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Abstract

In this paper, we report the models of fast recrystallization processes in a-Si thin films. An
important feature of the modeling of nucleation in a-Si films is the capability of allowing
description of non-equilibrium solidification including the distribution of small crystalline
clusters which can be responsible for visible photoluminescence. We integrate the results of the
description of nucleation and growth on the phase interface of ¢-Si from a-Si or I-Si. The transient
time, nucleation rate and growth rate were determined as a function of temperature and the
position of local extremes of these functions were stated. The solidification velocity was
calculated from the nucleation rate and growth rate with respect to the temperature distribution
in a system. The suitability of the particular approximations and models is discussed.
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1. Introduction

Irradiation of semiconductors by a short (nanosecond) laser pulse with energy
density above a certain threshold produces fast melting of a thin surface layer followed
by its rapid resolidification. Heating and cooling rates are orders of magnitude faster
than those achieved by any other treatment; solidification at a fast-moving liquid-solid
interface takes place under conditions far from thermal equilibrium. In many cases the
interface motion is so fast, that strong overheating and/or undercooling must be taken
into account. Such extremely non-equilibrium processing can result in the significant
modification of surface properties and formation of metastable phases which can not be
prepared under near-equilibrium conditions [1-3]. The formation of monocrystalline
clusters in thin Si films results in the emission of visible blue light during laser
illumination, which was explained by the quantum size effect (see e.g. Ref. [4]). Such
material has potential for many technical applications.
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To describe the formation of a solid phase under such conditions, we have to study
both the transformation of the amorphous phase (a-Si) of silicon to a highly under-
cooled liquid phase (I-Si) (or directly to crystalline Si, ¢-Si) and the subsequent
ultrarapid solidification. The melting temperature of a-Si (T,) is apparently some
150-300 K below the melting temperature of ¢-Si (T, = 1683 K), thus molten 1-Si is
undercooled by hunderds of Kelvin and bulk nucleation occurs in the undercooled
melts [5, 6].

Despite extensive research in the laser processing of semiconductors during the last
ten years, knowledge of the solidification processes (nucleation, growth on interface) is
still fairly incomplete. In this work, we discuss the mechanism of homogeneous
nucleation of ¢-Si in both a-Si and 1-Si phases and the growth rate on the phase
interface. Recently, these processes were studied theoretically and experimentlly using
different methods and thus the results are scattered, see e.g. Ref. [ 7-14]. The aim of this
work is to integrate the results of the description of recrystallization processes in a-Si
and to present an analysis of this process from the temperature history in the Si thin
films.

In the first part, theories of homogeneous nucleation of ¢-Si from a-Si or 1-Si phases
and of growth of c-Si on an existing phase interface are summarized. We present values
of the basic parameters (activation energy, surface energy, diffusion coefficient, etc.),
which were taken from recent publications and modified to obtain good agreement of
the theory with published experimental data, e.g. the temperature dependence of the
growth rate, the rate of stationary nucleation, etc.

In the second part, we determine the relation for the time evolution of the relative
volume of ¢-Si phase in a-Si or I-Si. Within the framework of this model, processes of
nucleation and of growth at the phase interface are included and rapid changes of
temperature in the system are assumed. We discuss the suitability of appropriate
approximations with respect to relations between the characteristic times of particular
processes (temperature changes, nucleation, growth on phase interface) which are
necessary for modelling the recrystallization of a-Si thin films.

2. Nucleation of crystalline silicon from the melt

In this section, we summarize the theoretical models of nucleation from a melt that
are suitable for our purposes and determine basic material constants.

2.1. The change in Gibbs free energy

In the description of nucleation processes, we start from the change in Gibbs free
energy AG of the given volume of our system during the phase transformation
I-Si— ¢-8Si, i.e. formation of one nucleus of solid phase

AG(g)= —gAG,, + Alg) (1)

where ¢ is the number of atoms in a given volume, AG,, is the change in Gibbs free
energy per atom (chemical potential) during the transition 1-Si — ¢-Si, and A(g) is the
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surface energy of the cluster of g atoms. There are several models to describe the
changes in chemical potential at temperature T[1,2, 14]. We introduce two of them:
(a) A very simple model

AT

AG (T)=—L,—
cl() Cr]—;

(2)

where T, is the equilibrium temperature of crystallization of I-Si, AT = T— T repre-
sents the undercooling of the system, and L, is the latent heat of phase transformation
per atom.

(b} A More general model

AG_(T) = AWT)— TAS (3)

where the change in inner energy is given by the relation

T

AWT)=AWT,) + f CAcp(T)dT 4)

T

where Ah(T,) is the change in enthalpy at T per atom, and Ac,(T) is the change in
specific heat per atom. For simplicity, we assume the approximation

T

T
j Ac(T)dT =(T . — T)(¢,—¢)) (5)

where ¢, ¢, are the specific heat per atom at T_ of liquid (I) and solid(s) phase,
respectively, and the change of entropy is expressed by

T/Ac(T

AS(T)zJ <ﬁ)dT 6)
0 T

Turning our attention to the surface energy A(g), we use the relation

A(9) = 0, A9) (7)

where o,_is the density of energy per unit area on the melt—crystal interface, and 4 (g) is
the total surface of crystalline phase with g atoms. Usually it is accepted that

Alg) =97 (8)

where ¢ is the geometrical factor [ 1, 14].
2.2. Critical nucleus

It has been shown [2, 14] that at a given temperature T < T the function AG{g) has
a maximum at some critical value g*. The nuclei g < g* are spontaneously dissolved,
the nuclei with g > g* grow (AG decreases during growth). In case (a) we obtain

673 3
2z a®Tloy,

g* (1) = 3T, T) ©)
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In case (b) we have

6.3
32n a’oy,

3 (AW(T)— TAS)> (19)

gxT) =

where a is the effective radius of an Si atom in the crystalline phase. In this way, we
described the nucleation in liquid silicon. These models were used for the description of
recrystallization in a-Si.

2.3. The nucleation rate

This section describes the kinetics of the nucleation process. From the point of view of
the course of nucleation, we can distinguish three different conditions.

Stationary regime

The following assumptions are usually accepted, which enable us to determine the
nucleation rate in a useful shape [1, 2, 14]: the temperature is constant; only monomers
(single atoms) can contribute to the growth (we neglect the integration of larger
clusters); f, is constant (see later); and the nucleation rate is the rate of formation of
critical nuclei.

Thesteady-state nucleationrate j__ at constant temperature T is given by the relation
(see [1,2,8,9])

J{T) = ZP(g*)f (%) (11

where f 1s the rate of monomer addition, f,(g) the equilibrium distribution function of
clusters with g atoms, Z is the Zeldovitsch factor [15]

7 [_ (52Ac/ag2)g_g*]f2 _ < W )1/2 1)
2nky T kyT3n(g*)?

where ky is-Boltzmann’s constant, W* is the work needed for the creation of a critical
nucleus

W* = AG(g*) (13)
and f is frequently approximated by the relation

Blg*)=TpAlg*) (14)

where I is the frequency of transition of one atom from liquid to solid phase (per unit
time), and p, is the number of atoms on the surface of a nucleus per unit area. For our
calculations, we use the approximation (see [1,2])

5 _2
F—lzDoexp< kBT> (15)
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where [ is the jump length of an atom during a change of position in the liquid, D, is
a kinetic factor, and Q the activation energy of self-diffusion. In Eq. (12) we sybstitute
(see[1,2])

(16)

A *
ffd®) =foexp<— Glg )>

kT

where f, is the density of centers of nucleation in the liquid phase. This value f; can
depend on temperature or on the history of the temperature treatment of the system. In
the ideal case f, is equal to the number of atoms per unit volume (homogeneous
nucleation), thus in this case

fo=Va' (17)

where V,, is the effective volume of one atom.

Non-stationary nucleation; constant temperature

Under non-stationary nucleation at constant temperature, there is an increase in
nucleation rate from zero to itsstationary value at a given temperature. We recommend
use of the known Kashchiev relation for the nucleation rate j(t) as a function of time
t beacuse of its easy practical use and satisfactory precision in comparison with other
models and experimental data (see Ref. [1,2,8,14,16])

.i(l)=.igs[1 +2i(—1)"exp<n2i>} (13)
n=1 Tx

where 1, is the “time lag”, a characteristic period for transition into the steady state
nucleation

4

T2 "

More exact relation for j(t) and 7, are presented in Ref [14,16].

Non-stationary nucleation; time-dependent temperature

If the temperature in the system changes slowly in comparison to the nucleation
process, the relations of the stationary nucleation theory can be used for the description
of the evolution of the system, but now the temperature is a function of time. In the case
of rapid changes in temperature, the description of the evolution of the phase
transformation is much more complex (see Ref. [16-18] where some numerical
calculations of non-stationary nucleation rates are demonstrated), and we shall not
deal with this case.

2.4. Numerical results
In this section, we summarize the numerical results of c¢-Si nucleation from melt in

dependence on the undercooling of the melt and on the choice of material constants.
The values of the respective parameters are summarized in Table 1. The basic values of
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Table 1
The values of material constants describing recrystallization in 1-Si

Parameter Value Unit Ref.
T, 1687 K [10]
L, 8.4 x 10720 J/atom [10]
¢ 0.452 x 10" 22 JK~!/atom [10]
s 0.481 x 10~ 22 JK ~!/atom [10]
S. 2.756 x 1024 JK ~!/atom [8]
o, 0.31 Jm 2 [8]
. 4.836a2 m?

a 1.35x 10710 m 8]
ky 1.308 x 10723 Jdeg™!

l 272 %1071 m

D, (for 1-Si} 1L.5x10°° m?s ! [14]
Q (for 1-Si) 0.5 eV [14]
0. 1.35 x 10*° m~?

T 3% 10'8 m~?

Vo 2.01585 x 10~ %° m? [8]
0. 2.32 gem [10]
o 2.52 gem ™ [10]
Table 2

The value of parameters for nucleation in a-Si

Parameter Value Unit Ref.

T, 960 K [8]
T, 1250 K [8]
AH(T) 1.98435 x 10~ 2° J/atom 8]
Ac: —3.71961 x 107 2% +7.9706 x 10" 2*T/T, JK ~!/atom [8]
S. 2.7565 x 10~ 2% JK ™ !/atom [8]
€ 1.6564 x 10" [1 —9.4 x 107% (T —298)] K [8]
c,, 0.6393 x 10"'[1 —9.8 x 107 3(T —298)] K [8]
AV/V, 0.08733

g 0.31 Jm™? [8]
D, (for a-Si) 1.68 x 1073 m?s ! [8.9]
0 (for a-Si) 295 eV [8.9]

the material constants were taken from the literature [8—14] (see Tables 1-3) and then
modified to obtain good agreement of our theory with published experimental data for
nucleation, and later for the growth rate, which depends on the same parameters. For
this procedure we used the results of Refs. [19,20] where the estimations of the
maximum value of the time lag 7, and the minimum of j were published. In particular,
the value of f, was determined with respect to experimentally determined j.

For the numerical conclusions, we use the (a) model of the change in Gibbs free
energy, Eqgs. (1) and (2). The dependences of g*(T), 7,(T) and j_(T) on temperature Tare
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Table 3
The values of the parameters describing recrystallization in a-Si thin layers

Parameter Value Unit Ref.
D, 3.5%x 1077 m?s ™! [14]
AU 0.56 ev [14]
AS/ky 22 [14]
FdIA? 1.5 x 101! m ! [14]
A, 2.362 x 10727 Jdeg ™ %/atom

A, —3.71961 x 10723 Jdeg ™ !/atom

A, —1.82x 107! J/atom

B, —3.71961 x 107 2° Jdeg™ 1/atom

B, 47247 x 10727 J deg™?/atom

C, —23627 x 10737 Jdeg™?/atom

c, —3.128 x 10724 Jdeg™!/atom

C, 3.71961 x 10~ 2° Jdeg~!/atom

C 1.8023 x 10-2° J/atom

IS

presented in Figs. 1-3. It follows from these results, that the time lag has a minimum
near the temperature T = 1150 K. The value 7,(1150) is determined mostly by the
kinetic parameter S(T) and for our values of parameters it is about 10~ *?s. This value
could be sufficient for the evolution of nucleation even during rapid recrystallization of
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Fig. 1. The temperature dependence of the number of atoms g* in a critical nucleus during the 1-Si — ¢-Si
phase transformation.
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Fig. 2. The temperature dependence of the time lag 7, for the 1-Si — ¢-Si phase transition.
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Si thin layers. It could be demonstrated that the position of the 1, minimum depends
only on the value of the parameter Q within the framework of the (a) model.

The behaviour of the stationary rate of nucleation j_ is also important; j_(7T) as
a function of temperature has a sharp maximum near T, = 1350 K. The position of this
maximum depends on the values of latent heat (L_) and surface energy (o,.). The value
T; decreases with increase in o,;, and increases with L. Also the values of 7, in its
minimum (z_)depend on ¢,. and L_: 1, increases with o, and 7, decreases with increase
in L_. It follows from our analysis that the position of the maximum of j — T ; also
depends on a and on the energy barrier Q — T}, increasing with increase in @ and
decreasing with increase in a. We can use these qualitative dependences to consider the
nucleation processes in 1-Si and to estimate the basic parameter values. The position of
the 7, minimum shows the undercooling at which nucleation is most probable, the
mutual position of the maxima ofj_ and of the growth rate of the crystalline phase show
the possibility of a-Si formation. The model (b) gives similar results.

3. Nucleation of crystalline Si in amorphous phase

It has been observed (e.g.[7,21]) that at a temperature above 900 K nucleation of c-Si
can proceed directly from a-Si, since the amorphous phase is a metastable phase and
the system tends to transform into the stable crystalline phase.

3.1. Models of nucleation

In the description of nucleation in a-Si, we start from the change in Gibbs free energy
AG of a given volume of a-Si during the phase transformation a-Si — ¢-Si. In contrast to
the previous case, in a description of the nucleation of ¢-Si in an amorphous phase we
must also take the strain energy (which arises during the structure changes in a solid
phase) into account. So

AG(g) = —gAG, + Al9) (20)

where g is the number of atoms in one nucleus, AG, is the change of Gibbs free energy
per atom during the phase transformation a-Si — ¢-Si, and A(g) is the surface energy of
a cluster with g atoms. AG, is divided into two parts

AG,=AG, + AG, (2D

where AG,_ represents the change in chemical potential between a-Si and ¢-Si, and AG,
represents the strain energy per atom. For AG__, we use the model (b) from the previous
section

AG,(T)= AH(T)— TAS(T) (22)

ac?

where

T
AH(T)= AH(T)) + J Acy(T)dT (23)

T,
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where T, is the kinetic temperature of crystallization, i.e. the temperature at which
critical nuclei occur during thermal anneling, Ac}, is the difference between the specific
heats of the amorphous and crystalline phases, and AH(T) is the enthalpy difference
between the amorphous and crystalline phases at T

AS(T)=S, + j (%) dT (24)

0
where S, is the residual entropy of the amorphous phase; it is the entropy of the
amorphous phase at T =0. For the strain energy we use the relation published in
Ref. [8]

A 2
AG, =%<V—V> (25)
0
where
g 2c
B=CM+3 €12 (26)

V . is the volume of one atom, V}, is the volume of a-Si which transforms into ¢-Si, AV is
the change of the volume of this part of a-Si which transforms into ¢-Si, and ¢;; are the
elastic constants of the c-Si phase. As above, we accept that

Alg)=0,.A,.(9) (27)
where o, is the density of surface energy between a—Si and c¢—Si phase, and
A9 =7g*" (28)

where 7 is the geometrical factor (see Table 1). Under these conditions we can proceed
to the study of nucleation of crystalline phase in a—Si.

Within the framework of our model, the number of atoms in a critical nucleus is given
by the relation

6.3
32 a’o;,

"3 [AH(T)_ TAS(T) + AG.T? (29)

gx(T) =

The stationary nucleation rate and nonstationary nucleation rate are given by the
same relations as in Section 2.3, but now we must use Eq. (29) for the value of the
number of atoms in the critical volume and also the corresponding values of appro-
priate constants summarized in Table 2.

3.2. Numerical results

In this chapter we summarize the numerical results of nucleation of c¢-Si in a-Si in
dependence on temperature and material parameters. The values of appropriate
parameters are listed in Tables 1 and 2. The basic values of the material constants were
collected from publications [8—14] and later they were defined with more precision to
obtain better agreement of our theory with published experimental data. We compared
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the temperature dependences (in the range 830-930 K) of 7, and j,, published in Ref.
[7,21].

Firstly, we determined the integrals in Egs. (23) and (24) for the function Acj,
presented in Table 2

T,

.
J Ac;’,(T)dT=A,T2-|-A2T-|-A3 (30)
and

T Ac?
—T”deBllnT-l-BzT (31)
[

So we obtain the change AG,, in the form

AG,. =AH(T,)— TS, + C,T>+ C,T+ C,TInT + C, (32)

where constants the 4,-A4,, B,, B, and C,—C, are given in Table 3. The numerical
calculations result in the following conclusions:

1. The temperature T, does not play a role in the temperature of phase transform-
ation, since AG, is positive even for T > T,

2. For temperatures T > 1000 K, g* < 1 and the existence of a critical nucleus is
questionable. Very fast recrystallization takes place.

3. In agreement with Ref. [3] where the annealing of a—Si was studied was studied
experimentally for temperatures below 1000 K, it is shown that the nucleation rates are
enormously slow (j ~ 10%).

4. 1, and j,, are monotonous functions of temperature; j, increases and 7, decreases
with increasing temperature.

d . . . . .
5. For ET; =0, we obtain a considerably complex relation which results in the

dependence of the position of the minimum 7, not only on @, but also on AH(T ), T ,,
Acj and AS.

4. The growth of stable clusters from Si melt and a-Si

In this section, we focus on the determination of the growth of supercritical (stable)
clusters. The calculations of growth velocities are divided into two regions:

(1) Growth of clusters with small radius .
(2) Growth of large clusters in which velocity can be approximated by the model of
growth on a flat interface (¥ — co).

(1) According to Ref. [8], the velocity of the change in number of the atoms in
a cluster of size g is given by the relation

d 1 SAG
vg<g>=d—‘j=ﬂ(g>[1—exp<k - 6;9))} (33)
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For the velocity of radius changes, we obtain

dr dr(g)
=g = o1,
The function fi(g) is given by relations (14) and (15). The function AG(g) is described by
relations (1), (3) or (20) and respective relations. It remains to determine (dr/d¢). In the
case of a sphere, it is

34)

v (r)
g=g(r)

dr a\'"?
— == ~213 ~0.206 -2 35
dg <36n) g 8ag (33)

(2) Inthe case of growth on a flat interface, we use the relation published in Ref. [14],
(p. 601), which is suitable for crystallization in 1-Si

D AS A
upzA—;fdexp<—k—B>|:1 —exp<—kBl;,>} (36)

where v, is the velocity of the interface shift, A is the mean free path of atoms in the
liquid phase, D,/A? is the atomic jump frequency, f the active site fraction on the
interface, d the thickness of the layer of liquid atoms that are sufficiently close to the
crystal and which can reach crystal lattice sites with a single jump, AS the entropy of
phase transformation, and Ay the difference in chemical potential of atoms in the two
phases (given by relations (2) and (3) for growth from liquid phase, and (21) for growth
from amorphous phase). Also the temperature dependence of the diffusion coefficient is
taken as

AU
D, :Dpexp<*k T> (37)
B

where parameters D, and AU characterize the mobility of atoms in the mother phase.
The results in Ref. [ 14] show that there are small differences in growth rates on surfaces
(100) and (111). This phenomenon is not included in our theory.

For numerical calculations of growth rates, we use the parameters given in Table 3,
which correspond to the published values in Ref. [ 14]. The temperature dependence of
v, for growth from 1-Si was published in Ref. [ 14,22], and for growth from a-Si in Ref.
[4.21,23]. Ourcalculations of the growth rate v (T) from liquid Si are shown in Fig. 4. It
can be shown that the shape-dependent growth rate v, approximately approaches the
value v, at the limit r— oc for our choice of parameters. This is an additional
independent check of the suitability of our model.

5. Kinetics of the growth of the crystalline Si from the melt and
amorphous phase

Up to now we have studied the processes of nucleation and growth of supercritical
nuclei separately. Now we combine both descriptions of phase transformations in one
theory and develop the equations which describe the time evolution of the crystalline
phase from the liquid phase and the amorphous phase of silicon.
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Vo [m.s™]

Fig. 4. The temperature dependence of the growth rate on the flat phase interface v, for the 1-Si — c-Si phase
transition.

5.1. Crystallization from liquid Si

The isothermal process
The kinetics of the isothermal phase transformation from a melt is described by the
JMAK (Johnson—Mehl-Avrami—Kolmogorov) equation [1,2,24-29]

In(l— X(0) ' =7j 00" Yo+ 1) (38)

where X(1)is volume fraction of crystalline phase (X(t)€(0, 1)) in a given volume, y is the
geometrical factor, j the stationary nucleation rate, v, the growth rate on the flat
interface, and n the dimension of the process. Eq. (38) has a limited vadility and can only
be used if the following assumptions are valid: j, is time independent; v, is independent
of the shape and size of the nuclei; nucleation is a random process; the growth process is
controlled by the surface kinetics (not by diffusion). However, the coalescence of nuclei
is considered. For our purpose we use relations (11 and 36) for the functions occurring
in Eq. (38) and n = 3(see Ref. [24], p.155). The meaning of the parameters and functions
is explained above .

Nonisothermal crystallization
In general the equation

X(t)=“/f[f Uv(t)d[] jr)dz (39)

T
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is solved where v,(t) is the volume growth rate, which is proportional to the prod-
uct ~ v3t>(47/3). We must substitute in relation (39) the non-steady-state nucleation
rate j(t) and the dependence of the growth rate on the size and temperature, relation
(34). Integration of Eq. (39) is very difficult, but we can simplify it under the additional
assumption that the temperature in the system changes with constant velocity and does
so sufficiently slowly in comparison with the time lag of nucleation. In this case we
obtain [24,29]

47 Tz. , ) T , ., 3 20
Xm:?:(—T)“L, JSS(T)dTUTI bpmdr} “0)

where v (T) is the temperature-dependent growth rate, independent of the shape and

size of the nucleus, T,, T, determine the temperature interval during which we observe
the phase transformation, and T is the constant rate of cooling or heating.

5.2. Crystallization from amorphous phase of Si

In this case we can use the same relations, (38) and (40), but the nucleation rate and
growth rate must be replaced by the appropriate relations for the growth and
nucleation from the amorphous phase of Si.

5.3. Recoalescence

During the phase transformation (as from 1-Si and a-Si), latent heat is released. This
energy heats up the surroundings of the growing nuclei which can lead to cessation of
growth or even to remelting of the crystalline phase. The value of the heat released
during the phase transformation of volume V(At) (a part of the reference volume V) in
the time interval At must be determined. We shall not deal with the distribution of this
energy into the whole volume. The amount of heat R, (At) during this process per At is

R, (At)= L, V(A1) (41)

where L, is the latent heat of crystallization per unit volume. The change of the mean
temperature AT in volume V|, as a consequence of released heat, can be estimated by
the relation

ATc,V,=R, (42)

where ¢, is the mean value of the specific heat (averaged through the crystalline and
liquid phase in volume ;) per unit volume. So we obtain

RL
c,Vo

AT =

= % X(Av) (43)

The time changes of temperature in volume V, are determined by the relation

AT Ly X()— X(: — A1)
At ¢ At

p

(44)
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and at the limit At -0

= lim gzL—X(t) (45)

Ao AL ¢,
How do these changes in temperature affect the transport of energy in the whole
system? If we neglect the latent heat of phase transformation, the time evolution of
temperature distribution in the system is described by the heat conductivity equation

(in a one-dimensional model)
0T T
oT _ pT
ot ex
where D is thermal diffusivity. It is not simple to couple Egs. (38) or (40) with (45) and
(46), since all functions are time dependent and each process has its own relaxation

time. The coupling process can be done under special assumptions.
In a general case, we should solve the set of equations.

(46)

dT() L dx
Sdr dr 47
X(t)=7j [JIUV(T(I’), t’)dr’]j(T(r),r)dr (48)
[¢] T

where functions v, and j depends not only on temperature T but also on time ¢ since
they do not represent the steady-state growth and nucleation rates.

The solutions of Egs. (47) and (48) is complicated and can be simplified by the
assumption of a “local equilibrium” (introduced later). The relation between Tand the
rate of temperature diffusion will play a decisive role in our analysis.

Let us analyse the diffusion of heat in one-dimensional space of size L. The relaxation
time 1, characterizes the velocity of the heat transport by means of which the system
tends towards equilibrium

LZ
=7 (49)
The relationship strongly depends on the characteristic size of the system L.

If 7, > 7,, we can assume that the temperature is frozen during the time needed for
the approach of a stationary nucleation rate. The nucleation can be described by
Js (T (1)) where temperature T is now a function of time. We shall solve Eq. (46) together
with Eq. (45) (T plays the role of source in Eq. (46)), where X(1) is given by Eq. (38) and is
a function of space coordinates and time.

In contrast, if 7, « 7, the nucleation is the slowest processes and the heat, e.g. released
during phase transformation, is instantly distributed over the whole system. In the
volume L, temperature is a constant, being a function of the space coordinate, and the
kinetics of phase transformation is determined by Eqgs. (38) or (40) for T #0.

From this analysis, a crmcal size L, exists for which 1 ~ 1,

Using the values ~107* m?s ' and 1, ~10"'%, we obtain L
D1, =10"%m = 10nm. Therefore for a space of characteristic size < 10nm, we can
assume that 1, « 1.
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This analysis results in the following procedure for calculation of the kinetics of
phase transformation:

(a) We determine L, from 7, and D. Now we introduce some “Local equilibrium™;

(b) Inasufficiently small space scale L < L, we assume that the latent heat of phase
transformation is instantly distributed in the volume L and that the relation (45)
is valid over the whole volume L, but that the average temperature changes
slowly with time;

(c) Forasufficiently large space scale L > L__, we solve Eq. (46) with the source term

cr?

(45) where
X(0) =i (T@) v(T(®) (50
If X — 1 we must use the equation
1 .
T x X = idTO) v3(T(1) (51)

to include the size effects
We will validate these assumptions. Consider both processes, i.e. crystallization and
time changes of temperature, separately in the volume L < L_,

dT L,dX | —

b T aj (TO)vYT (1) 1* = aq(T) (52)
dg _ 1dq(T)

a =z, ar 7D .

where 7, is the relaxation time during which g approaches the stationary value (7, ~ 7).
The changes of temperature are slower than 7, if

Ty da)"
a(dT) « 1 (54)

From our models of j, and v, it is evident that this condition s fulfilled; this means that
our condition of “local equilibrium” can be accepted and that on a scale larger than L _,
the calculations following (c) solve the problem of recrystallization in a-Si thin films.
These results are for crystallization from 1-Si and a-Si.

6. Conclusions

In this paper, we have summarized the theoretical models of the description of time
evolution of recrystallization processes in a-Si thin films under ultrafast temperature
changes. These models and model parameters (activation energy, surface energy,
diffusion coefficient, etc.) were adjusted to obtain good agreement with the various
published experimental data, not only for nucleation, but also for the growth rate (see
Eq. (33)). It was found that the time lag 7,(T) of the stationary nucleation from 1-Si has
a minimum near the temperature 1150 K. The maximum of the nucleation rate j_(T)
was found at 1350 K. These courses of 1, j, and growth rate v (T) are important, since
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the relative positions of local extremes of j_(T) and growth rate v(T) prevent the system
from forming amorphous phases and from forming crystalline nuclei. In the case of
nucleation from a-Si, t,(T) and j (T) are monotonous functions of temperature T.

A general model of recrystallization has been formulated which covers both nu-
cleation and growth processes (in 1-Si and a-Si) and recoalescence. In contrast to the
former models, it has wider application with more precisely defined conditions and
calculates for fast heating or cooling. This theoretical model describes the type of
recrystallization processes in a-Si thin films irradiated by a pulsed excimer laser and is
able to predict the resulting phases.
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