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Abstract 

The phase composition of mineral aragonite and synthetic vaterite samples was determined 
qualititavely by using IR-spectrophotometric and X-ray diffraction analyses. The transform- 
ation of aragonite, A, and vaterite, V, into the stable modification calcite, C, was followed using 
differential scanning calorimetry analysis. In order to determine the kinetics and mechanisms of 
these phase transformations, a number of experimental DSC curves were elaborated mathemat- 
ically and the stationary point theory was applied. The activation energy, Ea, and the enthalpy, 
AH, were found to be, respectively, 234.5 f 5.6 kJ mol- 1 and 122 Jg-’ for the phase transform- 
ation A + C, and 252.8 f 48.7 kJ mol- ’ and - 21.2 Jg- ’ for the V -+ C transformation. 
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1. Introduction 

Calcium carbonate, like many other similar simple chemical compounds, forms 
different anhydrous polymorphs (calcite, aragonite and vaterite) and hydrated modifi- 
cations (calcium carbonate monohydrate and calcium carbonate hexahydrate). All of 
these are found in nature. The occurrence of vaterite, p-CaCO,, the least stable of the 
polymorphs under normal conditions, is mainly of biogenic origin [ 11. The polymor- 
phic modifications of calcium carbonate and the factors affecting their formation have 
been the subject of study for many years. It is of great importance to understand the 
formation and stability conditions for all calcium carbonate crystal modifications, as 
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well as the rules of their phase transformations, especially in the studies of complex 
metamorphic and sedimentation processes in geology. 

As every polymorph contains a certain amount of energy, the amount of energy 
equal to the difference in energy contents of the two polymorphs is released or captured 
during the transformation from one form into the other [ 1,2]. In the study of the phase 
transformation one can apply this fact by measuring the rate of transformation at 
higher temperatures and/or pressures. For this purpose, various methods of analysis 
can be employed [l, 3,4]. 

In this study, differential scanning calorimetry, DSC, under dynamic non-isothermal 
conditions was used to examine the kinetics and mechanisms of the phase transform- 
ation of aragonite and vaterite into calcite. The activation energies for these transform- 
ation processes were calculated using the Ozawa method and the values of kinetic 
parameters obtained for the phase transformation of mineral aragonite into calcite 
were compared with those obtained for pure aragonite, synthesized in laboratory [S]. 
The effect of other polymorphs on the phase transformation of vaterite into calcite was 
also examined. 

2. Experimental 

2.1. Materials 

Aragonite, A. A sample of natural mineral aragonite was composed of tightly 
packed needles and was slightly brown. A typical analysis of the sample is shown in 
Table 1. 

Vaterite, V. Vaterite particles were prepared by pouring 500 ml of a 5 mM CaCl, 
solution into the same volume of a freshly prepared 5 mM Na,CO, solution. Both 
solutions were adjusted to pH 10 by means of NaOH or HCl solution before they were 
mixed together under good stirring. The suspension was filtered through a 0.22 pm 
membrane filter about 10 minutes after the mixing. The crystals were washed several 
times with small portions of water and dried at 378 K for one hour. The process was 
carried out at room temperature. All solutions were made from analytical grade 
chemicals and triply distilled water [6]. 

Table 1 
Chemical analysis of a sample of mineral aragonite 

Analysis Mass % 

SiO, + insoluble 0.26 
CaO 54.76 
MgO 0.12 
Fe,O, 0.20 
Al,03 0.15 
Loss on ignition at 1273 K 44.07 
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Mixture of vaterite and calcite, VC. The method of preparation was the same as that 
described for vaterite. In this case, however the crystals were left in longer contact with 
the mother liquor. 

Mixture of vaterite and aragonite, VA. The sample was synthesized by carbonation 
of calcium nitrate and monethanolamine at 303 K, according to Langelin et al. [7]. 

2.2. Methods 

The samples were characterized by infra-red spectrophotometry (Perkin-Elmer 
FT-IR-spectrophotometer MO 2000) X-ray diffraction (Philips X-ray diffractometer 
with a proportional counter and Cu KU radiation), differential thermal analysis, DTA, 
(Netzch), thermogravimetric, TG, (Perkin-Elmer TGS-2 with a TADS microcomputer) 
and granulometric analysis (median d50, Coulter Counter Multisizer II). 

The phase transformation was followed by using DSC. The DSC analysis was carried 
out under dynamic non-isothermal conditions in flow using extra pure nitrogen with 
a Perkin-Elmer DSC4 differential scanning calorimeter. The measurements were per- 
formed in the temperature interval from 623 to 772 K, with K min- ’ heating rates 2.5,5.0, 
10.0,15.0 and 20.0 K min - 1 and the cooling rate 320 K min- ‘. The rate of nitrogen flow 
was 30 cm3min- 1 and the mass of samples ranged from 4.11 to 10.14 mg. The choice of 
the top temperature, 772 K, was limited by the characteristics of the instrument. 

2.3. Mathematical elaboration of DSC curves 

In order to determine the kinetics and mechanisms of the phase transformation of 
aragonite and vaterite into calcite, DSC curves (Figs. 1 and 2) were elaborated mathe- 
matically using the stationary point theory for a number of experimental kinetic curves. 

For the quantitative analysis of the experimental data, the degree of transformation, 
CI, defined as 

C( = AHpar*Ll/AHfotol (1) 

was calculated. In eq. (l), AHportia, is the enthalpy at the time t and AHtotal is the total 
enthalpy of the system. These values were obtained by determining the partial and the 
total surface area of a DSC curve. The rate of the phase transformation, v, was 
calculated by 

v = dcrldt. (2) 

These data are shown in Fig. 3 as a function of absolute temperature, T. The curves 
obtained were used in determining the stationary point parameters necessary for 
calculating the activation energy, Ea. The activation energy for the transformation 
process was calculated using the Ozawa method: 

d(lnq)/d( l/T,) = - Es/R, (3) 

where Ea is the activation energy (J mol- ‘), R is the gas constant (J mol K ‘), 4 is the 
linear heating rate (K s- ‘) and T, is the temperature (K) at which the maximum 
transformation rate is achieved [S]. 
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Fig. 1. DSC curves of sample A obtained at different heating rates: (a) 2.5 K min- I,(b) 5.0 K min- l,(c) 10.0 
Kmin-l,(d) 15.0Kmin-‘,(e)20.0Kmin-‘. 
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Fig. 2. DSC curves of sample V obtained at different heating rates: (a) 2.5 K min- I,(b) 5.0 K min- l,(c) 10.0 
Kmin-l,(d) 15.0Kmin-‘,(e)20.0Kmin-‘. 

3. Results and Discussion 

3.1. Analysis of samples 

In order to estimate the phase composition of the samples qualitatively, the 
IR-spectra and X-ray diffractograms of the samples were compared with the corre- 
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Fig. 3. Plots of transformation rate, v, as a function of absolute temperature, T, for sample A. Curves 
correspond to those in Fig. 3. 

sponding literature data [S, 93. Figures 4 and 5 show the infra-red spectra and the X-ray 
diffraction powder patterns of the samples A (d 50 = 4.4 urn), V (dso = 2.3 pm), VC 
(dso = 3.41tm) and the VA (dso =4.4 pm) in the range 1200-650 cm-’ and 
24 2 20 I 3 1 in which the most intensive absorption bands and reflections, respective- 
ly, of calcium carbonates appear. These analyses yielded spectra characteristic of 
aragonite (A), pure vaterite (V), predominantly vaterite with some calcite (VC) and with 
some aragonite (VA) present in the sample. 

3.2. The aragonite-calcite phase transformation 

Aragonite, an orthorhombic polymorph of CaCO,, is metastable at low tempera- 
tures and atmospheric pressures. It transforms into calcite upon heating and 
on a laboratory time scale this reaction is relatively rapid above 698 K but slow 
below about 648 K. The transformation process is irreversible involving a change 
in primary coordination from 9 to 6. A slight displacement of atoms is sufficient 
to cause the transformation. The kinetics and mechanism of this transformation 
have been extensively studied and many different techniques and methods ofcharacter- 
ization have been employed [IO-241. The experiments of Carlson [lo], Carlson 
and Rosenfeld [ll], Gillet et al. [13] and McTigue and Wenk [18] show that the 
mechanism involves heterogeneous nucleation and interface-controlled growth, both 
being controlled topotactically. Calcite nuclei form preferentially at the crystal surface 
or at the defects, such as cleavages, fractures and twin boundaries. An increase in 
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Fig. 4. IR-spectra of the examined samples in the region 650-1200 cm~’ showing the most intense 
absorption bands of aragonite (l), vaterite (2) and calcite (3). Samples A and V are pure aragoniteand vaterite, 
and samples VC and VA are mixtures of vaterite and calcite, and of vaterite and aragonite, respectively. 

volume of 8%, producing mechanical effects around the calcite grains has also been 
observed [ 11,131. 

The aragonite-calcite phase transformation is an endothermal process as it is seen 
both from the DSC (Fig. 1) and DTA (Fig. 6) curves. A single rather symmetrical 
endothermal peak in the temperature range 675.9 - 768.7 K was observed. 

The enthalpy of the phase transformation; AH, determined from the DSC curve: 
scanned at the heating rate 10 K min I, was found to be 122 J g- ’ and the activation 
energy, Ea, for the same process was calculated to be 234.5 + 5.6 K min- ‘. The value 
for Ea is lower, and the value for AH is much higher than the already published values 
(Ea = 296.4 kJ mol- ‘, AH z 50 J g- ‘) for pure aragonite synthesized in laboratory [ST]. 
The differences obtained can be ascribed to the effect of impurities and occluded water 
that was contained in mineral aragonite (Table 1 and Fig. 6). Thermogravimetric 
analysis shows a loss of mass of 1.04% corresponding to the loss of occluded water. The 
water appears to be released uniformly during the transformation, causing no distor- 
tion of the DSC curve. The impurities affect the stability of the individual polymorphic 
modification and cause a decrease in activation energy of the aragonite-calcite trans- 
formation. It is well known that the presence of water has a large accelerating effect on 
the aragonite-calcite transformation. Apart from the sample purity, the effect of the 
degree of crystalline perfection (fine and most perfect crystals are the most difficult to 
transform), the grain size and shape, the surface morphology and the previous thermal 
and deformational history should also be considered [4,11,25]. 
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Fig. 5. X-ray diffraction powder patterns in the range 24 I 20 I 31 for the examined samples. Sample 
A consists of aragonite, sample V of vaterite, sample VC is a mixture of vaterite and calcite, and sample VA is 
a mixture of vaterite and aragonite. 
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Fig. 6. DTA and TG curves of sample A. Differential thermal analysis shows an endothermal peak at 703 K 
at which the transformation aragonite-rcalcite takes place. 
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3.3. The vaterite-calcite phase transformation 

Vaterite is a hexagonal crystal modification of calcium carbonate. It is found as 
a rare mineral in metamorphic rocks and sediments [26]. Irregularities in the structure 
of its crystal lattice were often reported [26-281. Natural vaterite is usually less pure 
than either calcite or aragonite and impurity atoms are associated with its crystal 
defects [26,28]. The vaterite structure is relatively unstable and any further distortion 
of the lattice, as may be produced by heating or even by grinding, is sufficient to bring 
about the transformation into calcite at all temperatures [28-291, along with a de- 
crease in volume of about 2% that accompanies the transformation. Although the 
thermal transformation of vaterite into calcite has been examined by several workers, 
there is little information in the literature about the kinetics and mechanism, and about 
the effect that the presence of other polymorphs could have in this process. 

Upon heating above 730 K, vaterite transforms directly and irreversibly into calcite. 
With increasing heating rate, the exothermal effect also increases and the maximum is 
shifted towards higher temperatures. At higher heating rates (2 10 K min- ‘) these 
effects do not end within the operating temperature range (see Fig. 2), so that the degree 
of transformation and consequently its differential change were not determined with 
sufficient accuracy. The presence of the vaterite modification was identified in quen- 
ched samples after DSC analysis (fig. 7). 
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1” 
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650 
-1 cm 

Fig. 7. Infra-red spectra of the quenched sample V after DSC analysis, carried out at the heating rate of 10.0 
Kmin-‘. 
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The activation energy and the enthalpy of the phase transformation of pure vaterite 
were calculated from the curves analogous to those in Fig 3. The values of maximum 
transformation rate at different heating rates were used to calculate the activation 
energy, Ea. These values were found to be 252.8 + 48.7kJmoll’ and -21.2Jg-‘, 
respectively. The value for AH was determined from the DSC curve scanned at the 
heating rate of 5 K min- I. According to Turnbull [26], AH for an ideal crystal showing 
no X-ray line broadening is - 22.8 + 1.2 J g- I. Considering the broad and shallow 
DSC peaks obtained in our measurements, and the difficulties in processing these DSC 
curves mathematically, we may conclude that the two values are in good agreement. 

The presence of calcite in vaterite (sample VC) favours the phase transformation, 
whereas the presence of aragonite (sample VA) brings about a slight shift of the peaks 
towards higher temperatures (Figs. 8 and 9). 

Thermogravimetric analysis of the samples indicates a slight loss of mass (I 1.28%) 
up to approximately 773 K, corresponding to the loss of water incorporated into the 
solid phase during precipitation ofcalcium carbonate (Fig. lo), which often occurs with 
samples precipitated spontaneously [30]. 

In order to understand the phase transformation mechanism and the crystal 
microstructure induced by transformation stresses, some additional methods, such as 
transmission electron microscopy, should be applied. 

4. Conclusions 

The phase transformation of mineral aragonite into calcite is an endothermal 
process, as determined by DSC and DTA analysis, giving an endothermal peak in the 
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Fig. 8. DTA curves of samples V, VC and VA. The presence of calcite promotes the transformation of 
vaterite (peak at 735 K, sample VC). On the other hand, aragonite delays this process (peak at 743 K, sample 
VA). 
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Fig. 9. DSC curves samples V, VC and VA. The transformation of vaterite in the presence of calcite starts 
and shows a maximum at lower temperatures (747 K, sample VC); aragonite acts in opposite direction (764 
K, sample VA). 
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Fig. 10. TG curves of samples V, VC and VA. A loss of mass (5 1.28%) obtained corresponds to a loss of 
water incorporated into these samples. 

temperature range 675.9 - 768.7 K. The lower activation energy, Ea = 234.5 + 5.6 
kJ mol- ’ and the higher enthalpy for the phase transformation, AH = 122 J g- ‘, than 
those obtained for pure aragonite can be ascribed mainly to the effect of various trace 
elements present in mineral aragonite. 
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Vaterite is metastable with respect to the other two polymorphs under standard and 
geological conditions. Upon heating 730 K it irreversibly transforms into calcite. With 
increasing heating rate, the exothermal effect also increases, and T, shifts toward higher 
temperatures. The value of the activation energy, Ea = 252.8 f 48.7 kJ mol- r, as well as 
the enthalpy of its phase transformation into calcite, AH = - 21.2 J g-l, have been 
determined. The presence of calcite in vaterite favours its phase transformation, but the 
presence of aragonite shows a slight inhibitory effect. 
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