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Abstract 

This is a review of current knowledge on the kinetics of relaxation of glass-forming melts. The 
kinetics of the relaxation process is of prime importance for the properties of glasses. A number of 
approaches describing the structural relaxation of glasses are discussed. The aim is to predict the 
form of the relaxation function and the temperature dependence of the characteristic time for 
structural relaxation rr. 

Important information on the relaxation behaviour of glasses can be obtained by following the 
dependence of the glass transition temperature Tg on the heating rate and the dependence of Tf 
on the cooling rate. 

Keywords: Glass; Kinetics; Relaxation; Structure 

1. Introduction 

The study of the relationship between the equilibrium and non-equilibrium proper- 
ties of systems is one of the fascinating problems of contemporary science. The present 
review summarizes the results of theory and experiment on the relaxation of glasses. 

When a melt is cooled through the glass transition region, a non-equilibrium 
vitreous state is obtained. While every equilibrium system can be determined by a set of 
intensive thermodynamic parameters, like pressure P and temperature T, at least one 
additional parameter  is needed for the complete description of a non-equilibrium 
system. For that reason, Tool and Eichlin [1] introduced the so called "fictive" or 
"structural" temperature, Tf. Generally, Tf is the temperature at which the fixed 
structure would be in equilibrium. The problem is that a system with a given structure 
could manifest different values of Tf when different properties are investigated [2]. 
A good illustration of this is the experiment of Ritland [3] who found that two samples 
with equal structural temperature with respect to refractive index could have different 
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electrical conductivities if the thermal paths of arriving at the given state were different. 
More than one fictive temperature is needed in order to describe memory effects. The 
relaxation of many properties of glasses has been investigated so far. This includes the 
time dependences of viscosity, refraction indices, enthalpy and density, and the study of 
mechanical relaxation and neutron scattering, etc. 

2. Models of relaxation kinetics 

Structural relaxation is a process of establishing the equilibrium state. The time scale 
of this process is determined by the relaxation time rr- The system that is examined for 
a time much longer than rr is seen to be in equilibrium. However, when the observation 
time is much shorter than the relaxation time, we see a snap-shot of a frozen-in 
non-equilibrium system. A number of approaches describing the structural relaxation 
of glasses are known. The aim of the existing theories is to predict the form of the 
relaxation function @r, and the temperature dependence of the characteristic time for 
structural relaxation, r r. The response function q~l of a conventional Debye relaxation 
[4] of a spherical molecule in a viscous medium 

OP 1 = r ( t ) / r i ,  = exp ( - t / % )  (1) 

is characterized by a single relaxation time z c and by a deviation r of a given property 
from the equilibrium value. Hereafter, r is considered as the relative deviation of the 
structural temperature Tf from the actual temperature T of the system 

T f -  T 
r - - -  ( 2 )  

T 

Eq. (1) is the solution of a single linear differential equation 

i" - d r ~ d r  = r / z  e (3) 

which, in terms of linear non-equilibrium thermodynamics, controls the relaxation 
process. Eq. (1) is also known as Maxwell's low, which follows from the assumption 
that a given property r changes towards equilibrium as a first-order chemical reaction. 

2.1. S t r e t c h e d  e x p o n e n t i a l  

Kohlrausch, some 150 years ago [5], first noticed that Eq. (1) does not properly 
describe the relaxation kinetics of glasses. He [5] and later Williams and Watts and 
coworkers [6,7] assumed that in complex systems the response function q)p is 
a stretched exponential 

@~ = r(t) /r in = e x p ( - ( t / r e ) ~ ) ,  0 </~ < 1 (4) 

Following the idea of Rendell and Ngai E8], one can derive Eq. (4) by replacing z c 
with a time-dependent function 

r(t) = ~(O)t ~ ~, 0 < /~  (5) 
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where 1 - f i  plays the role of the shift factor introduced by Struik [9] 

d l n r  
1 - fl  = d l n ~  (6)  

Note that z(t) increases with time for fl < 1 and decreases for fi > 1. Experimentally, 
when a system at equilibrium undergoes an instantaneous jump to a lower tempera- 
ture, the relaxation is accompanied by an increase in z(t), and vice versa; z(t) is 
a decreasing time function for a temperature jump upwards. When a system is 
investigated near equilibrium, a Debye relaxation (Eq. (1)) is usually found, i.e. fi = 1 
and ~(0) = z~. Evidently, in Eq. (4), z~ is given by 

z~ = (z(O)fi) I/~ (7) 

2.2. Spectra o f  times 

A stretched exponential can be obtained within the framework of a model recently 
developed in a series of papers [10 17]. It is based on a fundamental postulate that 
structural recovery involves a distribution of retardation (or relaxation) times. In this 
way Eq. (4) emerges naturally from the theory of hierarchically constrained dynamics 
[183. 

There are several new and very promising approaches which, however, are very 
complicated and need a lot of further work. It is worth mentioning the paper of 
Stillinger [19] in which the basic idea of a "basin" model is given. According to this, 
potential energy basins are formed and the relaxation process is controlled by the 
kinetics of inter-basin transition. 

As a matter of fact, it is assumed in a non-explicit form in all these models [10 16] 
that instead of Eq. (3) there is a set of independent differential equations 

d G / d t  = - r l / ~  1 

d ri/d t = - -  r i / ' c  i 

Each r i has a given contribution g; to the overall relaxation process 

r = ( r )  = ~ g i r i  (9) 

In this way the response function is represented by a sum of exponential terms 

(') OPll = E gi exp 7; (10) 

where z; are independent relaxation times. 
Moynihan et al. [20] and Lindsey and Paterson [21] have tried to solve the 

non-exponential relaxation function given by Eq. (4) as a spectrum of relaxation times, 
Eq. (10). Simple Fourier transform of the decay function of Eq. (4) was not found except 
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for/3 = 1 and for/3 = 0.5. Nevertheless,  in Ref. [20], it was shown that  Eq. (10) can be 
approx ima ted  by Eq. (4) for 0 </3 < 1. There is a s t rong relat ionship between the 
variance in In (z/re) and/3. 

Var In ( Z / T e )  ~--- ( In 2 (r/zc)) -- { In (z/zc) } 2 (11) 

This is i l lustrated in Fig. 1 where we plot data  from Ref. [20] of Var In (Z/re) against/3. 
The approx ima t ion  that  we propose  is given as a solid line 

Var ln( r /ze)  = 100 x e x p ( - 6 / 3 )  0.3 < / 3 <  1 (12) 

It is clear that  zo is a mean  effective value and does not imply that  there is a single 
relaxation time. Fit t ing exper imental  data  to the Kohl rausch  law, Dixon and Nagel  
[22] found that  the relaxation widths are independent  of t empera ture  in the vicinity of 
the glass transit ion interval. 

General ly  speaking, three different schemes could control  the relaxation. The first is 
the assumpt ion  [10,16,20] that  the process goes on as a number  of more  or less 
independent  acts, each being controlled by a part icular  characteristic time. Eq. (8) 
reflects this model.  However ,  it can be assumed [23] that  one and the same building 
unit (for example  a segment  of a macromolecu la r  chain or SiO 2 te t rahedra  in the 
cont inuous  ne twork  oxide glasses, etc.) can occupy different states (different energy, 
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Fig. 1. Dependence of Var In (r/re) on/~: Q, data according to Ref. [20]; solid line, proposed approximation. 
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different volume, etc.) If the concentration of a given state i is P~, and the number of 
states is N then the process of relaxation proceeds according to one of the following 
schemes [23], given schematically here for N = 4: 

model (A) 

o r  

P 1 -'~--'-~- P 2 -"~--'-'~- P 3< ' - - - '~P  4 model (B) 

According to model (A), every building unit could change from state i to any other 
state within the limits between 1 and N. According to the model (B), there is a linear 
chain of possible reactions so that the building unit can go from state i to state i _+ 1 
only. The most important difference with the model given by Eq. (8) is that (A) and (B) 
determine the equilibrium values P~ through the rate parameter  W~k with which 
a building unit at a state i changes to a state k 

p~w~ k = pck Wki (13) 

The master equation of the relaxation is 

d Pi ~' 
- ~ PkLki (14) 

dt  k : l  

which is to be solved together with the normalization condition 

N 

Pk = 1 (15) 
k = l  

In Eq. (13), the rate parameters Lki depend on the frequency of escape ~ in the 
following way 

For the model (A) 

Lki= { Wk ' i v~ k 
- - ( N - - I ) W k ,  i = k  

For the model (B) 

I 
W k , i + k  

- 2 W  k , k = i ,  i # l ,  N 

L k i = j w  k k =  1, N: i = 2 ,  n - I  

[o otherwise 

The system of Eqs. (13,14) is solved in the form 

N 

Pk(t) = y,  B i exp ( -- ":oi t) 
k = l  

(16) 

(17) 

(18) 
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with coefficients 2 i being the solutions of the system 

[Lij -- t~ ij.,~ ] = 0 (19) 

As soon as the Pi values are known, the calculation of the relaxation function q~ is 
trivial. The results of model (A) show [23] that for N = 2, a Debye low is satisfied. The 
situation changes as soon as N increases and three relaxation regions appear. This is 
illustrated in Fig. 2 where In I - l o g  (O)] is plotted against In t. If Eq. (4) holds, then 
a straight line with slope/3 and intercept - /3  In Ze is expected. In the short-time region 
below the dashed line, a slope with/3 = 1 is observed. The second region in which 
/3 = 0.5 and In ze = 5 is important. This is the time region (0.06 < Ze < 6re) at which the 
experimental measurements are usually carried out. So, this model leads again to the 
stretched exponential low. 

2.3. Mode coupling 

Mode coupling theory reveals the influence of the density fluctuations modes 
[24 26] on the relaxation process. The motion of a particle transfers some energy to be 
redistributed among the surrounding particles. It results in density fluctuation modes 
[27 30] with a wave vector q. The density correlation function q~(t) is determined by 
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the equation of motion 

~ + ('/f~)2@ + f~20 + f~2 m ( t - t ' ) O ( t ' ) d t ' = O  (20) 
0 

where f~ is frequency. The memory kernel re(t) reflects the collective effects arising from 
the cooperative motion of a particle and its surrounding. Some further and non-trivial 
mathematical treatment of the problem are discussed in Refs. [31,32]. The theory 
predicts that a certain part of the relaxation proceeds according to the stretched 
exponential low. 

By means of molecular dynamic simulation, Roe [33] investigated the short-time 
motion in polymer glass-forming liquid. Unlike small molecule liquids, no hopping is 
observed in this case. Although the mode-coupling theory predicts properly the 
occurrence of the glass transition, it still has long way to go in order to become appli- 
cable in a quantitative description of the relaxation when complicated temperature 
regimes are involved. 

The simulation [1-4, 11 16] is still within the framework of linear non-equilib- 
rium thermodynamics. However, glasses are systems very far from equilibrium. More- 
over, any kinetic problem which is not properly described by Eqs. (1,3) should be 
treated within the framework of non-linear non-equilibrium thermodynamics. The 
non-linear equation of relaxation can be solved by introducing the structure-dependent 
relaxation time r. Instead of Eq. (3), one has to solve the expression 

i, = - r/z(r ,  T)  (21) 

The relaxation time r(r, T) usually depends on temperature T and structure r as [34, 
35] 

r = r o exp (E(r, T ) / R  T)  (22) 

where E(r, T)  is the activation energy, R is the ideal gas constant and z 0 is a pre- 
exponential constant. If one assumes that at a given temperature E(r, T ) / R  T is a 
linear function of the structure 

E(r, T ) / R  T = E ( T ) / R  r - pr  (23) 

then Eq. (21) yields 

pr e -  pr" t 
r P 7 - d ( p r ) - '  rc (24) 

In this way, one derives a non-exponential relaxation. The form of Eq. (1) still holds 

t 
M ( t )  - (25) 

T e 

only this time one has a respond function M(r)  expressed in terms of an exponential 
integral 

M(t )  = Ei(Prin ) -- E i ( p r  ) (26) 
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where the exponential integral stands for 

( ' ~  e x 

E,(u) = J .  ~ - d x  (27) 

The Ez(u) function is available in every mathematical handbook and can be represented 
by one of the series 

E z ( u ) = - 7 - 1 n u +  1_1! 2.2! ~-3.3! "" (28a) 

o r  

e u( 1! 2! ) (28b) Ei(u) ~ --u 1 - --u -t- u~ - . . . .  

3. Models of the time r of structural relaxation 

The time for structural rearrangements of any complex system is related to some 
activation energy barrier according to 

r = r 0 exp (29) 

where the pre-exponential constant r o is between 10 -1° and 10 12s, while the 
activation energy E ( T ,  Tf) depends on both T and Tf. Note that the relaxation proceeds 
as a number of more or less independent processes, each being controlled by a particu- 
lar characteristic time. 

It is quite a common assumption that the structural relaxation and the viscous flow 
are connected by one and the same process of rearrangement of building units of the 
system. If so, then these two processes will be controlled by one and the same activation 
energy. In which case, the average time r r of relaxation is the time of jump of a building 
unit (hereafter to be referred to as a molecule) to a new position and is proportional to 
shear viscosity ~7 

r r = K ~7 (30) 

According to Refs. [27,36,37], the relaxation modulus K is K ~ 4  x 10 l°Pa 
Eq. (30) means that the most important part of the structural relaxation is connected 
with a spatial rearrangement of the building units. This assumption is not trivial. Some 
authors argue that the activation energy of viscous flow is determined by the energy 
necessary to break the entanglements between the macromolecular chains, while 
structural relaxation is a process of local molecular reorganization so that the 
activation energy is determined by the difficulties connected with the motion of 
segments between the entanglements. It is well known that the viscosity of most of the 
glass-forming melts depends in a non-Arrhenius way on temperature so that the 
activation energy is not a constant. 
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A number of models were developed to describe the temperature dependence of the 
viscosity of undercooled melts. The old-fashioned free volume approach [38 40] first 
predicted a non-Arrhenius behaviour of r/vs. T dependence. According to this, the 
molecular mobility depends on the ratio of the occupied volume to the free volume. The 
results of Spaepen, Turnbull and coworkers [41-43], in which the structural relaxation 
of metallic glasses was investigated, are similar. 

3.1. Adam and Gibbs equation 

Naturally, the next logical step was to consider [44,45] the motion as a cooperative 
process involving a simultaneous rearrangement of a large number of molecules. For 
this reason, both r and q should depend on the configurational entropy Sconf. The best 
known and often used equation is that of Adam and Gibbs [45] 

r = r o exp (31) 

According to Scherer [36], the free volume model [40] is not able to describe properly 
the isostructural viscosity [46,47] of oxide glasses. Although the Adam-Gibbs  model 
fits well a large number of glass-forming melts (see for instance Refs. [36,46,47]), it fails 
[48 51] for others. 

3.2. Avramov and Milchev equation 

It is well known that despite the differences in the structure and mechanism of 
molecular transport, all undercooled melts show a remarkable similarity in the 
temperature dependence of their shear viscosity. In our previous papers [34-36], this 
was accounted for within a generalized model describing phenomenologically the 
kinetics of molecular motion in undercooled liquids and glasses. While in an absolutely 
ordered system a molecule has to overcome always one and the same activation energy 
barrier in order to move, in amorphous systems, because of the disorder, there are 
a number of activation energy barriers of different height E, the appearance of each 
being characterized by a probability distribution function P(E). The distribution is 
characterized by the dispersity a and the maximal value Ema x. The mean jump 
frequency is defined as 

( v )  = fl~ P(E)v(E) dE ( 3 2 )  

It is important  to note that while v = z-  

(v) = (r  1) e ( r ) - I  

The mean effective time responsible for the relaxation is 

r r = (v )  ~ ( 3 3 )  
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Eq. (24) can be solved for any special choice of P(E). Earlier [34, 35, 52], we showed that 
the exact solution of Eq. (32) together with Eqs. (33) and (29) can be approximated as 

 r  oexp( ) ,34, 
There is [34, 35, 52] a strong relationship between the entropy S and dispersity a of the 
system 

/2(s- 
a=~geXp~-  ~ ) (35) 

Here crg is the dispersity of the system at a reference state at which entropy is Sg, and Z is 
the degeneracy of the system, i.e. it is the number of escape channels available to each 
molecule. For a non-equilibrium system the entropy is given by 

S=Sg+Cpln(Tf']+Cg, ln(T) (36) 
\rg/ 

where Cp and Cg 1 are the molar heat capacities of the liquid and of the glassy state. 
Therefore 

T r = "C O e x p  

where 

0 = - -  T, (38) 
\ a g l  

is the virtual temperature at which a(0) = E m a  x. Here 

2Cp 
a - (39) ZR 

and 

g = a Cg~ (40) 
Cp 

At equilibrium, Tf = T, so that 

(o; 
rr = ro exp (41) 

Since r/is proportional to Zr, Eq. (41) gives the temperature dependence of the viscosity. 
This was proven for about 40 substances [52] where an empirical relationship between 
0 and a was found 

1 
In 0 = 6.4 + 3.6-  (42) 

a 
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and 

E 
- -  ~ 33 _+ 1 (42a) 
O'g 

3.3. Vogel-Fulcher- Tammann equation 

The empirical Vogel-Fulcher-Tammann equation predicts that the activation 
energy for molecular motion of a system at equilibrium (Tf = T) is given as 

E(T) A 
- - -  ( 4 3 )  

RT T - - T  o 

T o and A being constants. This expression is widespread and is also known (for 
polymers) as the Williams-Lendel-Ferry equation. 

3.4. Narayanaswamy model 

The relaxation kinetics manifest two features: non-exponentiality and non-linearity. 
The former is accounted for by expressing the response function by one of the equations 
(4, 10, 20, 25), the latter being expressed by using for the relaxation time an expression 
that takes into account that it depends on Tf and T. Narayanaswamy [53] wrote the 
relaxation time in the following form 

(xh (1-_x)h~ 
z r = z  oexp R-T q RTf ] (44) 

where the non-linearity parameter x separates the influence of temperature from that of 
the fictive temperature. It should be noted that Eq. (44) predicts an Arrhenius behav- 
iour for a system close to equilibrium. The latter contradicts most of the experimental 
evidence and may be one of the reasons why when using Eq. (44) one obtains physically 
unreasonable values for the parameters involved. Despite its empirical background, 
Eq. (44) is very widespread because it simplifies considerably the mathematical descrip- 
tion of the relaxation process of glasses. The accuracy of the predicted time evolution of 
any property of non-equilibrium systems depends critically upon the non-linearity 
parameter x. This is the reason why the methods of experimental determination of 
x become of primary importance for the study of structural relaxation. 

4. Temperature treatment 

Although the exact form of the response function is still under question, the 
non-isothermal experimental investigation of relaxation processes is very popular. The 
glass transition is a kinetic phenomenon. It is a problem of the ratio between the 
observation time At and the relaxation time z r. Conventional cooling- or heating-rate 
experiments are plagued by uncertainties of how to treat a system which is in the 
process of falling out of equilibrium. Therefore the measuring time has an important 
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role. Fo r  an arb i t ra ry  thermal  history, the t ime is linearized by replacing the t/z fraction 
by the reduced t ime [22] 

f l  dt' ~(t) = r(t ') (45) 

Experimental ly,  it was found that  the structural  t empera ture  Tf that  is fixed upon  
cooling increases with the cooling rate q = - d T/d t. In DSC instruments,  a continu-  
ous t empera ture  change is s imulated by mak ing  a series of a lmost  ins tantaneous  
tempera ture  jumps  A T, each followed by isothermal  anneal ing of t ime At = IA T[/q. (In 
part icular,  in some of our  D S C  measurements  [54,55] the A T j u m p  was A T = 1/30 K). 
In accordance with Ritland [56] and Bartenev [57] 

r r ( T  = Tf)  = At (46) 

o r  

q-  r ( T  = Tf) = Const  1 (47) 

I f a  glass with a given Tf is reheated at a rate q+ = d T/dt, then at the glass transit ion 
tempera ture  Tg the structure begins to change measurab ly  towards  equilibrium. In this 
case, the equat ion of Bartenev [57 59] and Davies and Jones [60] gives 

q +  r r (Tg  , Tf)  = Const  2 (47a) 

Another  definition that  leads to Eq. (47) is given by Coope r  [-61] and Coope r  and 
G u p t a  [62] 

d r  d r  d T  
d t  - d ~  d t  - 1 (47b) 

If one assumes that  r r is an exponent ia l  function (see Eq. (29)) of the act ivat ion energy, 
the following criterion [63] can be formula ted  

1/Tf = C2(C1/C 2 - l n ( q  )) (48) 

with C 1 = C 2 (ln (c/ro)) and C 2 = R/E(T, Tf). Empirically,  Bartenev and G o r b a t k i n a  
[63] found that  C1/C 2 = 31. It is of interest to note that  in Eq. (47), In (q-  1) << 31 (for 
q = 1 K min -1, In q -  = 0) so that  31 C 2 ~ 1/Tf, or taking into account  Eq. (41) one 
obtains  

~ - RTf(q = 1 ) -  31 (49) 

It follows that  

3.5 
In 0 ~ In Tf + - -  (50) a 

Note  the good agreement  between Eqs. (50) and (42). 
For  a constant  act ivat ion energy there should be a straight line in coordinates  1/Tf 

against In q - .  (It is often presented in Arrhenius coordinates, i.e. In q vs. 1/Tf.) Usually, 
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the relaxation of glasses is investigated in a relatively narrow temperature region, so 
that experimental curves resemble straight lines. For that reason, many authors assume 
that the activation energy is constant. Meanwhile, there are at least two independent 
signs that this assumption is not correct [-54,64]. The first indication follows from the 
proportionality of z r and r/. Since the viscosity exhibits a non-Arrhenius behaviour, 
the same should be assumed for the relaxation time. The second indication follows from 
the fact that experimentally the two curves (In q vs. 1/Tf and In q+ vs. 1/Tg) have 
different slopes [55,65,66]. In coordinates In q- against 1/Tf, the curve has a slope Lf 
equal to 

g(z ,  Zf ~- T) 1 [ ~  ~ 
RT[_8(1/T)E(T, Tf) + ~ E(T, Vf) J (51) Lf = R 

or according to Eq. (49) it is equal to 

L f = - a  T f ( ~ )  ° =  a Tf (E(~--Z-=/f)) (52) 

A semi-logarithmic plot of In q+ versus the reciprocal glass transition temperature 
gives a curve with a slope Lg equal to 

E(T, Tf =const) 1 [- c~ E T ] 
Lg I-~-Tl~,~,,~,kv~l/ ~ ~ ( , Tf =const ) j  (53) 

R 

or 

Lg=-gTg ~ \TgJ - g T g \  RTg J 

Strictly speaking, Lg depends, through E(Tg, Tf), on the structural temperature Tf 
that was fixed during the previous cooling. An excellent example of this is the 
experiments of Kasap and Yannacopoulos [67] where a parameter, which in terms of 
the present discussion is Lg/Lf, was investigated experimentally for As2Se 3 samples 
having different Tf values. It was shown that the value of LJLf decreases by about 25% 
for annealed samples. This corresponds to about 20 K decrease in the Tf value of 
annealed samples. 

The comparison of Lf and Lg at a point at which Tg = T, gives 

(E(Tf)~ _ 1 8  
AL=_Lf-Lg= - ( a - g )  Tf\  RTf J RTg~(1/Tf)E(Tg, Tf) (54) 

which accounts for the structural dependence of the activation energy. However, 
Lg/Lf = g/a = Cgl/C p. 

The results of computer modelling of relaxation are given in Fig. 3. The computa- 
tional steps are ~is follows. We consider the change of temperature at a rate 
q = d T/dt = AT/At as a series of instantaneous temperature jumps (AT = 1 K), fol- 
lowed by an isothermal annealing of duration At = l/q, reproducing the desired rate of 
temperature change. During the annealing, the relaxation rate is given by Eq. (21). We 
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Fig. 3. C o m p u t e r  s imu la t i on  o f  re laxa t ion .  Po in t s  are  expe r imen ta l  results,  f rom Ref. [64] ,  on  B i 2 0 3 - 3 G e O  z 

( B G O l : 3 ) g l a s s - f o r m i n g m e l t c o o l e d a t q  = 5 K m i n  l a n d t h e n h e a t e d a t q + = 2 0 K m i n  1 . T h e s o l i d  

line is c o m p u t e d  wi th  a = 4, g = 2; 0 = 1750 K a n d  z o = 10 11 s a n d  the s ame  t he rma l  t r ea tmen t .  

in tegrate  with a t ime step t' = 1 0 - 4 A t  in a fol lowing loop  of 104 steps 

r = r + A r  (55a) 

T = T(r, T) (55b) 

If t'/r(r, T) > 104, then ins tead of runn ing  the loop  it was assumed that  Ar  = - r; if 
t'/z(r, T) < 1 then ins tead of  running  the loop  we s imply assumed that  Ar  = 0. F o r  each 
run the initial  t empera tu re  was well above  the glass t rans i t ion  region and  the system 
was cooled at a s teady rate  q to a chosen t empera tu re  significantly below the glass 
t rans i t ion  interval.  Then the system was heated at a rate  q +. 

Different models  for r(r, T) were used in Eq. (55b). In Fig. 3 we give the result  
ca lcula ted  accord ing  to the mode l  of A v r a m o v  and Milchev (Eq. (37)). The solid line is 
c o m p u t e d  with a - -4 ,  9 = 2; 0 = 1750K and z o = 10- ix s. Po in ts  are  the exper imenta l  
results from Ref. [-62] on B i / O 3 - 3 G e O  2 (BGO 1:3) glass-forming melt  cooled  at  
q -  = - 5 K m i n -  1 and then hea ted  at  q + = 20 K m i n -  1. 

r 
Ar - t' (55) 

z(r, T) 
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A number of glass-forming substances were investigated by means of differential 
scanning calorimetry (see [10-22, 52-66]). It seems that the best way is to cycle the 
sample repeatedly between a temperature well below Tg and a second temperature 
above Tg. In one set of experiments a series of constant cooling rates could be used while 
the heating rate is kept constant. In another series of experiments, a constant cooling 
rate is followed by a range of heating rates. It must be verified that no crystallization 
takes place in the chosen temperature region [54,55,64-66]. 

The dependence of In q vs. 104/Tf is shown in Fig. 4 for BGO glass [64]. The 
influence of q+ on Tg is shown in the same figure in coordinates lnq vs. 104/Tg for 
samples cooled at a rate q- = 20 K min- 1. Solid lines are the results of computer 
modelling. The region of temperatures is so narrow that the experimental curves could 
be successfully described by the dashed straight lines. For similar reasons many authors 
assume that the activation energy is constant, i.e. the second term in Eq. (51) vanishes 
and the activation energy can be determined directly from Lf. It is readily seen that such 
a procedure leads to an overestimation of E by more than 100% because Lg/Lf ~ 0.5. 

The method of Narayanaswamy [53] is very widespread, despite its empirical 
background, because it simplifies considerably the mathematical description of the 
relaxation process of glasses. The accuracy of the prediction of the time evolution of any 
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Fig. 4. Dependence o f ln  q vs. 10/Tf (73) and dependence o f l n q  vs. 10'~/Tg (A) of BizO3-3GeO 2. The solid 
lines are computed  with the same values of the parameters  as in Fig. 3. The dashed lines are the best-fit 
straight lines. 
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property of non-equilibrium systems depends critically upon the utilized value of the 
parameter x. In a series of papers [54,55,64,66], we have shown that the non-linearity 
parameter x is equal t o  Lg/Lf. Indeed, according to Eq. (44) it follows that 

01n ('c(Tf = T))/~(1/T)= Ah/R (56) 

and 

0 In (r(Tf = const))/O (I/T) = - xA h/R (57) 

It should be noted that there is an important internal contradiction in the 
Narayanaswamy model. It assumes a constant activation energy and, at the same time, 
the condition Lg/Lf ¢= 1 is a strong indication that the activation energy is not 
a constant. For this reason, the Lg/Lf ratio cannot be predicted properly in the 
framework of this model. Moreover, in order to find a quantitative agreement between 
the computed curves and experimental data, one has often to use quite unreasonable 
values for the pre-exponential constant. 

5. Frequency-dependent properties 

Methods of direct measurement of the spectra of frequencies of change of under- 
cooled melts have recently become very important. There are measurements on 
mechanical and electrical relaxation [68]. Birge and Nagel [-69,70] have developed 
a new technique for measuring the frequency dependence of the specific heat Cp, 
affecting a sample with small periodically varying temperature oscillations. Biichner 
and Korpiun [71] have shown that the photo acoustic (PA) technique can be used to 
determine the equilibrium specific heat in the glass transition region. They have 
measured the frequency-dependent effusivity of CaNOa 'KNO 3 glass-forming melt. 
Kojima [72] has applied the PA method to study the thermal relaxation in "fragile" 
liquids like propylene glycol and glycerol. Recently [73], we combined differential 
scanning calorimetry (DSC) experiments with spectral calorimetry. 

According to Bfichner and Korpiun [71], the PA amplitude A and phase ~b are 
related to the real and imaginary parts of the square of the effusivity k Cp, through 

A = (k Cp)~/2 [~'2(~o) + ~"2(o~)] - 1/4 (58) 

e " (~ )  
q5 = 0.5 arctan e'(~o~ (59) 

where (kCp)~/2 is the sample effusivity far above the glass transition region, k is the 
thermal conductivity, oJ = 2gf, e'(co) = Re {k C,} and e"(co) = Im {k Cp}. The real part 
of the response function is proportional to the frequency-dependent heat capacity 
Cp(o)), while its imaginary part accounts for the dissipative processes. 

Fig. 5 shows the temperature dependence of the PA amplitude (Fig. 5a) and phase 
(Fig. 5b) in the glass transition region of poly(methyl methacrylate) (PMMA) for two 
modulation frequencies. The glass transition is accompanied by a drop in the PA 
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Fig. 5. The temperature dependence of the PA amplitude (a) and phase (b) of poly(methyl methacrylate) 
PMMA for two modulation frequencies, 8 and 108 Hz. 

amplitude and by a maximum of the phase versus temperature curves (usually called 
the s-relaxation peak). The glass transition temperature Tg is determined from the 
position of the s-peak. It is readily seen that Tg shifts to higher temperatures and the 
a-peaks are broadened as the frequency increases. At low temperatures (340-360 K), 
additional small peaks are also seen. This transition is well-resolved from the ~- 
relaxation peak at low modulation frequencies. When the frequency increases, the 
additional peaks move to higher temperatures faster than the or-peak. At f = 108 Hz, 
both transitions coincide. This behaviour can be associated with the secondary or 
fl-relaxation transition [74]. 
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6. Concluding remarks 

The main  advantage  of non- iso thermal  measurements  is that they allow a check of 
the validity of the assumpt ion that the relaxation time of thermal  relaxation is 

propor t ional  to shear viscosity q. This means that the process of structural  relaxation is 
strongly dependent  on the process of molecular  transport .  In other words, it assumes 
that s tructural  changes are possible only when molecules alter position. This assump- 
t ion is not  trivial. In polymers there are a n u m b e r  of en tanglements  between macro-  
molecular  chains. For  that reason, some authors  argue that molecular  mot ion  is 
controlled by the act ivat ion energy to break the entanglements ,  while structural  
relaxation is control led by a rear rangement  of segments between entanglements .  The 
check of the assumpt ion  of propor t ional i ty  between ~ and r/is easy when the slopes of 
the log q vs. 1/Tf curve and of the log r/ vs. l I T  curve are compared in the same 
temperature  interval. In this way the above assumpt ion  was proved for B203, BSC 

glass and 0.4Ca(NO3) 2 0 . 6 K N O  3 [11,75], for Ge16Te84 alloy [76] and for some 
phosphate  glasses [-55]. Al though there are some data  on the kinetics of relaxation of 
organic polymers, the decisive test is still in the future. 

A keyword reference on the word "relaxation" gives more than 2000 articles. Here 
only a few of them were reviewed. The au thor  hopes that they indicate the basic ideas 
and problems on the topic. 
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