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Abstract 

Modulated differential scanning calorimetry (MDSC) has recently seen a large growth due to 
the availability of commercial instrumentation. In this paper it will be shown that MDSC based 
on heat flow presents a linear system as long as the conditions of measurement are carefully 
controlled. It will further be proven that for typical MDSC, a steady state can be maintained for 
heat capacity increases many times the typical increase of heat capacity with temperature. This 
permits not only measurement ofheat capacity with continuous increase oftemperature, but also 
the testing of glass transition regions and shallow endotherms as seen at the beginning of melting 
for nonreversible components. Finally, it will be shown that it may be possible to use a complex 
heat capacity for the description of the glass transition, but that the imaginary part of the heat 
capacity seems not to refer to any meaningful quantity. 
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1. Introduction 

Differential scanning calorimetry (DSC) was developed in the 1960s when it became 
possible to extract increasingly more quantitative estimates of heats of transitions, and 
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finally also heat capacities, from experiments in differential thermal analysis (DTA) [l]. 
One of the first steps towards calorimetry based on DTA was made by Ozawa [2] 
through a quantitative discussion of the effect of thermal conductivity, heat capacity, 
and enthalpy changes on the measured temperature difference A?: The argument goes 
as follows: If there is a temperature difference within a material, heat Q will flow from 
an area of higher to that of lower temperature according to the following equation 
(Fourier’s law of the flow of heat) 

ii= -ugradT=-uVT (1) 

with u’ representing the heat flow vector in Jm-2s-’ ,K the thermal conductivity in 
Jm- ‘Km ‘sP ‘, and VTthe temperature gradient dT/ar. The net rate of flow out of any 
volume K bounded by the closed surface S is then given by the integral of the normal 
component u, of ii at the surface over the complete surface S 

s s 
u,dS= divu’dV (2) 

with div u’ representing the scalar product of V with u’. Such scalar heat Bow aQ/& per 
unit volume can also be written in terms of the temperature rise 

aQ/at = pep aTpt (3) 
where p is the density in kgme3 and cP the specific heat capacity in JK-‘g- ‘. Eqs. 
(1) -(3) hold for any region in space and can be combined and integrated to give the 
Fourier equation 

dT 
-ICdivgradT=kV2T at - pc, 

where k is the thermal diffusivity in m2s-’ and V2 the Laplacian operator. Since the 
Fourier equation is a linear and homogeneous differential equation, the initial ap- 
proach in DTA from a nonequilibrium temperature distribution to steady state, and 
any subsequent transients, can be evaluated independently and then combined for the 
overall solution of the heat flow problem, i.e. the heat flow in a calorimeter is basically 
linear4. Based on Eq. (4) it became possible to describe quantitatively any DTA of 
simple geometry (usually cylindrical) [3]. Not only was it possible to describe the 
thermodynamic variables, the kinetics of the glass transition was also quantitatively 
described, using the simple hole theory derived by Hirai and Eyring [4], which is also 
based on a linear differential equation, keeping the overall system linear [S]. 

By introducing the condition of negligible temperature gradient within the sample, 
the thermal conductivity in the Fourier equation could be assigned to the instrument 
and made accessible to simple calibration. This permitted direct calorimetry by DTA, 
now commonly called DSC. Two major classes of instruments were developed 
commercially, heat-flux-based and power-compensation-based DSCs. For the heat- 

4 The linked quantities of a linear system are related by linear differential equations. Such equations and, 
therefore, such systems obey the principle of superposition, namely, the combined effect ofa number ofcauses 
acting together is the sum of the effects of the causes acting separately. 
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flux-based calorimeter, the heat-flow equations are again based exclusively on the 
Fourier equation and the now much simpler mathematical description was developed 
based on the initial work by Miller and Martin [6]. Even the melting under ideal 
conditions (one-component, close-to-equilibrium melting) could be shown to be 
describable by a superposition of heat-flow segments (baseline method), keeping the 
overall system linear [3]. For the power-compensated DSC as first described by O’Neil 
and coworkers [7], difficulties arose in keeping the power response on melting linear 
[8]. As was pointed out recently by Ozawa [9], this does not, however, affect the overall 
calorimetric response (heat of transition) and special methods to desmear non-linear 
response curves have been developed [lo]. Similarly, in the heat-flow calorimeters, 
deviations from linearity may come about because of electronic baseline corrections 
and other non-linear data handling after the initial measurement. 

The most recent development added a periodic modulation to DSC. For the 
heat-flux calorimeter this method was developed by Reading [l 11. A transparent 
mathematical description of this MDSC was published by us earlier [ 121 with the help 
of information supplied by the manufacturer [ 131. Particularly for the measurement of 
heat capacity, a quasi-isothermal measurement technique could be developed that can 
lead to heat capacity measurement by modulation about a constant temperature [ 141. 
As experience on MDSC is accumulating, it becomes obvious that more stringent 
conditions about the linearity of the calorimeter system exist for MDSC. In addition, 
the accomplishment of a steady state for easy data evaluation is also of greater 
importance. Finally, the question arises if, since one is making frequency-dependent 
measurements, it may not be useful to work with complex’ heat capacities. These three 
basic questions for MDSC will be addressed in this paper. At present there is not 
enough detailed information on the power-compensated dynamic DSC (DDSC) to 
analyze this system in the same manner 1151. One must observe, however, that in 
standard DSC the two types of instruments could be made to behave similarly [16]. 
With the added feature of modulation, the differences may become more obvious and 
progress towards better calorimetry may evolve by testing various instrumentation, 
modulation, and deconvolution methods [ 171. 

2. Linearity of transitions 

The main condition of measurement with DSC was stated in the Introduction to be 
the maintenance of a negligible temperature gradient within the sample. Under such 
conditions the Fourier equation of heat flow gives a simple description of the heat flow 
in the calorimeter. If, in addition, steady state is maintained throughout the measure- 
ment, the modulation of the calorimeter is a function of the heat capacity only, i.e. it is 
independent of the thermal conductivity (see Eq. (4)). The procedures needed to check 

5 A complex number a + ih is a pair of real numbers (a, b) with addition and multiplications defined as 
(a, b) + (c, d) = (a + c, h + d) and (a, b) x (c, d) = (ac - bd, ad + bc). The real numbers a and b are called the real 
and imaginary parts of the complex number (a, b). The terms real and imaginary are historical accidents since 
both a and b are real numbers and complex numbers are often useful to describe real phenomena. (Since 
(0,l) x (0,l) = (- 1,0) it is obvious that i -( - l)“*). 
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these conditions for MDSC experiments was given in Ref. [ 143. It was already pointed 
out in the Introduction that as long as the Fourier heat-flow equation can be used for 
the description of the experiment, the system is linear. Steady state, however, is not 
a condition for linearity since, given the necessary parameters (thermal conductivity 
and geometry), a linear differential equation can be written that describes the system, 
although this equation may not be easy to solve. 

Adding the occurrence of a transition in the sample, there is a further kinetic term to 
be considered that may or may not be linear. Using classical irreversible ther- 
modynamics for the description of the kinetics of the transition, a linear solution is 
possible, at least close to equilibrium. 

The resulting linear rate equation is based on the assumption that the driving force 
for transitions is proportional to the change in free enthalpy [18]. The question of the 
linearity of the transitions is thus one of how far from equilibrium is the sample during 
the analysis and over how large a range from equilibrium is the first-order approxi- 
mation applicable. 

Many first-order melting and disordering transitions are exceedingly fast, so that 
their kinetics can be neglected [19]. Equilibrium is attained as soon as thermal 
conductivity has established the new temperature. The computation is particularly 
simple if one can assume that the transition leads to a fixed temperature of the 
sample during the transition. Under these conditions, the solution is linear for the heat 
flux calorimeter and commonly used under the name “baseline method.” A full 
description and derivation of the linear equations is given, for example in Section 4.4.2 
of Ref. [l]. For more than one component in the simple, broader melting ranges are 
possible. These must then be treated by superposition of the distribution of melting 
peaks. 

Transitions with low enthalpy gains may even keep steady state throughout the 
change. In this case the transition can be extracted from an apparent heat capacity by 
subtracting the appropriate baseline of the known transition-free heat capacity, which 
is available, for example, through the ATHAS Data Bank [20]. In all these cases!inearity 
is preserved and standard scanning calorimetry can give quantitative information. The 
conditions must also be kept on introduction of modulation. 

A quite different behavior is observed on crystallization, recrystallization, annealing, 
and crystal perfection. These processes occur usually via nonequilibrium paths far from 
equilibrium and are not linear [19,21]. If they are sufficiently fast, they may not be 
modulated at all and are observed as completely nonreversing phenomena. If they can 
be modulated, they are still most likely nonlinear and a quantitative analysis may not 
be possible although the total heat effect is always linear, as shown by Ozawa [9]. 
A typical example is the Avrami description of nucleation and growth under consider- 
ation of crystal impingement [21]. The kinetics of this process is described by 
a double-exponential, nonlinear differential equation. The best solution for the quanti- 
tative analysis of such processes is isothermal calorimetry without modulation. Simi- 
larly, the melting kinetics of macromolecules may sometimes show superheating 
[19,22] and is then sufficiently slow to interfere with the MDSC. 

Combining melting with crystallization, recrystallization, etc. presents, naturally, the 
greatest challenge to modulated DSC. By choosing judiciously the modulation and 
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underlying heat flow, it is possible, at least qualitatively, to separate equilibrium (or 
zero-entropy-production) processes from nonequilibrium processes. Of particular use 
in this case is a modulation that reaches zero heating rate at the minimum or maximum 
of modulation. The equilibrium process should stop at this point (if a steady state is 
maintained), and any residual heat effect is indicative of an irreversible exothermic or 
endothermic process. 

The theory of the glass transition is still not fully understood. Its kinetics for thermal 
analysis by dynamic differential thermal analysis (DDTA) was analyzed earlier and 
shown to be linear over the complete transition range as long as one stays with the 
simple “hole model” [S]. It was proven recently that a quantitative point-by-point 
quasi-isothermal MDSC analysis is also possible [23]. One expects much new insight 
from such analyses, revealing more details about the complexity of the glass transition. 

This rather optimistic analysis of the question of linearity contrasts, to some degree 
with the more pessimistic assessments of Ozawa [9] and also Schawe [24]. It may well 
be that their more negative outlook is based on experience with the (almost) power- 
compensation DSC. In such instruments the linearity must be established by design of 
the electronic circuitry and a more stringent adherence to a symmetric design between 
sample and reference calorimeter. At least the early versions of the Perkin-Elmer DSC 
were not linear in the melting range, as pointed out in the Introduction, and special 
desmearing techniques had to be applied for quantitative analysis in the melting range. 
New techniques of this type (or improved power compensation) must be developed to 
make full use of modulation. Once this is accomplished, a faster response time due to 
the shorter heat diffusion path may be possible. A more detailed discussion of the 
linearity of power-compensated DSC was given recently [25]. It must be remarked, 
however, that ultimately even power-compensation DSC depends on negligible tem- 
perature gradient within the sample for ease of data evaluation. 

3. Discussion of the steady state 

In a previous publication steady state was shown to be the basic condition for all 
calorimetric heat capacity analyses [14]. A knowledge ofthe quality of the steady state 
is particularily important as one goes through heat capacity changes, for example, in 
the glass transition coupled with a hysteresis peak, or in a broad melting peak with 
a possibility of exothermic recrystallization. In this section, the extent of deviations 
from the steady state during measurement will be discussed. In its simplest form, the 
approach to steady state is expressed by the equation [ 141. 

where T,(t) is the sample temperature at time t, T, the starting temperature of the 
experiment, (4) the underlying, linear heating rate averaged over one modulation 
period, C, the sample calorimeter heat capacity (sample plus pan), K the calibration 
constant (Newton’s law constant in J s- ‘K- ‘), A,,, the amplitude of the sinusoidal 
modulation (set to a constant value), o the modulation frequency, and E the phase lag 
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relative to the block temperature of the MDSC. Due to the linearity of the differential 
equation for modulated heat flow, separate solutions for the steady state can be seen for 
the underlying heating rate and the modulation. 

Fig. 1 gives a comparison between MDSC and DSC by a superposition of three 
standard DSC traces that match the maximum, average (underlying), and minimum 
heating rates of the MDSC. Not only do the traces match quantitatively, they also show 
a longer time for reaching steady state on MDSC. The time needed to reach steady state 
can also be deduced from the Lissajous figures shown in Fig. 2 obtained by plotting the 
sample temperature versus the heat flow (temperature difference). It takes several cycles 
until the ellipse of steady state is retraced. The Lissajous figure is an important 
indicator for steady state and plotting it a recommended procedure for any quantitat- 
ive MDSC experiment. 

To get a more quantitative insight into the distance from steady state, the calorimeter 
with the larger heat capacity is analyzed further. If it reaches a given percentage 
deviation, set for the present discussion at 5%, steady state is considered either to be 
gained or lost. The somewhat large error is chosen since for the heat flow HF (or AT), 
both the reference temperature T, and T, deviate from steady state and the difference 
should show a somewhat smaller error. All calculations are carried out with a value of 
50 s for CJK, a value on the large side for present-day DSC. Typical values for C,/K 
may range from 0.1 to 100s depending on instrument construction and sample heat 
capacity. The modulation amplitude ATs is taken to be 1.0 K, and the underlying 
heating rate (4) = 3.0 K min- ’ (0.05 K s- ‘). Eq. (5) can then be rewritten to express 
the distance from steady state A (in K) 

A=T(I)-T~-(rl)t+(y)~-A,~[sin(~r~i:)]=[(q)~+A,ssine]e~~‘/c. (6) 

sample: -- 
24.904 mg 
sapphire 

3;o 330 350 I 3+0 390 410 
Temperature (K) 

Fig. 1. Comparison of times to attain steady state in DSC and MDSC. 
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A 270 K 

Sample Temperature - Set Temperature (K) 

Fig. 2. Analysis of an MDSC run. The heat flow HF is plotted against the modulated sample temperature 
(24.9 mg of sapphire, period 99 s, modulation amplitude 1.0 K). 

With the parameters just given A z 3 exp ( - t /50), and it takes about 160 s to reach the 
5% value when starting the measurement from Tb = T, = T, (beginning of the experi- 
ment, t = 0). The approximate steady-stage lag of the temperature due to the underly- 
ing heating rate is (q) CJK = 2.5 K, i.e. it is the dominating effect under the given 
conditions. For large modulation amplitudes and small values of CJK and/or (q), the 
second term may well be more important. 

The modulation amplitude in Fig. 1 is sufficiently small so that it should not cause as 
large an increase in lag as seen. The likely reason for the late beginning of steady state 
with modulation must be a control problem connected with the setting of a constant 
ATS at the sample position and not at the block and should not be of influence later in 
the experiment. 

Any subsequent change in C, will cause a new deviation from steady state that can be 
estimated analogously because of the linearity of the heat flux equation. An instan- 
taneous, step-wise increase in heat capacity causes a loss of steady state A that dies off 
with the exponential given by Eq. (6) (note that C, also enters into a). 

A third case ofloss of the steady state may be the occurrence of a glass transition over 
a limited temperature range. For a severe test, data for (hypothetical) amorphous 
polyethylene are used with an increase in C, of 10 J K- ’ molt ’ at the glass transition 
temperature T,, and an overall heat capacity of the solid of about 20 J K- ’ mol- ‘. 
Assuming, furthermore, the glass transition occurs linearly over a temperature range of 
about 10 K (5% increase in heat capacity per kelvin of temperature increase), the plot 
given in Fig. 3 can be calculated by stepwise addition of the appropriate multiple terms 
derived from Eq. (6). The filled squares represent the increase in heat capacity in 
a lag-free experiment. The computed T, shows the observed sample temperature, and 
the difference is the lag. The lag of 3 K in fixing the glass transition temperature is, 
perhaps, still acceptable for common determinations of the glass transition, but must be 
considered in discussing the kinetics of the glass transition [23]. The deviation of the 
heat capacity by more than 10% between 235 and 243 K is, however, not acceptable. 
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225 230 235 240 245 250 
Temperature (K) 

Fig. 3. Lags in MDSC during a simulated glass transition. For parameters and equations, see text. 

For the reporting of C, for the ATHAS Data Bank this error was in the past eliminated by 
extrapolation of the solid and liquid heat capacities of T, [20]. For integration of the 
heat capacities to enthalpy, it was assumed that a vertical increase in AC, occurs at T,. 
Comparing the polyethylene case with polystyrene or poly (ethylene terephthalate), 
two polymers that are often used as standards, one sees changes in heat capacity of 19% 
and 30% at the glass transition, i.e. their lags are closer to the 5% error in heat capacity. 
Similarly, a reduction in C, and c can make heat capacity measurements through the 
glass transition stay in steady state. For highest precision, two sets of measurement are 
recommended. One with large C, for the solid and liquid heat capacities, and one with 
small C, in the glass transition region for the study of the kinetics. 

A fourth estimate of deviations from steady state is suggested to judge a continuous 
linear increase in heat capacity with a negligible modulation effect. The deviation from 
the steady state, A, for a continuous increase in heat capacity is given by the integral of 
the lag equation from time zero to co, with the preexponential factor replaced by the 
changein C,(in % K-‘) x (q)(in KS-‘) 

zepK’/C‘dt = (q) 
0 

(7) 

From this estimate, one can see that a change in heat capacity of less than 2% K- ’ is 
within the chosen error limit of 5% (C,K = 50 s, (q) = 0.05 KS-‘, see also Fig. 3). 
A typical increase of the heat capacity per kelvin in the solid state is, for example, 0.4% 
(polystyrene from 200 to 300 K), i.e. a considerable amount of premelting or broad 
transition can be assessed with good accuracy without losing steady state. 
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Further qualitative interpretation may be possible to levels as high as 25550% K- 1 
lag, In addition, a desmearing of the curve shown for the glass transition is possible as 
long as the condition of negligible temperature gradient within the sample is not 
violated. Also, one must remember that the heat of transition determined from the total 
heat flow is correct when using the baseline method [9]. 

4. Complex heat capacity 

The similarity of the description of temperature-modulated DSC and dynamic 
mechanical analysis (DMA) and also dielectric thermal analysis (DETA) has brought 
up the question whether a complex heat capacity would be of use in analogy to the 
modulus (the stress/strain ratio). It was suggested by Schawe that one could write for 
the complex heat capacity [24] 

C* = C’ _ ic” = C,epi6 (8) 

where C’ is the real part or “storage heat capacity,” the instantaneous response to 
a change in temperature in analogy to the storage modulus, and C” is the “loss heat 
capacity” represented by the imaginary, delayed part in analogy to the loss modulus. It 
follows then that the “modulus of the heat capacity” in analogy to the mechanical 
modulus (ratio of the peak stress to peak strain) is 

IC,I = JjFjqFY (9) 

A comparison of the corresponding terms in DMA and DSC is summarized in Fig. 4. In 
the DMA experiments G is, for example, the shear modulus, 0, the stress, E, the strain, 
and 6, the phase lag. 

The MDSC discussion has established that one must separate two applications of 
the formalism of complex physical quantities. First, those that represent mainly the 
calorimeter responsefunctions. The complex heat flow is given, for example, by [ 121 

HFco,(t) = CHF,,&) - (HF(t))] cos ot t I t, [ = A,,sin (or - G)cos ox] 
(10) 

HFG”(t) = CHF,,,(r) - (HF(t) >I sin 0X t I t, [ = A,,sin (wt - @sin wt] 
(11) 

CAHFtt2)) = 2J<HF,i”(t2))2 + (HF,,,(t2))2 (12) 

where HF indicates the various heat flow amplitudes, ( ) marks averaging of the 
amplitudes over a full modulation amplitude to separate the modulation effect, and 6 is 
the phase lag of the heat flow. The temperatures are given by analogous equations. The 
“real” part of the heat flow is the response to the sinusoidal modulation of the block 
temperature; It is the sinusoidal component of Eq. (1 l), while the “imaginary” part is 
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Comparison of Modulus and Heat Capacity 
_ t Teasured stress stress in-phase;with D 

I 
G* = G ’ - iG” 

G’ = G,cos6 

stress out-of-phasewith E 
G” = GO sin 6 

Time __) Go = dm 

G(t) = G,cos&inwt-G,sin&oswt Go = 6o,Fo 
G(t) = G,sin ( wt - 6) & = hsin wt 

Fig. 4. Comparison of the nomenclature as applied to complex modulus and heat capacity. 

given by cosine component of Eq. (10). In the derivation of the basic heat capacity 
equations, it was shown, furthermore, that using complex notations for heat flow 
(temperature difference) and temperature simplifies the calculations [12]. In these 
applications, the definition of complex quantities is mathematically correct and useful, 
but rather inappropriate when applied to sample properties, since the so-defined 
quantities are based mainly on instrumental and not materials properties. The storage 
and loss components are different for every calorimeter and vary even with sample 
placement. Out of these instrument-specific response functions, the sample-specific 
averaged and smoothed heat flow and temperature can be derived using Eq. (12) and its 
analog, i.e. only the amplitudes of the phase-shifted quantities have meaning for the 
calculation of heat capacity (compare to Eq. (9)). This was realized rather early, and 
although the phase angles have been measured and discussed, they proved for 
experimental reasons of lesser importance and precision than the phase-shifted ampli- 
tudes [ll]. 

The interpretation of a time-dependent heat capacity is different, as seen in the glass 
transition region [S]. Note, however, that there are only a few other calorimetric effects 
that are sufficiently reversing in the time scale of the typical present-day calorimeters to 
be characterized with a complex heat capacity. (None other but the glass transition 
come to mind on writing this paper!). As pointed out by Schawe [24], it may be 
advantageous to talk about a complex heat capacity when interpreting the shift in the 
glass transition with frequency. Before presenting such work, it must first be proven, 
however, for the calorimeter used (heat-flux or power-compensated) that the instru- 



B. Wunderlich et al./Thermochimica Acta 2821283 (1996) 143-155 153 

mental response is linear and the lag is within accaptable error limits or has been 
properly separated from the sample response. 

Finally, the meaning of the various heat capacities listed in the figure and the 
appropriateness of the proposed nomenclature must be scrutinized. First, it must be 
noted that in order to agree with the prior definition of the temperature lag as a positive 
number, we write C’ - iC” in Eq. (8) instead of the otherwise common C’ + iC”. The 
term complex heat capacity for C* is by its very definition, naturally, appropriate. It 
must not be confused with the subscript * used in the hole theory to designate 
equilibrium properties [S]. Modulus, however, is a term strictly taken from the 
description of mechanical properties as measured, for example, by DMA. It is not 
appropriate for the description of C, in Eq. (9). 

For the description of the complex heat capacity in the glass transition region, C, is 
the difference in heat capacity between liquid and glass [S]. 

C, = AC, = C&liquid) - CPO (13) 

where C&liquid) is the equilibrium heat capacity of the liquid, and C, the (metastable) 
equilibrium heat capacity of the solid. The two parts of AC, can be measured in the 
temperature region of the stable liquid and the metastable glass, respectively, and then 
extrapolated into the glass transition region. The “apparent heat capacity”, AC:, 
measured in the glass transition region, is equal to the real part of Eq. (8), C’ = AC! 
cos 6, and C” can be computed (= ACisin 6). 

The real and imaginary parts of the heat capacity are linked to “storage” and “loss” 
enthalpies when integrating the complex heat capacity over the sinusoidally changing 
temperature of the sample (T = T, + Asin wt). This is similar to the case of the complex 
mechanical modulus that can be linked to work Wdone on and recovered from the 
sample by integration of the complex stress g over the sinusoidal strain E. The energy 
dissipated over one cycle, Aw”, is given in the DMA experiment by - G”E; rc. The 
integral of -AC: sin Gcos otd(Asinwt) over one modulation cycle suggests an 
enthalpy “loss” of - A rrAC;sin 6 = - AX C”. The in-phase heat capacity gives as much 
of an increase in enthalpy on heating as a decrease on cooling; thus it corresponds to 
a “storage” term. 

The computation of a loss heat capacity raises the question of where the correspond- 
ing amount of heat is seen in calorimetry, i.e. how “real” it is. Since heat capacity is not 
directly measured, but computed from the heat-flow and temperature amplitudes (see 
Eqs. (lo)-( 12) and their temperature analogs) [12], only the heat flow corresponding to 
the apparent heat capacity C’ = C,cos 6 is available from the experiment and can be 
“seen” (and is used for the evaluation of the hole theory parameters in Ref. [23]). The 
loss part of the complex heat capacity is computed via Eq. (9) as C,sin 6. It corresponds 
to a virtual loss that has occurred because the apparent heat capacity could not 
increase the enthalpy (hole energy) to the equilibrium value of Eq. (13). While the 
loss modulus in DMA corresponds to a real loss (work to heat conversion), the loss 
due to heat capacity does not. This finding diminishes, perhaps, the importance 
of the discussion of a complex heat capacity outside of its use in simplifying computa- 
tions. 
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5. Conclusions 

MDSC based on heat flux is basically linear. Provided sufficient care is taken to stay 
in steady state and to satisfy the condition of negligible temperature gradient within the 
sample reversible heat capacities can be measured. Only a single calibration constant is 
needed to assess the thermal conductivity and geometry of the calorimeter. The 
modulation permits separation of heat losses of frequency different from the modula- 
tion and thus increases the accuracy of the measurement. Transitions that can be 
described by linear kinetics expressions can also be followed quantitatively by MDSC 
as long as steady state is maintained within acceptable error limits. Quantitative 
separations may be possible to relatively high levels of lag, but the total enthalpy 
integrated over the complete transition region is always quantitative (within the limits 
if standard DSC). Finally, the introduction of complex variables for temperature, heat 
flow, and heat capacity facilitates computations. The imaginary part of the heat 
capacity C” seems, however, to have no measurable effect, in contrast to the loss 
modulus determined in DMA. 
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