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Abstract 

The formalism of dispersive kinetics is applied for thermolysis of solids. As an example, the 
isothermal decomposition of basic aluminium ammonium sulphate in vacuum is analysed. The 
first order dispersive kinetic equation provides a highly accurate description of thermolysis 
processes for the three stages of decomposition: partial dehydration at temperatures below 623 
K, final dehydration and removal of ammonium in the temperature range 623~873K, and 
desulphurisation at temperatures above 873 K. 
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1. Introduction 

Classical chemical kinetics was formulated for isolated reactions in homogeneous, 
three-dimensional, systems [l]. It fails in solids [2-61. As an example, the classical first 
order kinetic equation has the form 

- dcldt = kc (1) 

where c is the concentration of the substrate, t is reaction time, and k is specific reaction 
rate (rate constant). To be applied for thermolysis, Eq. (1) is modified to 

d6/dt = kf (6) (2) 

* Corresponding author. 
’ Dedicated to Takeo Ozawa on the Occasion of his 65th Birthday. 
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wheref(6) is the proper function for a given reaction model [779] for the decomposi- 
tion fraction 

6 = 1 - c/c0 (3) 

Formally the use of Eq. (2) is equivalent to a change of reaction order. In common 
practice, in that way one recovers the constant specific reaction rate or rate constant of 
classical kinetics and tries to describe its temperature-dependence by the Arrhenius 
equation 

k = Aexp(-E/RT) (4) 

where A is the preexponential factor, E is the activation energy, R is the universal gas 
constant, and T is the temperature. 

From the variety of kinetic model functionsf(@, one can usually choose the proper 
one [lo] to fit a given set of experimental data but sometimes one finds it necessary to 
use more than one function for the same system differing only in crystallite sizes or 
amount of defects. The numerical values of rate constants are, of course, model- 
dependent. 

Furthermore, deviations from the Arrhenius equation are quite common, most 
probably due to the difference between the idealised process assumed in formulating 
the kinetic model function and the actual process in the investigated system. To 
account for these deviations the kinetic model function may be multiplied by some 
empirical function accommodating the distortion of the actual process from the 
idealised model [ 11,121. The disadvantage of such an approach is in the use of an 
empirical accommodation function the physical basis of which is difficult to formulate. 

In this paper we present an alternative approach using the first order kinetic 
equation with the specific reaction rate depending on time, k(t), viz. 

-dcldt = k(t)c (5) 

The starting point of such a formulation of kinetics is that at the molecular level all 
condensed phase systems are more or less disordered. Thermolysis, by increasing the 
number of system components, increases the disorder in the system. 

The intrinsic property of kinetics [S], as well as transport and relaxation [13], in 
disordered systems is the time scale invariance: there is no one characteristic time scale, 
the processes proceed on all experimentally accessible time scales. This phenomenon is 
accounted for by the use of fractal time, tZ, with 0 < c( < 1. Fractal time is introduced 
into the kinetic equations by means of a time-dependent specific reaction rate of the 
form 

k(t) = (%‘)(tli)“-l (6) 

Using this form of time-dependent specific reaction rate one gets from Eq. (5) 

6 = 1 - exp [ - (t/[)“] (7) 

It seems interesting to note the universal form of Eq. (7). For x = 1 Eq. (7) corre- 
sponds to the textbook form of the kinetic equation for the first-order reaction, for 
1 < x < 4 to the Avrami equation [14-161 used to describe the sigmoidal 6 vs. time 
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curves for reaction in solids. In physics, exp [ - (t/i)“] for 0 < a < 1 is often referred to as 
the Kohlrausch relaxation function to acknowledge its first use in 1847 by Rudolf 
Kohlrausch [17] to describe the decay of a residual charge in Leyden jars and its 
subsequent use by his son Friedrich [18] in his studies of torque relaxation in glass 
filaments. For CI > 1, Eq. (7) is also known as the Weibull [19] distribution function in 
statistical reliability distribution theory. For the kind of distribution function given by 
Eq. (7) the moments of lifetime distribution are given by 

((t/i)“> = l-(1 + 44 (8) 
where I denotes the Gamma function. For c( = 1 these moments are reduced to those 
for monoexponential decay 

((tpy) = iI! (9) 

From a probabilistic point of view, the use of Eq. (7) instead of an exponential 
function is equivalent to accounting for the distribution of lifetimes of reactive species 
in a manner different from that proper for reactions in homogeneous, three-dimen- 
sional systems. 

For monoexponential decay there is a constant specific reaction rate 

k = l/(t) (10) 

cf. Eqs. (6) and (9), and this is the macroscopic parameter which is related to the 
microscopic rate of single barrier crossing in the familiar pictures of Arrhenius, Eyring 
or Kramers for thermally activated transitions over the barrier, or of Gamov for 
quantum mechanical transitions under the barrier. For the decay pattern given by 
Eq. (7) somewhat more sophisticated phenomenological interpretation, given below, is 
needed. 

In kinetics, the form of Eq. (6), once thought to be empirical, is now fully justified, in 
the most general way by the stochastic theory of reaction kinetics in dynamically 
disordered systems [20], and can be used in kinetic equations of any order [3]. In the 
present paper we are interested in the use of k(t), decreasing in time for s( < 1, to describe 
the deceleratory 6 vs. time curves for thermolysis. As an example the analysis of the 
experimental data from the thermal decomposition of basic aluminium ammonium 
sulphate, BAAS, in vacuum is given below. This system, because of industrial import- 
ance of BAAS thermolysis in y-Al,O, production, has been under constant investiga- 
tion in Plock’s laboratory since the early eighties [21]. So far we have analysed the data 
using Eq. (2) and different forms off’(d). 

2. Experimental 

The kinetic studies of BAAS thermolysis were performed under isothermal condi- 
tions in a standard glass vacuum apparatus equipped with a quartz helix weighing 
element. The elongation of the helix was measured, by means of a cathetometer, with 
a precision of 5 x lo- 3 mm, which enabled the determination of weight loss with 
precision of about lo-’ g for a sample mass of the order of lo- 2 g. 
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For investigation of stage I of BAAS decomposition, see next section, samples were 
dried to constant weight at 378 K prior to measurements at 473,523,543,563,578, and 
598 K. For investigation of stage II of decomposition, samples were dehydrated to 
constant weight at 623 K prior to measurements at 648,673,723,756,793, and 816 K. 
For investigation of stage III of decomposition, samples were decomposed to constant 
weight at 837 K prior to measurements at 903,943,1008,1093,1143, and 1208 K. The 
decomposition fraction was calculated from 

6 = Am/Am,,X (11) 

where Am is the loss of sample weight for a given heating time, and Ammax is the 
maximum loss of weight for a given decomposition stage. 

3. Results and discussion 

It has been shown [21] that in vacuum, where the process may be considered as 
practically irreversible, the thermal decomposition of BAAS goes through three stages: 

(1) partial dehydration at temperatures below 623 K 

(NH,),0.3A1,0,.4SO,.SH,O +(NH,),0.3A1,03.4S0,.4H,0 + 4H,O 

(2) final dehydration and removal of ammonium in the temperature range 6233 
873 K 

(NH,),0~3A1,0,~4SO,4H,O + 3A1,0,.4SO,.H,O + 4H,O + 2NH, 

3A1,0,.4SO,.H,O is equivalent to 2AlH(SO,), + 2y - Al,O, 

(3) desulphurisation at temperatures above 873 K, which proceeds according to two 
parallel mechanisms: 

(a) 2AlH(SO),), +Al,O(SO,), + 2S0, + 0, + H,O 

Al,O(SO,), + y-Al,O, + 2S0, + 0, 

and 

(b) 2AlH(SO,), + Al,(SO,), + SO, + l/20, + H,O 

AMSO,), + y-Al,O, + 3S0, + 3/20, 

For these stages, Figs. l-3 present, in the insets, the experimental data in the form of 
decomposition fraction vs. heating time in min. All these data were found to be 
adequately fitted by Eq. (7). The solid lines in the insets were drawn using the 
parameters of the best fits collected in Table 1. From these results, the master curves, 
6 vs. (t/c)“, were calculated and presented in Figs. l-3 in the coordinate system 6 vs. 
(t/i)” on log scale. 

There are two reasons for showing the master curves in this coordinate system.The 
first is to display the goodness of fit, especially at the very beginning of the isothermal 
decays. The quality of fit is given as the fit standard error,fse in Table 1. For all series of 
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Fig. 1. Kinetics of BAAS decomposition in vacuum, stage 1. Inset: experimental data plotted as decomposi- 
tion fraction 6 vs. time of heating at the indicated temperature; solid lines represent the best fit of Eq. (7) for 
numerical values of timescale, [, and dispersion, X, parameters collected in Table 1. Master curve: 
superimposition of experimental data shown in the inset in coordinate system 6 vs. (t/i)’ on a logarithmic 
scale. 

experiments, with the exception of that at 1208 K, as well as for the master curves,fse is 
of the order of 0.01. Comparablefse values were obtained [21] for the fits using Jander 
and Ginstling-Brounshtein equations. Both these equations are based on detailed 
diffusion mechanisms, which provide particular forms of f(s) for Eq. (2). Thus the 
advantage of the present approach is not in a better fit. It is in the sound physical basis 
of dispersive kinetics and its phenomenological interpretation which is free from the 
mechanistic details necessary in the classical approach; e.g. the Jander equation is 
derived under the assumptions of isotropic shrinkage of the spherical substrate grains 
and parabolic growth of the product layer. 

To outline the phenomenological interpretation of Eq. (7) is the second reason of 
showing the master curves. The decrease of specific reaction rate in time given by Eq. (6) 
implies that for thermally activated processes, if one takes the familiar Arrhenius 
picture, the activation energy increases according to 

E(t) = E, + (1 - a)R T ln(t/[) (12) 

where EC is the activation energy to be estimated from the temperature-dependence of 
i by: 

EC = Rd lni/d( l/T) (13) 
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Fig. 2. Same as Fig. 1, for stage II of BAAS decomposition 
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Fig. 3. Same as Fig. 1, for stage III of BAAS decomposition. 
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Table 1 
Timescale, <, and dispersion, CX, parameters for isothermal decomposition of BAAS in vacuum 

Stage T/K ;/min c( .fse a 

413 9.52 x 10’ 0.25 0.004 
523 1.55 x lo4 0.26 0.014 

I 543 1.01 x lo4 0.20 0.014 
563 3.43 X 103 0.17 0.009 
578 56.1 0.18 0.013 
598 3.75 0.18 0.008 
648 1.24 x lo3 0.77 0.002 
613 491 0.65 0.016 
123 314 0.48 0.014 
756 134 0.32 0.013 
793 29.0 0.40 0.008 
816 14.4 0.48 0.009 
903 2.44 x 10“ 0.52 0.002 
943 2.62 x lo3 0.62 0.007 

III 1008 879 0.55 0.005 
1093 335 0.45 0.005 
1143 107 0.48 0.013 
1208 35.7 0.48 0.027 

a Fit standard error:fse = &(Si ~ &)‘,i(n ~ p), where: n - number of experimental points, p number of 
parameters, 6, experimental decomposition fraction, s^, - calculated decomposition fraction 

Taking Eq. (7) as the distribution function oflifetimes, one can write for the distribution 
of logarithms of lifetimes in units of t/i 

F(ln(t/[)) = 1 - exp{ - exp[r ln(t/[)]} (14) 

and further, cf. Eq. (12) 

F(u) = 1 - exp( - exp u) (15) 

for the distribution function of activation energy in units of u = r(E - E;)/(l ~ x)RT. 
From Eq. (15) the density of activation energy distribution is given by 

f(u) = exp(u - expu) 

Its mean value is equal to 

(u>= --Y 

(16) 

or 

(E)=E;-yRT(l-a)/~ 

where y is the Euler constant, and the dispersion is given by 

rrU = z/Jz 

(17) 
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or 

oE = nR T( 1 - M)/& 

For CI = 1 Eqs. (17) and (18) reduce to those proper for classical kinetics, i.e. 

(18) 

(E) = E, (19) 

and 

Fig. 4 shows the temperature-dependence of E,, cf. Eq. (13), calculated by polynomial 
interpolation of the numerical values of [ collected in Table 1. It would be hard to claim 
that the Arrhenius relationship holds. In the temperature range of the first decomposi- 
tion stage E. increases from about 130 to about 390 kJ mall ‘. The lower value is close 
to those estimated [21] from the parameters of the Jander equation, 110 and 154 kJ 
mol’, and the Ginstling-Brounshtein equation, 93 and 150 kJ mol’. Comparable 
increases in the numerical values of EC are seen in the temperature range of the second 
decomposition stage, from about 20 to about 200 kJ mol’. For this stage the 
activation energies estimated [21] from the parameters of the Jander and Ginstling- 
Brounshtein equations were 82 and 109, and 74 and 96 kJ mol- ‘, respectively. In 

600 800 1000 1200 
T/K 

Fig. 4. Temperature-dependence of activation energy Ei (solid lines) and of density of activation energy 
distribution R Tf(E) vs. E - EC (surface plots) for the stages of BAAS thermolysis in vacuum. Further details 
in text. 
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contrast with these two stages, in the temperature range of the third decomposition 
stage I$ decreases from about 220 to 130 kJ molK1 while the numerical values 
estimated [21] from the parameters of the Jander and Ginstling-Brounshtein equa- 
tions are 147 and 128 kJ mol- ‘. These differences seem to be significant if one ignores 
the wide distributions of activation energies, exceeding 50 kJ mol- ‘, displayed in the 
upper part of Fig. 4. To calculate this distribution, cf. Eq. (16), the numerical values of c(, 
given in Table 1, were approximated, like those of [, by polynomial interpolation. 

The classical approach insists on single-valued activation energies directly related to 
the elementary single-barrier processes, admitting, as above, two or at most few distinct 
processes. Dispersive kinetics allows continuous distributions of activation energies 
and, in general, a substantial contribution of activation energy for system structural 
reorganisation to the apparent activation energy for the process followed in the system. 
This is well evidenced for reactions in the inert solid matrices even in the oversimplified 
Arrhenius picture [6]. For thermolysis a more sophisticated picture is clearly needed 
[22]. The fluctuating barrier is a concept whose time appears to have come [23]. The 
potential barrier to the disassociation of a molecule is seen to depend on the geometric 
positions of atoms not directly involved what may simply be the stretching of 
a chemical bond to destruction. 

4. Conclusions 

Taking into account only the generic property of solids, their disorder at the 
molecular level, we have reproduced adequately the deceleratory pattern of BAAS 
thermolysis in vacuum. We have also given a phenomenological interpretation of this 
reaction pattern free from any mechanistic details. This interpretation differs from that 
common in the physics of solids [3] in which 1 - 6 is represented in the form of 
a Laplace transform 

l-6= = s dk) exp( - W dk (20) 
0 

or 

exp[ - (t/i)“] = 
s 

=f.(r)exp( - t/z)dz (21) 
0 

for 

z= l/k (22) 
and 

.I-(4 = dll~)l~2 (23) 

and 1 - 6 is interpreted in terms of superposition of monoexponential decays distrib- 
uted continuously with the densityf(t). This latter interpretation is meaningful only for 
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the rigid-matrix approximation of reaction kinetics in disordered systems, i.e. when the 
numerical values of c( are not increased by matrix dynamic effects [20]. It is, of course, 
not because the mathematical approach to obtainf(r) from relationship (21) fails but 
because the calculated distributions may have no physical sense. This is also true for the 
direct use of Eq. (20) to fit the experimental data. There are nearly no restrictions [3] on 
the form of g(k). One of the most popular forms, tried e.g. for cellulose pyrolysis 1241, is 
that of loggnormal distribution of k resulting from assumed Gaussian distribution of 
activation energies, cf. Eq. (4). This is least surprising, however, as the log-normal 
distribution mimics the r-stable distribution which as the only one [25] yields Eq. (7) 
through relationship (21). 
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