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Abstract 

In this paper, the advantages of employing a Derivative Temperature-Programmed Desorp- 
tion (DTPD) curve in TPD analysis are demonstrated. Based on a series of theoretical DTPD 
curves obtained by computer simulation with double assumption of zero signal noise and no 
temperature gradients across the sample, a comparison is made between the TPD and DTPD 
curves, and it is found that the approach can (a) estimate desorption order, (b) raise resolving 
power, and (c) eliminate baselinedrift. The equations for calculating kinetic parameters from 
DTPD curves are also presented. The results show that these equations are valid. 
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1. Introduction 

Elucidation of the interaction of reactants with catalyst surfaces is of primary 
importance in heterogeneous reaction systems. In the past twenty years, although 
techniques such as AES, XPS, HREELS, etc., have become popular, some traditional 
methods such as T P D  and TPR have been found to be indispensable [1]. Generally 
speaking, an ultra-high vacuum is required in studies of the bonding between adsor- 
bates and surfaces when modern techniques are used and in situ studies under reaction 
conditions are very difficult. Temperature-programmed desorption (TPD), however, 
can be conducted under reaction conditions and has wide application in catalytic 
research [1-5]. 

Although the T P D  technique is simple, it is rather difficult to extract all the 
information present in the T P D  curve. In order to exploit T P D  fully, many researchers 
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have undertaken a theoretical approach [6 14]. Generally speaking, TP D  diagrams 
can be used qualitatively to obtain information about the number of adsorption forms 
on the surface and their relative stability. When catalyst surfaces are being analyzed, 
one finds that in most cases there are more than one kind of binding site and the 
desorption of adsorbants might produce overlapping peaks. It is generally accepted 
that better resolution between overlapping peaks can be achieved by using lower 
heating rates; however, the method is found to be ineffective in a number of cases [15]. 

Quantitative analysis of TPD curves allow calculation of the Arrhenius kinetic 
parameters for desorption [1,2,8,10, 15]. Although there are better methods for 
calculating these parameters from TPD curves with a single-peak profile 
[1,2, 8, 10, 15], it is difficult to analyze overlapping peaks quantitatively. There is 
a "simplex method" for resolving overlapping peaks [13]. However, before using such 
a method, it is necessary to estimate the number of peaks present in the profile from the 
peak shape. Therefore, whether in a qualitative or quantitative way, it is very important 
to improve the resolving power of the TPD curve. 

Derivative spectra have been widely applied in UV, IR, AES and ESR to enhance 
resolving power [16-18]. In the present work, in order to improve resolving power of 
the TP D curves, we propose the adoption of a derivative temperature-programmed 
desorption (DTPD) curve. In the following sections, we describe simulation of the 
D T P D  curves by computer, discuss the characteristics of the D T P D  curves, and 
present the equations for calculation of kinetic parameters from the D T P D  curves. 

2. Computer simulation of theoretical D T P D  curves 

2.1. The definition of DTPD 

The curve of - -d0/d  T ~ T is generally called a TP D  curve. Hence the curve of 
- d z 0/d T 2 ~ T is the first D T P D  curve, and the curve of - d 03/d T 3 ~ T the second. 
Higher-order D T P D  curves can similarly be defined. 

2.2. Mathematical equations 

On the surface of a catalyst, although there might be many kinds of active sites, one 
can assume that each kind is homogeneous, i.e. the desorption of each adsorbent 
conforms to the model 

do ( 0n 
d t - A e x p  - (1) 

and with a constant heating rate, d T/dt =/3, Eq. (1) becomes 

d T=  exp - 0" (2) 

with A the pre-exponential factor, T temperature, E activation energy,/ /heating rate, 
n order, 0 surface coverage, t time, and R the gas constant. Eq. (2) can be rearranged and 
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integrated 

- fo°o d°:  ÷,) 
where Oo is the initial surface coverage. Writing 

F(T) =-~ exp - OT (4) 

and if X = E/R T, one can get 

= E A  

Because in most  chemical desorption,  X >> 1, Eq. (5) can be expressed as [19] 

E A [ e x p ( - X )  1 -  -t ' + . . . + ( _ _ l ) m  1 _ _  
F(T)=-~fi{_ - ~  -X X 2 X 3 X ' -  f (6) 

where m is a positive integer. 
F rom Eqs. (3) and (4) 

0 = 0 o e x p [ -  F ( T ) ]  (n = 1) (7a) 

1 - n  ( l / l - n )  0 = [(n - 1)F(T) + 0 o ] (n ¢: 1) (7b) 

F r o m  Eqs. (7) and (2) 

dZ-F- fl exp -- e x p [ -  F ( T ) ]  0 o (n = 1) (8a) 

d r = f l  exp _ [(n_l)F(T)+O(ol . ~ ] ( . / 1 - . ) ( n ¢ l )  (8b) 

Eq. (2) can be differentiated to give 

d T 2 - 0 + ~ - ~  (9) 

Eq. (9) can be differentiated to give 

d r  3 \ - - d - ~ ]  R T  2 - - -  ~ - d T }  +R-T g  (10) 

If the parameters  A, E, n, fl and 0o are known, theoretical T PD,  first D T P D  and 
second D T P D  curves can be simulated by using Eqs. (6)-(10). According to this 
principle, computer  programs were written. A series of theoretic curves have been 
simulated. 
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3. Cha rac t e r i s t i c s  of  D T P D  

3.1. Characterization of  D T P D  

Figs.  1 a n d  2 are  respec t ive ly  the  T P D ,  first D T P D  a n d  s e c o n d  D T P D  curves  of  first-  
a n d  s e c o n d - o r d e r  d e s o r p t i o n .  O n e  can  see t ha t  af ter  d i f fe ren t i a t ion ,  the  s ingle  p e a k  of  
the  T P D  curve ,  is c o n v e r t e d  in to  one  pos i t i ve  p e a k  a n d  one  nega t ive  p e a k  in the  first 
D T P D  curve;  whi le  there  a re  t w o  pos i t i ve  p e a k s  a n d  one  nega t ive  p e a k  in the  s e c o n d  
D T P D  curve.  M o r e o v e r ,  the  p e a k s  of  the  D T P D  curves  are  s h a r p e r  t h a n  t h o s e  of  the  
o r ig ina l  T P D  curves.  F o r  f i r s t -o rde r  d e s o r p t i o n  (Fig.  1), the  m a x i m u m  he igh t  of  the  
pos i t i ve  p e a k  is sma l l e r  t h a n  the m a x i m u m  he igh t  of  the  nega t ive  p e a k  ( a b s o l u t e  value)  
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Fig. 1. Theoretical DTPD curves: n = 1, A = 1013 s- 1, E = 83.684 kJ mol - 1, 00 = 1, fl = 10 K min - 1. a, TPD 
curve; b, first DTPD curve; c, second DTPD curve. 
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Fig. 2. Theoretical DTPD curves: n = 2, A = l0 t 3 s- 1, E = 83.684 kJ mol - t, 0o = 1,/3 = 10 K min- 1. a, TPD 
curve; b, first DTPD curve; c, second DTPD curve. 

in the first D T P D  curve; and  the m a x i m u m  height of  the posi t ive peak  at  the lower 
t empera tu re  is smal ler  than  the one of the posi t ive peak  at  the higher  t empera tu re  in the 
second D T P D  curve. F o r  second-orde r  deso rp t ion  (Fig. 2), the shapes are m a r k e d l y  
different: the abso lu te  values of the m a x i m u m  heights of the posi t ive and  negat ive  peaks  
are app rox ima te ly  the same in the first D T P D  curve; and  in the second D T P D  curve, 
one sees a g roup  of symmetr ica l  peaks.  Therefore,  from the character is t ics  of  the D T P D  
curves, one can de te rmine  the order  of deso rp t ion  fairly easily. 

3.2. Separation of overlapping peaks 

As shown in Fig. 3, over lapp ing  peaks  co r re spond ing  to two kinds  of  s tate are 
difficult to d is t inguish in the T P D  curve. However ,  it is obvious  in the first D T P D  curve 



294 Y.-H. Hu et al./Thermochimica Acta 274 (1996) 289-301 

-d30 /dT 3 C 

A 

200 

.d2e/dT 2 b 

a 

232 264 296 328 360 

T(K) 

-d0/dT 

Fig. 3. Theoretical DTPD curves of overlapped peaks. State 1: n = 1, A = 1013s 1, E = 83.684kJmol 1, 
0o=l,/~=10Kmin 1. State 2:n=2, A=101°s 1, E=63.353kJmol 1,0o=l,/~=10Kmin -I .a ,TPD 
curve; b, first DTPD curve; c, second DTPD curve. 

that  there are two positive peaks (at 267 and 288 K) and two negative peaks (at 280 and 
304 K). Because each state would have one positive and one negative peak in the 
first D T P D  curve, the first D T P D  curve with two positive peaks and two negative 
peaks indicates the existence of two states, The second D T P D  curve shows three 
positive peaks (at 257, 284, and 309 K) and two negative peaks (at 275 and 299 K). 
Because each state would have two positive peaks and one negative peak in the second 
D T P D  curve, from the second D T P D  curve with three positive peaks and two negative 
peaks, one can conclude that there are two states present. Therefore, both the first 
and second D T P D  curves reveal that  there are two states of  desorpt ion present in 
the peak profile in Fig. 3. Hence the D T P D  curves can reveal the number  of states 
present. 
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3.3. Elimination of  baseline drift 

As s h o w n  in  Fig. 4, w h e n  there  is a l inear  base l ine  drift, the  T P D  curve  is obv ious ly  
affected. However ,  in the first D T P D  curve,  the  base l ine  is ra ised s l ight ly a n d  in the 
second  D T P D  curve  there  is no  change  at  all. W h e n  there  is a s e c o n d - o r d e r - f u n c t i o n  
base l ine  drift, there  are changes  in  the T P D  a n d  the first D T P D  curves.  However ,  in the 
second  D T P D  curve,  the base l ine  is on ly  raised,  i nd i ca t ing  tha t  as far as the e l i m i n a t i o n  
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Fig. 4. Theoretical DTPD containing baseline drift: n = 1, A = 1013 s -1 ,  E = 83.684kJmo1-1, 0 o = 1, 
/3 = 10 K min 1. a, TPD curve; b, first DTPD curve; c, second DTPD curve; -- ,  no baseline, , containing 
linear baseline drift; ...., containing second-order-function baseline drift. 
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of baseline drift is concerned, D T P D  curves have advantage over T P D  curves, while the 
second D T P D  curves have advantage over the first D T P D  curves. This is because any 
function can be expressed as 

dO 
- ~-T = C O + C 1 T +  C 2 T 2 + C 3 T 3 + ... + C., T" (1 l) 

On differentiation 

d20 
d T 2 - C  1 + 2CE T + 3Ca T2 + ... + m C m T  m-1 (12) 

one can see that the constant term is eliminated and the linear term has become 
a constant term, resulting in the elimination of the linear baseline drift. Eq. (12) can be 
differentiated to give 

d 3 0  
d T  3 - 2C 2 + 6C 3 T +  ... + (m - 1)mC,, T " - z  (13) 

One can see that the (C O + C 1 T) term of Eq. (11) is eliminated, i.e. the second-order 
term has become the constant term, indicating that the second-order-function baseline 
drift is eliminated. It can be seen that higher-order D T P D  curves can eliminate 
lower-order-function baseline drift. 

4. Equations for calculating desorption kinetic parameters from D T P D  curves 

According to Murray and White's expression [20], Eq. (2) can be written as 

ln(-~) =-~\TjA(RT2)(1- 2--~-T)exp(-- Rf-T) (n= 1) (14a) 

;(1-ff---~o) A(RT2~( 1-2RT'~ E 
: ~ t , E - - - ) - E - - -  j e x p  ( -  R-T) 'n = 2) (14b) 

In general, 2R TIE << 1, and Eq. (14) can be simplified as 

In(~)=A(RT2)exp(--~----T)-fl\TJ 

= t--E-) exp t -  ) 
Prom Eqs. (2) and (15)> one can get 

d0_ EO 
d T  R T  2 

dO 
d T  R T  2 

(n = 1) (15a) 

(n = 2) (15b) 

(16a) 

(16b) 
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From Eqs. (16) and (9), one can get 

d T  z -  01n In +1  ~ ( n = l )  (17a) 

d T  z -  ~oo-1 20oo - 1  (n=2)  (lYb) 

Eq. (17) can be differentiated to give 

~0 (~o)E((~o)) ~ (~o) ](~)~ d T  3 -  01n In +31n +1  ~ ( n = l )  (18a) 

0 2 0 d~O 0(~o ~)[6(~o) +o)+1] (~ )3  d T  3 (n =2 )  (18b) 

From similar procedures, one can get 

d ~  0'n(~o)E('n(~o)) 3+6 

+ 71n + 1 (n -- 1) (19a) 

d~0 0(~o 1)E~4(~o)~ ~6(~o)~ d T  4 

+ 14(~o) _,](~)4 ,.2, (19b) 

4.1. First DTPD 

Because at the extreme value points of the first D T P D  curve, i.e. at T = T 1 and T 2, 
( d / d t ) ( - d  z 0/d T 2) = 0 (Fig. 1), according to Eq. (18), one can obtain 

0 2 I,n(~o)l +3I'n(~)]+1 0 /n l~ ~20a, 

(~o) ~ (~o) 6 - 6  + 1 = 0  (n=2 )  (20b) 

From Eqs. (20a) and (20b) respectively, one can obtain 

0 
o0--=0"68'0"073 (n=  1 ;T=  T1, T2) (21a) 

0 
- -  = 0.79,0.21 (n = 2; T =  T 1, T2) (21b) 
00 
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At the extreme values of ( -  d 20/d T2)T= T, = D~ and ( -  d 20/d T 2 ) T  = T~ = D2 (Fig. 1), 
from Eqs. (15), (17) and (21), one can obtain 
When n = 1 

~:__I/~"~'<~ ~'~( ~4"~Ooj ~22) v. = o ~ - k O o l  or - 

~ E  E 
A = 0 . 3 8 ( ~ - ~ [ ) e x p ( ~ - ~ l  ) or 2.62(~)exp(~T2)\RTzJ (23, 

When n = 2 

Rrff  (DI~ 112 RTE2 ( 5 ~  ~/2 (24) 
E=-d~-(\Oo / or ~ - 0o} 

E fie E 
or , 2 , ,  

According to Eqs. (22)(25), activation energies and pre-exponential factors can be 
calculated from first D T P D  curves. 

4.2. Second DTPD 

Because at the extreme value points of the second D T P D  curve, i.e. at T =  Td,, Td, 
and Td~, (d /dT( -d30 /dT  3) = 0 (Fig. 1), according to Eq. (19), one can obtain 

- - - -  - - - -  - - I l n ( ~ o ) 1 3 + 6 l l n ( ~ o ) 1 2 + 7 1 n ( ~ o ) +  1 : 0  ( n :  1) (26a) 

(;o) 2 24 - 36 + 14 - 1 = 0 (n = 2) (26b) 

The two equations can be resolved to give 

0 
0~ = 0.85,0.26,0.011 (n = 1; T =  Td,, Ta2, Ta~ ) (27a) 

0 
0~= 0.91,0.50, 0.092 (n = 2; T= Ta,, Td~, Ta3 ) (27b) 

At the extreme values of ( - d 3 0 / d  T3)r=r,,  = DI; (-d30/dT3)r=Td2=D'2, ( - d 3 0 /  
dT3)T r,~ = 03 (Fig. 1), Eqs. (15), (18), and (27) can be simplified 
When n = 1 

(RT:,~(~lJ3 (RT:,~( ~1/3 /R ~:4,D,,,/3 
E = \ o . 4 2 } \ O o J  or \ 0 . 7 5 } . - 0 0 J  or \ 0 . 73 / / '  31 

(28) 

0.16fiE ( E ) 1.34fiE ( ) e x p  E or 4.51fiE ( E ) e x p  
A -  RTa2 exp ~ or RT~2 RTd2 RT2j 

(29) 



E-H. Hu et al./Thermochimica Acta 274 (1996) 289 301 299 

When n = 2 

E=\o .a5] \Oo j  or \ 0 . 5 0 } \  OoJ or ~0--~53)~ff~o 3) (30, 

A - ~ e x p ~ )  or O o R T ~ e x p ~ ) ,  or OoRTaaexp\ d~/ 

(31) 

By using Eqs. (28)-(31), desorption activation energies and pre-exponential factors can 
be calculated from second DTPD curves. 

4.3. The test of the equations by simulated DTPD curves 

According to Eqs. (22)-(25), activation energies and pre-exponential factors were 
calculated by using the positive peak and the negative peak of the simulated first 
D T P D  curve. The results are shown in Table 1. From Table 1, it can be seen that the 

Table 1 
Quantitative results of the first derivative TPD curves simulated by computer 

Theoretical Calcd. a 

n lgA E/Jmol ~ lgA 1 E1/Jmo I 1 lgA2 Ez/Jmol-1 

13 41842 13.19 42269 13.69 44583 
13 62763 13.19 63353 14.00 67156 
13 83684 13.20 84538 13.98 89232 
13 104605 13.20 105697 14.00 111647 
13 12~526 13.21 127070 14.00 133961 
13 146447 13.20 148041 13.99 156146 
13 167368 13.20 169155 14.00 178544 
5 83684 5.17 84776 6.04 95734 
8 83684 8.18 84688 9.03 92337 

10 83684 10.19 84700 11.02 90981 
15 83684 15.21 84772 15.98 88617 

13 41842 13.13 42043 14.64 46541 
13 62763 13.13 63135 14.63 69633 
13 83684 13.12 84023 14.63 92797 
13 104605 13.13 105170 14.62 115680 
13 125526 13.13 126233 14.62 138798 
13 146447 13.13 147196 14.64 162146 
13 167368 13.13 168284 14.62 184992 
5 83684 5.12 83969 6.62 101287 
8 83684 8.11 83951 9.62 96671 

10 83684 10.13 84128 11.62 94676 
15 83684 15.11 83960 16.64 91814 

" A 1 and A z are respectively the calculated pre-exponential factors from the positive and negative peaks of 
the first derivative TPD curves. E 1 and E z are respectively the calculated desorption activation energies from 
the positive and negative peaks of the first derivative TPD curves. 
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calculated activation energies and pre-exponential factors from the positive peaks 
are consistent with the actual values. However, the calculated results from the 
negative peaks have some deviation. This is because certain approximate treatments 
introduced in the calculation are more appropriate at low temperature than at high 
temperature. Therefore, in the analysis of first DTPD curves, positive peaks should be 
used. 

Any of the three peaks in the second DTPD curve is suitable for the calculation of the 
desorption kinetic parameters. According to Eqs. (28) (31), the activation energies and 
pre-exponential factors were calculated using the positive and negative peaks of the 
simulated second D T P D  curve. The results are shown in Table 2. From Table 2, it can 
be seen that the calculated activation energies and the pre-exponential factors from 
positive peaks at low temperature are consistent with the actual values. However, 
calculated results from negative and positive peaks at higher temperature have some 
deviation. This is also because certain approximating treatments introduced in the 
calculation are more appropriate at low temperature than at high temperature. 

Table 2 
Quantitative results of the second derivative TPD curves simulated by computer 

Theoretical Calcd? 

n lgA E/Jmol 1 lgAI E1/Jmo l i l gA2  E2/Jmo I 1 lgA3 E3/Jmo 1 I 

1 13 41842 12.51 40424 13.70 43779 14.17 45248 
1 13 62763 12.52 60692 13.68 65525 14.23 68152 
1 13 83684 12.50 80776 13.69 87433 14.23 90780 
l 13 104605 12.51 101099 13.70 109325 14.23 113413 
1 13 125526 12.51 121342 13.70 131130 14.22 135974 
1 13 146447 12.51 141468 13.71 153163 14.23 158765 
1 13 167368 12.51 161740 13.71 175033 14.23 181410 
1 5 83684 4.49 77529 5.65 90496 6.23 98216 
1 8 83684 7.49 79232 8.68 89065 9.23 94266 
1 10 83684 9.49 79922 10.69 88316 11.22 92442 
1 15 83684 14.51 81186 15.72 87261 16.23 90023 

2 13 41842 12.32 39859 13.87 44181 15.13 47976 
2 13 62763 12.31 59822 13.87 66219 15.12 71793 
2 13 83684 12.29 79567 13.86 88161 15.i3 95743 
2 13 104605 12.30 99567 13.87 110325 15.14 119693 
2 13 125526 12.29 119451 13.85 132070 15.12 143234 
2 13 146447 12.30 139535 13.86 154117 15.12 167079 
2 13 167368 12.30 159468 13.87 176289 15.13 191063 
2 5 83684 4.38 76261 5.87 92040 7.2 108572 
2 8 83684 7.36 78186 8.87 90149 10.18 101776 
2 10 83684 9.33 78889 10.86 89132 12.16 98760 
2 15 83684 14.30 80132 15.87 87759 17.12 94408 

A 1, A z and A 3 are respectively the calculated pre-exponential factors from the positive peak at low 
temperature, and the negative and positive peaks at high temperature of the second derivative TP D curves. 
El,  E z and E 3 are respectively the calculated desorption activation energies from the positive peak at low 
temperature, and the negative and positive peaks at high temperature of the second derivative T P D  curves. 
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Therefore, in the analysis of second DTPD curves, positive peaks at low temperature 
should be used. 
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