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Abstract 

Nucleation plays an important role in phase transformation processes. This review represents 
an attempt towards a synoptical description of this phenomenon at the kinetic level (including 
thermodynamical considerations) and summarizes our most interesting results connected with 
this theme for both single component and binary systems. 
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1. Introduction 

The theory of crystal growth, one of the bases of modern high technologies, deals 
with the problems of how to model processes taking place during production of a new 
phase of required physico-chemical properties. It is aimed at understanding what 
happens when fluid (gas, solution, melt) becomes solid (or liquid) and how to govern 
this transformation by limited conditions adjustable and controllable from the outside. 

Nucleation may be understood to be an initial stage of the process leading to 
the formation of clusters (embryos) of new phase (solid or liquid) within the metastable 
parent phase (undercooled melt, supersaturated fluid). Indeed, due to sufficiently 
large fluctuations, intrinsic (thermal), or artificially induced from the outside, small 
portions of the product phase may appear. In such a way, homogeneous nucleation 
occurs at random sites in the bulk of the original phase whilst heterogeneous nucleation 
takes place at preferrential sites, such as impurities, defects, substrates, and crucible 
walls. 
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Although the model of the nucleation process was known in the 1930s and 
considerable effort has been directed towards a deeper understanding of this problem, 
a number of questions remains, until now, unanswered (for more details see, e.g. 
Refs. [14] ) .  Essentially, they can be divided into three groups: 

(i) Adequate definition of appropriate thermodynamical quantities expressing 
(local) equilibrium properties of the nucleating system, e.g. the Gibbs energy 
required to form a cluster consisting of n molecules or atoms, the surface energy 
between a cluster and its ambient phase, etc; 

(ii) Proper modeling of the kinetic parameters entering the nucleation equation; in 
particular, the transition probability that a particle joins to a cluster of size 
n (sometimes called the "rate constant"); 

(iii) Solution of the nucleation equation and determination of important character- 
istics of the nucleation process itself (such as nucleation rate, number of nuclei 
within the system at a given time, time lag, etc.). 

In this article, we deal with the problems of homogeneous nucleation occurring 
under constant, or variable temperature regimes in single and also in binary systems. 
We have solved the nucleation (Zeldovich Frenkel) equation numerically and also 
obtained an approximate analytical solution, which seems to be more transparent and 
applicable, especially in engineering applications. Results are compared with solutions 
of other authors and also with available experimental data. 

2. Thermodynamical aspects of nucleation 

Consider a metastable mother phase consisting of N molecules or atoms (monomers) 
maintained at temperature T. (Usually, the total number of monomers N is assumed to 
be constant.) As stated above, as a consequence of thermal fluctuations, variously sized 
clusters are formed within the bulk of the parent phase. We assume that the principle of 
local (thermodynamic) equilibrium is satisfied, i.e. although the system is in non- 
equilibrium state en bloc, we assume that equilibrium between newly formed clusters 
and ambient phase is already established. Then, following simple thermodynamics, the 
Gibbs free energy (alternatively, the excess Gibbs energy) AG(n) required to form 
a cluster of n monomers is given by the difference between the appropriate Gibbs 
energies corresponding to the product (Ge) and initial (G 0 phases, e.g. Ref. [5] 

AG(n) = G e -  G l (1) 

An alternative formula to relation (1) is [6] 

AG(n) = AGv(n ) + AGs(n ) (2) 

where A G v represents the volume contribution to the formation of an embryo, whilst 
A G s is connected with the free energy consumed to creation of the interface between the 
cluster and the parent phase. The concrete form of AG(n) depends on the kind of 
material under consideration (single or multicomponent system, ideal gas, regular 
solution, etc.). 
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Newly-formed clusters are unstable below a certain critical size n*, whose value may 
be determined from the extremum condition 

(gAG(n~) = 0 (3) 
~n 

in the case of single component  system, and 

AG(n a,n B . . . .  ) 
= 0  i = A , B  . . . .  (4) 

for multi-component system, where n A,nB,... represent the numbers of molecules 
(atoms) of A, B . . . .  components within the cluster. Depending on the ratio of the surface 
(A Gs) and volume (A Gv) contributions to the Gibbs energy, the critical cluster typically 
contains from a few tens of molecules, for example, in glassy melts, to several thousands 
of monomers,  in the case of cloud formation. Above the critical size n*, the clusters 
become nuclei and tend to grow. 

2.1. Single-component system 

In this case, relationship (1) may be rewritten as 

AG(n) = - n(/h /tp) + [f~(n) - nltp] (5) 

where/~p is the chemical potential (per particle) of particles contained within a cluster,/h 
stands for the chemical potential of the initial phase and .Cg(n) denotes the Gibbs free 
energy corresponding to the n-molecular cluster en bloc. 

The term A/z = / q  - #p on the r.h.s, of relation (5) represents the thermodynamic 
driving force of the nucleation process (supersaturation, undercooling) and is closely 
connected with the rate of departure of the system from the equilibrium state (in which, 
of course, A# = 0). If the nucleation occurs in a supersaturated vapor, then A~L ~ In S, 
where S stands for supersaturation ratio [1]. In the case of the melts, the following 
formulae are frequently used 

A h A T  
A/z - (6) 

NA TE 

or  

A r t -  A h A T  T (7) 
N A TE rE 

Here, Ah denotes the heat of fusion, N A is Avogadro's number, T E represents the 
melting temperature, and A T = T E - T is undercooling. (The above relationships can 
be readily derived by expanding, as usual, Ag in the Taylor series at the melting 
temperature "irE; for details see, e.g. Refs. [7 1113 

The second term on the r.h.s, of formula (5) reflects the creation of a new interface 

~(n )  --  n]Jp = SnrJ (8) 
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where S, = ) ,n  2/3 denotes the cluster surface, a is the interfacial energy, and the so-called 
form factor ~, characterizes the geomet ry  of the cluster. Frequently,  spherical clusters 
are considered (for which the ratio of surface and volume contr ibut ions corresponds  to 
a min imum of A G). In this case, 7 = (36=) 1/3 f~2/3 (f) = NA / VM is molecular  volume and 
V M denotes the mola r  volume), or, alternatively, 7 = 4=r2 (r0 being the radius of the 
monomer) .  

Tak ing  into account  the above  relationships,  one can express the Gibbs  free energy 
as follows 

AG(n) = - nAp + 7o-n 2/3 (9) 

Applying ex t remum condit ion (3), we get for the critical size 

n*  ( 2 Y ° )  3 
= \ 3 A ~ ]  (10) 

With a proper ly  defined quant i ty  A/~, the above  expressions (9) and (10) are valid for 
both  the vapor--*l iquid transit ion and the liquid ~ solid t ransformat ion  in single- 
componen t  systems. The dependency of the Gibbs  free energy on the cluster size for two 
different values of A/~ is shown in Fig. 1. 

2.2. Binary system 

This si tuation is more  compl ica ted because of an addit ional  variable, i.e. composi -  
tion. Let n A (nB) be the number  of molecules of c o m p o n e n t  A (B) involved in a cluster. 
Evidently, n = n A + n~. Then the work of format ion  of a cluster of size n is given by (see, 

r.g3 

[--, 

.~,,I 

<1 
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20 

0 
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n 

Fig. I. Schematic dependence of the Gibbs free energy AG of a single-component system on the cluster size 
n for two different values of the difference in chemical potential A/~. 
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e.g., Refs. [-12-14]) 

in the case of a vapor-liquid transition, and 

A G (r /A,  r/B ) = - -  n A A ]2 O - n B A / ~ o  _ k T In A ln(1 -- X L) 

(&)l + nBln X~ + In + 7~n 213 (12) 

for a liquid (melt)-solid transformation. Above, a i = Pi/P ° (i = A, B) is the activity of the 
ith component (Pi denotes partial and po saturation pressures), A/s ° (i = A, B) corre- 
sponds to the difference in chemical potentials of the pure components, k is the 
Boltzmann constant, and X~ is the initial mole fraction of component B in the liquid. 
Nevertheless, the aforementioned relationships hold for ideal systems (vapor, liquid) 
and become more complex for real materials, e.g. regular solutions, real melts, etc. 
Appropriate free energies can be derived within the framework of statistical ther- 
modynamics. 

Using expression (11) and taking into account conditions (4), the so-called saddle 
point (n~,, n*) on the free energy surface AG(n A, nB) can be computed to be 

 ,31 
"/' = \ ~ )  L3k r lnqT~ + a,,i 

and 

(14) 
n* = 3kTln(a  A+ a B 

from which the total critical size is obtained 

[ 27a ]3 (15) 
n * = n ]  + n ~ =  3kTln(aA +aa ) 

After tedious calculations, similar formulae may also be derived for the liquid solid 
transformation. Supposing that interfacial energy does not depend on concentration, 
one gets 

, ( l  - x ~ , ~ e x  (A~ ,  ° - A ~ ° ~  

t17t n* \ 3 c z J  

where 
C/1 - xp,~  /A~, ° -  A~°'~.  ]'"3 o< = Li ~ ) e x p l  ~ -  )+1  

x {kTlnEl +XLfex / A / x ° - A / x ° ' ~ -  "t P t  " £ ~  ) l J J  +At'l°, (18) 
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and the thermodynamic driving force (see Eq. (6)) takes the form 

o a h ° . ( T ° . -  T) 
APA,B = TO (19) 

A , B  

Above, A ha°B denote the heats of fusion and T o A.B are the melting temperatures of pure 
components A, B. These expressions may be rewritten in terms of new variables, 
concentration C = nB/n and cluster size n = n A q- n B. In Fig. 2, the Gibbs free energy as 
a function of n A and n B is depicted for the case of a liquid-solid model system. 

To complete this section, it should be pointed out, however, that there are several 
approaches which differ from this so-called "capillarity approximation" procedure 
presented above and allow determination of the free energy of cluster by alternative 
methods. (For instance, utilizing the order parameter theory of freezing; for more 
details see, e.g. Ref. [15].) 

3. Nucleation kinetics 

3.1. General aspects 

It is quite clear,that the modeling of a transient, i.e. time dependent, nucleation 
process remains beyond the scope of standard equilibrium thermodynamics and the 
problem has to be treated in another way. In principle, two complementary methods 
may be applied. The first is based on purely numerical calculations (so-called "numeri- 
cal experiments"); in particular, Monte Carlo simulations, or molecular dynamics are 
frequently used. Alternatively, a physically more transparent approach seems to be the 
description of transient nucleation at the physical kinetics level. 

Within the framework of such an approach, it is assumed that the dominant role of 
cluster formation is the attachment (detachment) of single particles (atoms, molecules, 
ions) to (from) the cluster surface. This stepwise kinetic process may be represented 
schematically in the case of a single-component system as 

+ k, _l k + 
J P 

' q F  

4 

(n  - 1) " k~ (n )  k~-+, (n  + 1) 

Or more chemically, e.g. Ref. [1] 

k - ( n )  

A(n)+A(1) < • A ( n + l )  (20) 
k ( n + l )  

where A(n) is the cluster consisting of n particles, A(1) stands for the single molecule 
(monomer) and the symbols k ± denote the appropriate transition probabilities (tran- 
sient frequencies) that a single particle joins ( + ) (or evaporates ( - )) to (form) a cluster 
of given size per unit time. Other types of transitions, such as, for instance 

k + 

A(n)+A(/)  • , A(n+l ) ,  for n > l , l > l  (21) 
k 

are usually considered to be negligible. 
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D ',, ~" A / / / /  

Fig. 2. Schematic dependence of the Gibbs free energy AG of a binary model melt on the number of 
molecules of A(nA), and B(nt0, components. 

F o r  the  b i n a r y  sys tem,  the  r eac t i on  s c h e m e  takes  the fo rm 
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o r  

k~(n,~,nB) 
A(nA, nB)+A(1,0)  ~ ~ A(nA+I,nB) (22) 

kA(n 4 + 1 ,riB) 

A(n A, nB) + A(0, 1) __k~"A'""~ A(n A, n a + 1) (23) 
kp,(nA,na+ 1) 

Above, A(nA, nB) is the cluster containing n A and n B monomers of A and B and 
k+,a, i = A, B represent the appropriate transition probabilities. As will be seen below, 
the transition probabilities depend, in general, on the temperature, cluster size n (=  
n A + nB) and other parameters. (This is why, in our opinion, the generally used term 
"rate constants" is incorrect.) 

3.2. Transient frequencies 

As was already mentioned, the rates k -+ at which monomers  condense on (or 
evaporate from) the cluster of a given size n play an important  role in the nucleation 
model. Concrete forms of these transient frequencies can be derived using the methods 
of kinetic theory and depend both on the kind of material under consideration and also 
on the nature of the phase transformation. In particular, two different situations and 
two varying systems are analysed separately below: condensation, or solidification, in 
single-component and in binary systems. 

3.2.1. Vapor-liquid transition 
We assume that the speeds of monomers are distributed according to the Maxwell 

Boltzmann law. Consequently, the mean number of particles impinging on the unit 
surface of nmer per unit time from the vapor side is readily determined to be [16] 

=NA /kT P_ 
v V M ~/2~m 2 ~ k  T (24) 

where T is temperature, k denotes the Boltzmann constant, N A is the Avogadro 
number, VM represents molar  volume, m is the mass of a single molecule and P is the 
actual pressure of the vapor. The attachment frequency k + (n) then can be expressed as 

k + (n) = ShY = y n 2 / 3 v  (25) 

for single-component vapor, and 

k+(nA, nB)=S,v=7(nA +na)2/3Vi, i = A , B  (26) 

for a binary system, where S, denotes the cluster surface. Above, 7 is the form-factor and 
the quantity v i is defined to be 

Pi 
i = A, B (27) 

vi - 2 x / 2 ~ / k  T '  

where Pz corresponds to the partial pressure of the ith component  with the mass m i. 
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The detachment frequencies k- (n), and k 7 (hA, riB) of the reverse process, i.e. evapo- 
ration, are determinable by the use of detailed balance conditions 

k +(n)Fo(n ) = k (n + 1)Fo(n + 1) (28) 

for a single-component system, and 

k a (n A, nB)F°(nA, nB)= k~ (n A + 1, nB)FO(nA + 1, riB) (29) 

k~ (hA, nB)FO(nA, riB) = kB (hA, n B + 1)F°(nA, n B + 1) (30) 

in the case of binary vapor. Appropriate equilibrium distribution functions are given 
successively as 

Fo(n )=Nexp[ AG(n)~ ~ j (31) 

Fo(nA, riB) = (N ° + N°)exp I 
A G(nA, liB! ~ (32) 

J kT 

and 

Here N°(N °) is the number of monomers of the A(B) component, N is the total number 
of"single" monomers and the Gibbs energies A G(n) and A G(n A, nB) are represented by 
relationships (9) and (11). 

3.2.2. Liquid-solid transformation 
In a single-component liquid, the transient frequency k + (n) can be expressed as 

follows [17, 18] 

k+(n)=S, oaexp( q[AG(n+ I)-AG(n)]'] kT ) (33) 

where 

1 
q = ~ [1 + sign [A G(n + 1) - A G(n)] ] (34) 

In fact, Eq. (33) simply states that the clusters are unstable below the critical size and 
tend to shrink, whereas clusters grow for n > n*. Above, AG(n) is given by Eq. (9) and 
the quantity (o is defined as 

~O=ps ~ -  exp - (35) 

where k T/h is the frequency of the temperature oscillations of the molecules (atoms) 
and 

Ps ~ aono (36) 

denotes the surface density of monomers. Here, a o is the so-called jump distance, E is 
the kinetic barrier of nucleation, n o denotes the mean number of monomers per unit 
volume and the remaining quantities have their obvious meanings. Taking a o ~ n o 1/3 
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and n o ~ NA/VM, one gets for ~o 

/ k r ~ / N A V  '3 / E~ 
o ) = ~ -  ) ~ )  e x p ~ - ~ )  (37) 

In most cases, the unknown quantity E is frequently approximated by the activation 
energy of diffusion. Or, application of the Stokes Einstein relation between diffusion 
and viscosity t/leads to [19] 

k T ( N A ~  s/3 (38 )  

°" = ~ \ vM j 

Again, the detachment frequency k (n) can be determined from relationship (28). 
Some typical values of the above quantities for the silicate glass Li20-2SiO 2 are 
collected in Table 1. For this system, the temperature dependence of the viscosity was 

Table  1 
Mate r ia l  pa ramete r s  for L i :O .  2 SiO z 

Symbol  Pa rame te r  Value 

TE Mel t ing  t empera tu re  1313 K 
V m M o l a r  volume 6.11 x 10 5 m 3 m o l  l 
k h  Hea t  of fusion 5.4 x 104Jmo l  1 

o- Interracial  energy 0 . 1 5 0 J m  2 

" ~  0.3 ,-7 

O 

O = 0.2 
O 

O 

0.1 
O o~,,I 

0.0 

i i 

n*-_-27 

j f f  

0 20 40 60 
Cluster size 

Fig. 3. Trans ien t  probabi l i t i es  k ± (n) as a function of cluster  size at  800 K for l i th ium disi l icate  glass. 
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taken as [19] 

/ 7759 7 \ 
~/= 0"363exP~T Z-- 4~0) (Nsm-2)  (39) 

A typical dependence of transient probabilities k + on cluster size is given in Fig. 3. 
For the binary system, we have [14] 

k[ (nA ,  n R ) = b l e x  p _ i , i = A , B  (40) 

where 

b i = S ( n a ,  na) ( -~_  ) X~, i = A , B  (41) 

Above, X) is the initial molar fraction ("concentration") of the ith component in the 
liquid phase (it is usually assumed to be a constant during the nucleation process). The 
activation energies E£, B are given by 

1 
E + = E i + ~ [1 + sign Agi(nA, nB)] Agi(n A, nB), i = A, B (42) 

where 

A g A ( n A ,  riB) = Z~ G ( n  a + 1, t/B) - -  A G(na, riB) (43) 

AgB(nA, nB) = z~ G(na, nl~ + 1) - A G(nA, riB) (44) 

and the Gibbs free energies AG are expressed in Eq.(12), and the detachment 
frequencies k i are given by conditions (29, 30). The energies EA, u can be identified with 
the activation energies of transition of an A (or B) particle across the phase interface. 
Here, we have chosen the following parameterization 

1 
~: = ~ ( E  A + EB) (45) 

/EA - -  E.~ 
r = e x p ~  ~-7~ ) (46) 

where r is the so-called kinetic parameter. Introduced in such a way, the kinetic 
+ + L parameter coincides with Stauffer's definition: r = k B/k  A [20] for X a = 0.5 near the 

saddle point when Agi(n A, n~) = 0. 

3.3. Nucleat ion equations 

In order to derive an equation expressing the evolution of a nucleation process, some 
simplifications are used. The basic assumptions of nucleation theory are the following 
[21] 

(i) A nucleation process has no memory, i.e. the present state of a nucleating system 
does not depend on its previous evolution stages. In other words, the process is 
a Markovian one; 
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(ii) Coalescence (Oswald ripening) of the large clusters is neglected; 
(iii) Mutual interactions of the clusters are also neglected. This means that the system 

clusters + parent phase (however non-ideal) is assumed to be an ideal solution. 

Under these assumptions, the equation describing the nucleation process, in a single- 
component system, reads 

d F ( n , t )  
d t  - J (n  - 1, t) - J(n,  t) (47) 

where 

J(n,  t) = k + (n, OF(n,  t) - k (n + 1, t )F(n  + 1, t) (48) 

defines the cluster flux density and F(n , t )  represents the fundamental quantity of 
nucleation theory, the distribution function of the clusters, i.e. the number of newly- 
formed clusters of size n in unit volume at time t. In continuous cluster-size space n, i.e. 
in the case when n is sufficiently large, and using detailed balance conditions, the 
nucleation equation can be rewritten to be 

~F(n , t )  ~J (n , t )  
- -  -~ - 0 ( 4 9 )  

0t ~n 

where 

J (n, t) = - k + (n, t)Vo(n) ~ I F ( n ,  t)] (50) 
c9 n L Fo(n) J 

Here, Fo(n ) is the equilibrium distribution function, defined by relationship (31). 
For nucleation in a binary system, the above Zeldovich-Frenkel equation takes the 

form 

dF(n A, n B, t) 
dt  - - J A ( n A -  1,ng, t ) - -  JA(r/A, nB, t) + JB(nA, r/B -- 1, t ) - -  JB(nA, nB, t ) (51) 

with the fluxes 

JA(nA, n B, t) = k A (r/A' riB) F(r/A, riB, t) -- k A (n A -~ l, r/B) F(nA + 1, riB, t) (52) 

dR(n A, n s, t) = k~ (r/A, r/B) F(nA, nB, t) -- k~ (hA, n B + 1) F(nA, n B + 1, t) (53) 

and where the distribution function F(nA, nB, t) represents the number of clusters 
consisting ofn A and n B particles at time t in unit volume of the parent phase. Similarly as 
before, at the continuous level of description the above equation transforms to 

~F(n  A, riB, t) G JA(r/A, r/B, l) ~ JB(r/A, r/B, t) 
-~ I- - 0 ( 5 4 )  

~t ~n A 0n B 

where the appropriate cluster flux densities are defined as 

F 0 FF(r/A, nB, 03  
Ji(r/A, nB, t)=--k+(r/A,r/B,t) 0 (r/A, r/B)~-r/i L ~ J  , i = A , B  (55) 

with the equilibrium distribution F 0 given by Eq. (32) and k + by Eqs. (26) and (40). 
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In order to solve the aforementioned nucleation equations, the initial, and boundary, 
conditions have to be introduced. Usually, it is assumed that the nucleation process 
starts from the monomers (single atoms or molecules of parent phase) and that 
no other clusters are present within the metastable vapor or liquid. Moreover, the 
number of monomers equals the equilibrium distribution function F o. The second 
boundary condition reflects the assumption that the distribution function of newly- 
forming clusters remains finite as n ~ ~ .  (In other words, the formation of extremely 
large nuclei is excluded.) Consequently, the initial and boundary conditions read 

F ( n , t - , O ) = F o ( n )  for n < l  (56) 

F(n, t) = 1 (57) 
Fo(n) ,41 

F(n --* vc, t) = 0 (58) 

For the binary system we have 

F(na, nB, t ~ O ) = F o ( n a ,  nB) for n A + n ~ =  1 (59) 

F(n A, n B, t ~ 0) = 0, under other conditions (60) 

F(n A, n~, t) = 0 for n A + n B ~ vc (61) 

From the distribution function, many important characteristics of nucleation processes 
may be determined. Most "popular" in engineering applications seem to be the 
so-called nucleation rate I and the integrated cluster flux Z. At constant temperature 
(or at constant supersaturation), the former corresponds simply to the cluster flux 
density taken at critical cluster size and can readily be calculated from Eq. (50) 

l(t) = J(n*,t)  = - k + (n*)Fo(n*) ~,7- n ~o(n) ] , .  (62) 

In general (at variable supersaturations or temperatures), l(t) represents the number of 
supercritical clusters per unit volume, which can be expressed as [22] 

dn* 
l(t) = J(n*, t) ~ -  F(n*, t) (63) 

The latter, directly measurable quantity is connected with the total number of super- 
critical clusters appearing within the original phase during the time of observation t 

= i t J ( n * , v ) d ~ =  ~ F(n,t) (64) Z(t)  
JO n>n* 

Similar relationships can also be derived for binary systems. 
Nucleation equations, together with the initial and boundary conditions, completely 

define the problem of homogeneous nucleation at the kinetic level. To solve them either 
proper numerical methods have to be used or an approximate analytical solution could 
be found. We shall not specify in detail the methods of solution readers more 
interested in the mathematics can find more information elsewhere, e.g. in Refs. [17, 
23, 24]. Below, some applications are summarized. 
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4. Results 

In this Section, we have collected some interesting results following from our 
previous studies of transient nucleation in single-component and binary systems 
occurring under constant, and variable, temperature regimes. In the case of a single- 
component system we compare our analytical formulae, obtained by our novel method 
based on the boundary layer theory combined with Green's function technique [17], 
with our exact numerical simulations and also with the available experimental data 
[25] related to the glassy system Li20.2SiO 2 (see also Table 1 for parameters used). 
However, due to a lack of suitable data, the binary system used in our computations is 
represented by fictitious model material. 

4.1. Nuc lea t ion  at cons tant  temperature  

4.1 .I. S ingle-component  sys tem 
Applying our analytical method [17] to obtain approximate analytical solution of 

nucleation equation (49), one gets for a normalized distribution function 

F(n,0) 1 3 
y(n, 0) - ~o(n)  - 2 erfc(KlU~ + K2) 

where erfc denotes the so-called complementary error function, and 

3(n,){- 1/3) 1 
K 1 = 

c x/ l  - exp ( -  29) 

3 (1 - (n*) {- 1:3)) exp( - 9) - 1 
K 2 

x / 1 -  e x p ( -  2 ~  

(65) 

(66) 

(67) 

Above, e is a small parameter containing basic information about thermodynamical 
properties (via A/~, c~, T) of the system under consideration, and 0 = t /r  is the time 
normalized by a quantity z, which is closely connected with the transition frequencies. 
(For more details, see Refs. [-17] and [23].) The dependence of the normalized 
distribution function both on the cluster size n and on 0 is shown in Fig. 4. 

In terms of distribution function, other important characteristics of a nucleation 
process may be derived. Actually, according to definition (62), the nucleation rate may 
be readily determined to be 

{ [ !  (1-(n*){ 1/3})exp(-0)] z} (68) jS(n*) exp - 
I (0)= J{n*,0)= x/1 - exp(-- 20) 7 1 ~ e ~ p ( - - - ~  

where jS(n*) corresponds to its stationary value. In Fig. 5, the nucleation rates 
(normalized to js) obtained by various authors are compared with our numerical 
calculations and also with our formula (68). 

Using definition (64), another interesting and directly measurable quantity of the 
transient nucleation process can be derived: the so-called integrated flux. In Fig. 6, the 
analytical and numerical computations of this quantity are compared with experimen- 



P. Demo, Z. Ko~f~ek/Thermochimica Acta 280/281 (1996) 101-126 115 

~5 

~5 

Fig. 4. Qualitative dependence of the dimensionless distribution function y(n, t) = F(n, t)/Fo(n ) on cluster 
size n and time t. 
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Fig. 5. Normalized nucleation rate as a function of dimensionless time: 1, Kashchiev [26]; 2, Shi et al. [27]; 3, 
relationship (68); 4, Trinkaus and Yoo [21]; ~, numerical simulation ( T =  800 K, n* ~ 27). 
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tal data [-25]. From this dependence, the so-called time lag, i.e. the time corresponding 
to the moment at which the addition of the supercritical clusters (nuclei) within the 
metastable parent phase becomes linear with the time, can be deduced. (In other words, 
the steady-state is reached by the nucleating o~ystem.) It can be felt intuitively that the 
integrated flux depends on the thermodynamic and kinetic properties of the system. 
Indeed, such a dependence is depicted in Fig. 7, where the sensitivity of the time lag on 
the surface tension between a nucleus and its ambient phase is shown. It can also be 
seen that our analytical results are in much better agreement with exact numerical 
calculations than other previous approaches [-21,28]. 

4.1.2. Binary system 

For the case of nucleation of two-component (A, B) systems, we have (with respect to 
the single-component system) an additional parameter, the mole fraction of the 
B component. Reiss [12] suggested the kinetic equations describing binary nucleation 
process and applied this model for stationary homogeneous nucleation in a binary 
mixture. From that time, various analytical approaches [-20, 29-31] to the stationary 
nucleation rate appeared, based on the restriction that the nucleation rate is controlled 
by the flow of nuclei through the saddle point. Recently, several works [,14, 28, 32, 33] 
have shown that such an approximation is not generally acceptable. 

Here, let us briefly summarize the main results of transient binary nucleation. As in 
our previous works [-14, 34], we have used the following values of the parameters: 
VM=6.11 x 10-Sm3mol  1, A h O = 5 x  104Jmol-1,  A h O = 6 x  104jmol-1 ,  TAO= 
1300K, T ° = 1250K and a = 0.150Jm 2, for model ideal solution. 

F i i i 

60 

40 , , r  

, ,  

20 

00 20 40 60 80 
Dimensionless time 

Fig. 6. Numberofnuclei(normalizedintegratedflux)asafunctionofdimensionlesstime: 1, Kashchiev [26]; 
2, Shi et al. [27]; 3, our solution [17]; 4, Trinkaus and Yoo 1-21]; - --, numerical computation; I, 
experimental data [25]. 
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Fig. 7. Time lag as a function of in te r fac ia l  energy: 1, Kashch iev  [26]; 2, Sh i e t  al. [27]; 3, our  so lu t ion  [24]; 
, numer ica l  s imula t ion  at  T =  8 0 0 K  and E = 4.075 x 1 0 - 1 9 j  m 2. 

The nucleation rate J(n,l)) corresponds to the sum of (Ja + JB) over the cluster 
composi t ion (see Ref. [-14]). In such a sense, this is analogous to the nucleation 
rate of a s ingle-component  system. With a sufficiently long time for various cluster 
sizes n = 20 (full lines) and 30 (dashed lines) molecules, J(n, 8) reaches some stat ionary 
value j s =  J(n,O+ oe), which depends on the temperature,  see Fig. 8. Clusters of 
n = 20 molecules at T = 790 K have a subcritical value (n* ~ 28 molecules) and reach 
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Fig. 8. Nuc lea t ion  rate J as a function of d imens ionless  t ime ~1 for c luster  size n = 20 (--)  and  30 ( - )  
molecules  at  T =  750, 710 and 790 K for mole  fract ion of so lu t ion  X L = 0.5. 
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some extremum value, as does the cluster flux for subcritical size in single-component 
system. 

The mean cluster composition at the stationary limits (9 = 250 seems to be a suffi- 
ciently long time for reaching a stationary value) goes to the mole fraction of the saddle 
point C s = nB/(n A + r ib )  only for sufficiently small sizes (n G (n* + n*)/2) at various 
temperatures (see Fig. 9). Certainly, the critical size n* increases with the temperature, 
which corresponds to the mean cluster composition behaviour (for details, see 
Ref. [34]). 

The temperature dependence of the time lag for n = 20 (full line) and 40 (dashed line) 
molecules, together with the stationary nucleation rate (see Fig. 10) for X~ = 0.5, is 
qualitatively the same as in a single-component system, d s reaches some extremum 
value near T = 745 K. 

The stationary nucleation rate Y s increases and the differences between time lags of 
various sizes (n = 20, 25, 30 and 35 molecules) decreases with increasing XB L (see Fig. 11). 
This is caused by the fact that critical size decreases with X~ and implies an increase in 
nucleation rate (for the chosen data). At the same time, the growth rate of supercritical 
nuclei increases with their size, which corresponds to shorter times of time lags of 
various sizes for increasing X L. Increase in j s  with X L is given predominantly by the 
values ofAh ° and Ah °, because the swapping ofAh ° with Ah ° leads to a decrease in d s 
with X c (for details, see Ref. [34]). 

Time lags for cluster sizes n = 20, 30 and 40 molecules as a function of loglor reach 
some minimal value near lOglor ~ 0.2 (see Fig. 12a), but the differences in time lags for 

! 

o 

[I 

V 
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-0.04 

7 1 0 K  

-0"080 1 '0 2'0 3'0 4'0 50 

Cluster size 
Fig. 9. Difference of mean  cluster  compos i t ion  (C(n,  8 ) )  from mole  fraction of the saddle  point  C s at 
d imens ionless  t ime ~, = 250 as a function of c luster  size for mole  fract ion of so lu t ion  X~ = 0.5 at  T =  710, 750 
and 790 K. 
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temperature T for X~ = 0.5. 

various cluster sizes remain approximately  constant .  However,  the nucleat ion rate 
increases with the kinetic parameters  (see Fig. 12b), which can be explained by the fact 
that with increasing kinetic parameter  r, k~ increases (relative to k~)  and  the 
B componen t  is more supersaturated than  A (Ah ° > Ah ° for the chosen data), which 
p robab ly  leads to an increase in j s  with kinetic parameter  r. 
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4.2. Nucleation under various temperature regimes 

In the  p r e v i o u s  sect ion,  we c o n s i d e r e d  n u c l e a t i o n  at c o n s t a n t  t empe ra tu r e .  N o w ,  let 

us c o n s i d e r  n u c l e a t i o n  u n d e r  v a r i o u s  t e m p e r a t u r e  reg imes ,  a s s u m i n g  tha t  the  k inet ics  

of  n u c l e a t i o n  plays  a d o m i n a n t  role,  i.e. t e m p e r a t u r e  changes  wi th in  the  sys tem are  



P. Demo, Z. Ko~i3ek/Thermochimica Acta 280/281 (1996) 101 126 121 

.=. 

O0 

tO 

E 

1 

1 

300 

100 

900 

700 

5OO 

300 
-1.0 

4O 

a 
I J I ~ I i I ~ I i I 

- 0 . 6 - 0 . 2  0.2 0.6 1.0 

! 

"7, 

b 
I i I ~ I i I i I i I 

-1.0 -0.6 -0.2 0.2 0.6 1.0 

1 

1 

1 

1 

300 

200 

100 

000 

900 

800 

700 

600 

log  0 r 
Fig. 12. a. Time lag for cluster sizes n = 20, 30 and 40 molecules, b. Stationary nucleation rate js as a function 
of decimal logarithm of kinetic parameter r at 750 K for X L = 0.5. 

faster than  nucleat ion kinetics. In such a case, Eqs. (47) and (49) again hold, but  the 
t ransient  frequencies kf,,B implicitly depend on time (through the temperature).  

The simplest case (interesting from a technological point  of view) is so-called 
two-step nucleat ion,  when the effect of prel iminary heat t reatment  on the kinetics of 
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nuclea t ion  were mode led  [35] and the results c o m p a r e d  with measured  da t a  of nuclei 
for two-s tep  anneal ing  t rea tments  in an L i 2 0 . 2 S i O  2 melt. 

The effect of the p re l iminary  heat  t r ea tment  at the t empera tu re  T 1 dur ing  t ime t o on 
the nuclea t ion  tak ing  place at the different t empera tu re  T 2 can be considered as 
nuclea t ion  at the cons tan t  t empera tu re  T 1 followed by nuclea t ion  at the cons tan t  
t empera tu re  T 2, because the t empera tu re  change  Tl(to)--* T 2 is relat ively fast with 
respect to the t rans ient  t ime of nucleat ion.  Nuc lea t ion  at the t empera tu re  T 2 s tar ts  
na tura l ly  with the d i s t r ibu t ion  funct ion co r re spond ing  to the t empera tu re  T~ at t ime t o 
(for details,  see Ref. [35]). 

F i rs t  of all, we have chosen the interracial  energy a and the ac t iva t ion  energy of 
diffusion across  the phase  interface to get the best  coincidence with known  exper imen-  
tal da t a  for the number  of nuclei  at cons tan t  temperature .  The effect of "deve lopment"  
of nuclei, i.e. their  further  g rowth  at deve lopmen t  t empera tu re  to a size de tec table  in 
a microscope,  was cons idered  to ob ta in  correct  values of the cr and  E parameters .  Then,  
the number  of nuclei for the cri t ical  size n* = 51 at  the deve lopmen t  t empera tu re  were 
c o m p u t e d  by numer ica l  solut ion of the kinetic  equa t ion  (47), wi thout  any  fitting of 
cr and  E parameters ,  and  c o m p a r e d  with exper imenta l  measuremen t  of F o k i n  and 
co-workers  [25, 36, 37], see Fig. 13. Here,  nuclea t ion  (as for measured  data)  at t empera-  
ture T 1 was cons idered  as a p re l iminary  heat  t rea tment ,  i.e. t ime star ts  from t o. We  have 
ob ta ined  very good  coincidence between the c o m p u t e d  and measured  number  of 
nuclei, within exper imenta l  error,  under  var ious  exper imenta l  condi t ions .  The whole 
nuclea t ion  process  (from the m o m e n t  when t empera tu re  anneal ing  at T 1 occurs) for 
cri t ical  size n* = 51 at  the deve lopment  tempera ture ,  is depic ted  in Fig. 14. The cluster 
flux J51 j u m p s  to the higher  value at t ime t o and  then relaxes to its s t a t ionary  value at 
cons tan t  t empera tu re  T z. A small  increase in nuclea t ion  rate (1 2 orders  in magni tude)  
after p re l iminary  heat  t r ea tment  at T 1 < T 2 is a known exper imenta l  fact [25], but  
which, however,  is bare ly  unders tandable .  Recent ly it was shown (for details ,  see 
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Fig. 13. Number of nuclei from Eq. (64) ( ) and experimental number of nuclei Z as a function of time t at 
738 K: (a) after annealing 758 K during t o = 143 min (D); at 758 K (b) after preliminary annealing at 713 K 
during t o = 18h (D), 742K during to = 4.5h (©) and 746K during to =45min (+); and at 713K (c) after 
annealing at 738 K during t o = 50min (El). 
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Ref. [35]) that the increase in nucleation rate after the preliminary heat treatment is 
caused by an increase in the transient frequencies at the temperature change. 

Furthermore, we have studied nucleation under various temperature regimes: 
linear cooling and heating [22], and oscillating temperature [18]. During heating 
(analogically for cooling), the nucleation rate at some temperature T can reach 
even higher values than that corresponding to its stationary value (for details, see 
Ref. [-18]). This situation occurs when the stationary nucleation rate decreases with 
temperature, i.e. the nucleation rate is delayed, its value corresponding to lower 
tempeatures. 

Temperature oscillations produce oscillations of the cluster distribution function, 
nucleation rate and the flux, in such a way that the amplitudes of these quantities 
grow with increasing temperature amplitude. Moreover, the amplitude of nucleation 
rate oscillations increases with the frequency of temperature oscillations which is 
predominantly influenced by the temporal change in the critical size (for details, see 
Ref. [18]). 
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5. Conclusion 

We have presented some of the most  impor t an t  (and, we believe, most  interesting) 
results on t ransient  nuclea t ion  processes taking place in single and  b inary  systems. 
Applying the described t rea tment  of the problem, some impor tan t  characteristics of 
nucleat ing systems may be determined,  including the n u m b e r  of growable clusters 
(nuclei) per uni t  volume of mother  phase, or the time required for their appearance.  
Knowledge  of these quanti t ies  allows the nucleat ion process itself to be influenced from 

the outside. 
It has to be pointed out, however, that  the above model and methodology may be 

applied not  only in the study of nucleat ion in t radi t ional  technological systems 
(crystals), but  also in such exotic problems as the crystall ization of viruses, nucleat ion in 
neu t ron  stellar cores or in metastable nuclear  matter. Analysis of these problems lies 

beyond the scope of this paper. 
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