is illustrated in Fig. 4(a). 

Turnbull [78] and Davies [77] have attempted to correlate the critical cooling rate 
R c with the reduced glass transition temperature Tg/Tm and it is reported that lower the 
value of Tg/T m, greater is the rate of cooling required for glass formation. Through the 
analysis of Eq. (93) it can be realised that the nose temperature T~ is mainly determined 
by A C ~ / A S m  and 8 = (To/Tm). Consequently the dominating nature of these para- 
meters can be understood in assessing the value of R e. In view of these findings, Dubey 
and Ramachandrarao [48] have attempted to correlate reduced ideal glass transition 
temperature 8 with R c to study the glass-forming ability of materials and it is reported 
(Fig. 4(a) and Table 6) that materials showing a large value of 8 require a low value of 
rate of cooling for glass formation. A high value of 8 implies high T O and its proximity to 
the melting point T m. It may, therefore, be considered that materials with a high value of 
8 are likely to form glasses more readily by requiring a lower degree of undercooling or 
lower rate of cooling. As discussed in the previous section (Table 2), 8 is in itself 
a function of A cr~/ASm and its dependence on A C ~ / A S  m can be understood with the 
help of Fig. 4 (b). Hence R e should correlate with A C~/A  S m. Fig. 4(c) shows that except 
for methylpentane, correlation between A C'~/AS m and R c is indeed indicated. The 
results clearly indicate that material with a large value of A Cp~/A S m are most suitable 
for glass formation. 

6. Heat of crystallisation and viscosity 

On the basis of earlier investigations related to the crystallisation kinetics of metallic 
glasses, it has been established that the apparent activation energy of crystallisation is 
equal to the activation energy for viscous flow [79 82]. Chen [83] has attempted to 
show that the equality of apparent activation energies can be used to obtain the 
viscosity from the thermal measurements. This procedure is helpful in the determina- 
tion of viscosity at a temperature where creep measurements are not feasible due to the 
intervention of crystallisation. Using free volume as well as hole theories of liquids, 
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Fig. 4(a). The variation of the critical cooling rate R c for glass formation with 5 the ratio of the ideal glass 
transition temperature (To) to the melting temperature (T m ). The numbers indicated identify the materials as 
per Table 6. 

Ramachandrarao [84] has demonstrated that the heat of crystallisation can be related 
to the viscous behaviour of glass-forming metallic melts. 

According to the hole theory of liquids, introduction of holes into a liquid is 
considered to be impossible below the glass transition temperature Tg and all property 
changes which occur at Tg represent contributions due to holes at Tg. On the basis of 
these considerations, Hirai and Eyring [14] expressed 

~h a o c = ~ e x p [  ( G + P g h ) ~  J (99) 

Aft = R-T exp RT J (100) 

ACp=nRkRT] exp RT J (101) 

where A ~, A fl and A Cp represent changes in thermal expansion (c0, compressibility (fl) 
and specific heat (A Cp), respectively, and other terms have the same meaning as defined 
earlier. The expression for heat of crystallisation can be derived using basic ther- 
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modynamic relationships and ACp to yield 

AHc = AHm rt ~h [exp (~-~mh) -- exp ( -- g'h~ ~ (102) 
\ R L J J  

Knowing the values of any two property changes listed above is sufficient to evaluate 
the characteristic parameters ~h and 8 h which define a hole. These parameters can also 
be derived from the temperature-dependence of the viscosity of the liquid. 

Utilising the expression for the free volume suggested by Ramachandrarao et al. 
[28, 85], the Doolittle empirical equation for viscosity as stated in Eq. (27) yields [84] 

r/= r/o exp [(I/n) exp(eh/R T)] (103) 

Generally, the viscosity is expressed in the form of the Vogel-Fulcher equation. 
A procedure has already been developed by Ramachandrarao et al. [28,85] for 
recasting the viscosity data in the form of Eq. (103) which can be used to estimate 
parameters related to a hole, such as n, eh etc. An alternative and simple procedure has 
also been suggested by Ramachandrarao [84] for obtaining the temperature-depend- 
ence of the viscosity from the Vogel-Fulcher equation as given below. Eq. (103) can be 
rewritten as 

and 

In r/= In qo + (I/n) exp(eh/R T) 

In ~ )  - In -+ /~ 

These equations enable one to obtain n, e h and r/o with the help of experimentally 
measured values ofq. Consequently, the heat of crystallisation AH c can be determined 
with the aid of Eq. (102). 

Conversely a knowledge of A Hc, A H m and any other property change (A ~, Aft, A Cp 
etc.) at Tg should be sufficient to estimate the viscosity and to obtain an expression for 
the viscosity of the kind given by Eq. (103). 

Using experimental data [-3, 86-88] related to the viscosity and to the heat of fusion, 
AH m, Ramachandrarao calculated the heat of crystallisation for two metallic glasses 
Auo.77 Geo. ~ 36 8i0.094 and Pdo. v v 5 Cuo.o6 Sio. 165 as reported in Table 7. Comparison of 
the last two columns of Table 7 reveals the excellent agreement between observed and 
calculated values of the heat of crystallisation. He could not demonstrate the use of the 
reverse procedure for the determination of the viscous properties of glass-forming 
metallic melts from a knowledge of ACp at Tg, AH c and A H  m due to the non- 
availability of sufficient data on glass-forming melts. 

7. Conclusions 

The expressions for the Gibbs free energy difference AG between the undercooled 
melt and corresponding equilibrium solid phases derived by us on the basis of the hole 
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theory of liquids as well as Taylor series expansion are capable of estimating the correct 
temperature-dependence of A G for all kinds of metallic glasses, oxide glasses, 
polymeric glasses, etc. The temperature-dependence of the viscosity of the under- 
cooled melt can be explained very nicely with the help of expressions reported by us. It 
was also found that the well-known Vogel-Fulcher equation is a special form of the 
expression reported in this review. It is possible to give a correct mathematical 
explanation to the empirical WLF equation. Consequently it can be said that the 
expression reported by us is able to predict the correct temperature-dependence of 
relaxation phenomena. The ideal glass transition temperature, T O which plays a signifi- 
cant role in the estimation of the viscosity and the glass-forming ability of materials can 
be estimated correctly with the help of expression reported by us. It is also found that 
the values of T O estimated using thermodynamic data are nearly the same as obtained 
using relaxation data. 

The binary liquid alloy with the smallest molar volume is found to be most prone to 
vitrification. The glass-forming composition range can be determined from the frac- 
tional negative deviation of the volume with respect to the ideal volume. The criterion 
based on concentration concentration fluctuations suggests that any tendency for 
complex formation will be reflected in the deviation of the observed S~ °J from the ideal 

id(O) value Scc . It has been found that significant and systematic negative deviation from 
the ideal value or a tendency to zero ofS~ °~ is observed at stoichiometry corresponding 
to the complex in the melt. S~ °~ exhibits a maximum and tends to the ideal value in the 
glass-forming composition range. It appears that complex formation is not to be 
directly related to the glass-forming tendency. 

The existence of solid solubility in the constituent phases of a eutectic tends to 
enhance the driving force for nucleation. As a result, the observed glass-forming 
composition ranges tend to be asymmetric with respect to eutectic composition and lie 
closer to the stoichiometric compound or the pure metal in the eutectic. In pure metal 
metalloid eutectics, glass formation is more difficult in the composition range where the 
metalloid is a primary phase. 

It is found that the ratio 6 of the ideal glass transition temperature T O to the 
melting temperature T m plays a dominant role in determining the glass-forming 
ability of materials. Consequently the ratio (AC~/ASm) of the specific heat dif- 
ference to the entropy difference between liquid and solid phases at the melt- 
ing temperature is the controlling factor for glass formation. Materials with large 
value of AC~/AS m can readily form glasses irrespective of the nature of the 
materials. 

Reports related to crystallisation and viscous behaviour clearly indicate that the heat 
ofcrystallisation can be estimated with the help of the experimentally observed value of 
the viscosity. The procedure has also been found to furnish viscosity from the heat of 
crystallisation. 
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