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Abstract

The phase diagram of the system RbCI/ErCl; was investigated by means of DTA and the
system CsCl/ErCl, was re-investigated. The existence of the caesium compounds Cs,ErClg
{(dimorphic), Cs,ErCly, Cs;Er,Cl, and CsEr,Cl, was confirmed. In the system RbCI/ErCl,, there
are two dimorphic, congruently melting compounds, Rb;ErCl, and RbEr,Cl,. The incongruent-
ly melting compound Rb,ErCl, (Cs,DyCly structure) is stable at temperatures higher than
348°C. The thermodynamic stabilities of the compounds were determined by solution
calorimetry and e.m.f. measurements in a galvanic chlorine cell for solid electrolytes.
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1. Introduction

Our systematic investigations on the stability of ternary lanthanide chlorides have
revealed that in the systems RbCl/LnCl;, with Ln being La-Gd[1], compounds
Rb,LnCl; exist, crystallizing with K,PrCl; structure [2] (Y,HfS.-type [3]), in which
the coordination number (CN) of the Ln®* against the chloride ions is 7; in the systems
RbCl/TbCl; [4] and RbCl/DyCl, [5], analogous compounds do not exist. Com-
pounds Cs,LnCl, with this structure were found in the systems from Ln = La-Nd,
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while, beginning with Cs,SmCl, [6], the 2:1 compounds have the Cs, DyCl; structure
with an octahedral coordination for samarium. It was now of great interest to
determine with lanthanides smaller than Dy, whether compounds Rb,LnCl;
exist crystallizing with the Cs,DyCl; structure. Therefore, we have investigated the
hitherto unknown system RbCI/ErCl, and have also reinvestigated the CsCl/ErCl,
system. In the KCI/ErCly system, unsolved difficulties still exist concerning
the polymorphy of K,ErCl; we will publish this system and the KCl/HoCl; system
later on.

2. Experimental

The starting compounds were ErCl;-6H,0, prepared by dissolving Er,O, (99.9%,
Fa. Heraeus, Hanau) in hydrochloric acid, and the alkali metal chlorides CsCI and
RbCl (Fa. E. Merck, Darmstadt; quality p.A.). They were dried at 500°C.

The equipment for the thermochemical and structural investigations has been
described earlier.

(i) DTA [7]. A homemade device was used with samples either in vacuum-sealed
quartz ampoules, or in open corundum crucibles, when rich in ErCl;.

(i) XRD. A Philips X-ray goniometer PW 1050/25 was used for crystal powders in
He atmosphere; dynamic high-temperature photos by the Simon—Guinier method.

(iii) Solution calorimetry [8]. A homemade isoperibolic calorimeter for samples of
2-4 g, dissolved in 1.1 liter 0.01 M hydrochloric acid.

(iv) E.m.f. measurements [9]. For the formation of the most ErCl;-rich compounds,
the set-up of the cell was: (graphite + Cl,)/ACI/A " -conduct diaphragm/ErCl,
(+ AEr,Cl,)/(graphite + Cl,). The collected e.m.f. vs. T values were subjected to
a linear regression analysis.

3. Results
3.1. Preparation of anhydrous compounds

For the preparation of anhydrous ErCl, the hexahydrate was first dehydrated to
ErCl,-H,O by heating in a vacuum furnace from 80 to 100°C. Then the last water was
removed by heating the monohydrate slowly from 120 to 250°C in an HCl stream. The
product was soluble in water or methanol. Its structure was composed of strongly
distorted layers; the AlCl;-type structure was formed after melting.

The anhydrous compounds Cs,ErCl, and Rb,ErCl,, both with the Cs,BiClg
structure, can be prepared from a solution of ErCl,-6H,0O and Cs,CO, in concen-
trated acetic acid by precipitation with HCI gas. We have recently described this
method for ternary chlorides of trivalent iron, chromium and vanadium [10].

For Rb,ErCl, 3.8 g of ErCl;-6H,0 were dissolved at 80°C in 30 ml acetic acid.
A solution of 3.4 g Rb,CO; in 20 ml H,C-COOH was added. When saturating the
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solution with HCl gas, a pink precipitate was formed. This was filtered and washed with
ether under exclusion of moisture: yield, 5.6 g Rb,ErCl, (85%).

3.2. Phase diagrams and crystal structures

Fig. 1 illustrates the results of the DTA measurements on the systems RbCl/ErCl,
and CsCl/ErCl,.

The melting temperature of ErCl, found by measurements in a corundum
crucible was 751°C; this differs distinctly from the data given in the literature, namely
764°C by Korshunov et al. [11], 791°C by Goryuskin et al. [12], and 776°C by
Dworkin and Bredig [ 13]. In 1994 Gaune-Escard et al. [ 14] found by measurements of
300 mg samples in quartz cells, that ErCl, should have a melting point of 773°C and
a phase transition at 752°C. In our own experiments, this double effect originated
in a reaction of the ErCl; melt with SiO,. As Fig. 2 demonstrates, we found for the
first melting only one peak at 751°C. When repeating the melting process, the effect
splits; the splitting becomes more pronounced the more melting cycles are run. (The
reaction of ScCl, and SiO, with the formation of Sc,Si,0; is described by Poly-
achenok et al. [15].)

In the system RbCI/ErCl;, two dimorphic compounds exist: Rb,ErClg
and RbEr,Cl,. A third, incongruently melting compound, Rb,ErCls, is stable
from 348 to 520°C. However, the formation temperature of 348°C could be ob-
served only in heating curves with samples of quenched melts. When cooling, the
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Fig. 1. The systems CsCl/ErCl; and RbCI/ErCl,.
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Fig. 2. Melting cycles for ErCl; in quartz ampoules.

decomposition does not occur in the time scale of DTA. X-ray measurements of
samples cooled to ambient temperature reveal only a partial decomposition after some
days.

The results of Blachnik and Selle [16] concerning the system CsCl/ErCl; were
confirmed. In particular, we corroborate that two incongruently melting compounds
exist: Cs,ErCl, (peritectic temp., 650°C) and Cs,Er,Cl, (peritectic temp., 602°C).

The unit cells of all low-temperature compounds were determined by Meyer and
coworkers from powder patterns: L-Cs;ErClg and L-Rb,ErClg [17], Cs;BiClg-type
(S.G. C 2/c); Cs,ErCl, and Rb,ErCly [18], Cs,DyCl;-type (S.G. Pbnm); Cs,Er,Cl,
[19], Cs,T1,Cl,-type (S.G.R3c); L-CsEr,Cl, and L-RbEr,Cl, [20], (S.G. Pnma).

The high-temperature modifications of the 3: 1 compounds crystallize with the cubic
elpasolite structure (S.G. Fm3m); lattice parameters at 500°C are: H-Cs,ErCl,
a=11.535(2) A; H-Rb,ErCl,, a = 11.191 (4) A

3.3. Solution calorimetry

All solution enthalpies were determined as the mean of three measurements. For
ErCl,, a value of —211.9(1) kJ mol ~ ! was found (Ref. [21]: —210to —216 kJ mol™').
The values for the alkali metal chlorides were taken from previous measurements:
CsCl,18.1(2) kI mol ~*; RbCl, 17.6 (2) kJ mol ~ . With the solution enthalpies, A, H g
the enthalpies of formation from nACI + ErCl; were calculated

sol

AcHj g = [Ag H39g(ETCly) + nA  Ho g5 (ACH] — Ay, H3 g4 (A ECl, , 5)
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Table 1
Solution enthalpies/kJ mol !

Ay H3gg ArHj o ArHj05 [16]
0.5 CsEr,Cl, ~166.0(1) 368 419
0.5 Cs,Er,Cl, ~113.9(6) ~70.8
Cs,ErCl, —63.6(3) -944 —98.5
0.5 RbEr,Cl, ~1719(12) ~313
Rb,ErCl, —81.7(9) ~774

The measured values for all compounds which could be prepared as pure phases are
compiled in Table 1 together with some values from the paper of Blachnik and Selle

[16].
3.4. E.mf. measurements

A comprehensive description of the method was given recently [22]. The e.m.f. values
were measured for the formation of each compound from ACI and the adjacent
ErCl,-rich compound in a temperature range from ~ 300 to 500°C. In this range, the
dependence of em.f. on T was linear. Thus, equations for the regression lines could be
transformed by multiplication by —nF to the Gibbs—Helmholtz equation
A,G"=A H> — TA_ S°. By means of thermodynamic cycles, other functions could be
calculated, for instance, if the free enthalpies of syn-reaction, A G°, from the two
neighbouring compounds. For high-temperature modifications the temperatures of
formation (decomposition) were calculated by the condition A ,G° =0.

E.m.f. measurements could not be performed for the most ErCl;-rich compounds,
CsEr,Cl; and RbEr,Cl,. According to our present experiments, the e.m.f. cells break
down for e.m.f. values higher than ~ 500 mV.

The Gibbs-Helmholtz equations for the reaction in the cell are listed below, together
with the temperature ranges of the measurements. The range of error was smaller than
1 kJ mol~* for the energy values and 0.8 J K~ ! mol ™! for the entropies.

Cs compounds

Reaction CsCl+ M-Cs, (ErCl,  =Cs, ;ErCl, ; (T=580-630K)
A,G°/kJ mol ™! = —30.0 — 0.0102 T/K

Reaction 0.5CsCl + Cs, ;ErCl, ;= Cs,ErCly (T =580-640K)
A,G°/kI mol™! = —9.5-0.0072 T/K

Reaction CsCl+ Cs,ErCly = L-Cs,ErCl, (T = 580-610K)
A,G°/kJ mol ! = —18.2—0.0073 T/K
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Rb compounds

Reaction 1.5RbCl+ L-Rb, (ErCl, s =Rb,ErCl; (T = 560-640K)
A, G°/kJ mol ™! = —21.0-0.0303 T/K

Reaction RbCl+ Rb,ErCl, = L-Rb,ErCl, (T = 560-640K)
A,G°/kJ mol ™! = —23.9-0.0017 T/K

From both reactions, the Gibbs—Helmbholtz relation for the formation of Rb,ErCl;
from its two neighbouring compounds (‘syn-reaction’) can be calculated:

Reaction ?/;Rb, (ErCl, . + */sRb;ErClg = Rb,ErCl;
AsG°=6.0—0.0111 T/K; AgH°=60kJmol™!; AS°=11.1JK ™ "mol™!

s

The enthalpy for this reaction is positive (endothermic reaction). At 539K (266°C),
A;G° = 0. Below this temperature, Rb,ErCl; is no longer stable.

In Fig. 3 the enthalpies from e.m.f. measurements are compared with those from
solution calorimetry.

Cs3ErClg CsyErCls  CsysErCl s CsysErCiys ErCl

-18.2 -95 -300
: -395
h -577
IS 340 -36.8
[
s -576
Q
RbErCl,  RbEFCl RbgsErClys  ErCly
| -239 210
&
@ -44.9
-5 -461 -31.3
3
© -774

Fig. 3. Enthalpies in kJ mol~"' from e.m.f. measurements and solution calorimetry for reactions nACl +
AErCly, = A, oErCl; iy
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4. Discussion

As pointed out in the introduction the main purpose of these investigations was to
find out which differences appear on going from the DyCl; systems [5] to the
analogous ErCl, systems.

(1) In the system CsCl/ErCl,, there is an additional incongruently melting com-
pound, Cs;Er,Cl,. In this ennea-chloride, isolated pairs of face-sharing ErClg oc-
tahedra exist. Such double octahedra [Er,Clg]?~ are less deformable than isolated
octahedra. Therefore, they are only formed if the radius ratio r{ 7 /rg, is near to the ideal
value for six ligands, i.c. 0.41. With r* = 0.881 A [23]and r&, = 1.81 A, the ratio is 0.49.
An analogous Rb compound does not exist because the Rb™ ion is too small to
surrounded by the necessary twelve C1~ ions. With the bigger Br~ ion, there is an
ennea-bromide with Sm3* (r = 0.964 A) [24].

(2) In the Rb system a compound Rb,ErCl; exists having the Cs,DyCl; structure
with corner-connected [ErCl,Cl,,,] octahedra. The analogous compounds with Dy
and Tb do not exist, while Rb,GdCl; crystallizes in the K,PrCl, type with CN7 for
Ln®*.

As can be seen from the e.m.f. measurements, the Gibbs function for the syn-reaction
0.2RbEr,Cl, + 0.6Rb,ErCl, = Rb,ErCl; is zero at 266°C. Above this temperature, the
endothermic enthalpy A_H® = 6.0 kJ mol ! is compensated by a sufficiently high
(— TAS) term so that A;G becomes < 0. This is the equilibrium temperature of
formation for the high-temperature phase Rb,ErCl,. This solid state reaction is
strongly kinetically hindered so that in the time scale of DTA (heating rate 2 K min ')
the reaction temperature is found at 348°C. In the cooling period, the decomposition
does not occur at all: the cooling product is metastable Rb,ErCl,. We have found the
same feature for many other systems with such ‘reconstructive phase reactions’ [25].

The AgH" values of all other syn-reactions are negative therefore, these compounds
should be stable down to T=0K if no anomalies in heat capacities occur at low
temperature.
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