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Thermodynamics of acrylic ester—organic solvent mixtures
I1. Viscosities of mixtures of methyl methacrylate, ethyl
methacrylate or butyl methacrylate with n-hexane,
n-heptane, carbon tetrachloride, chlorobenzene
or o-dichlorobenzene at 303.15 K
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Abstract

The viscosities of fourteen binary mixtures of methyl methacrylate (MMA), ethyl methacrylate
(EMA) or butyl methacrylate (BMA) with n-hexane, n-heptane, carbon tetrachloride, chloroben-
zene or o-dichlorobenzene were measured at 303.15 K. The mixture viscosities were found to
correlate reasonably well with the Grunberg-Nissan, Heric, McAllister and Auslaender equa-
tions. The dependence of the derived viscosity deviations both on the size of the alkyl chain in the
ester molecules and on the nature of the second component revealed the complex nature of the
interactions in these mixtures. The equimolar mixture viscosities of MMA-containing mixtures
were analysed by the Bloomfield-Dewan approach on the basis of Flory free-volume theory and
the thermodynamic contributions, viz. enthalpy, entropy and free volume terms, were evaluated.
The results of the analysis show that dispersing interactions are predominant in the aliphatic
hydrocarbon- and carbon tetrachloride-containing mixtures, while both specific and dispersing
interactions were found to contribute equally in binary mixtures of MMA and chlorobenzenes.

Keywords: Acrylic esters; Aliphatic hydrocarbons; Chlorobenzenes; Molecular interactions;
Thermodynamic contributions

1. Introduction

Acrylic esters are important industrial chemicals and are precursors in the produc-
tion of technically important homo-, block- and graft copolymers. Thermodynamic
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investigations involving binary mixtures containing acrylic esters and other polar
or non-polar solvents are expected to yield useful information, which can be helpful
in designing efficient industrial processes involving either the production of the
derivatives of the former or their separation. Despite their wide use, binary mixtures
of acrylic esters with other solvents have seldom been studied, in constrast
with numerous reports on the thermodynamic properties of alkyl alkanoate-contain-
ing mixtures. Kehiaian et al. [1] have reviewed measurements of liquid—vapour and
liquid-liquid equilibria, excess enthalpies and activity coefficients of n-alkanoate—n-
alkane and n-alkanoate-n-alkanoate mixtures. The authors have also analysed
the data through a quasi-chemical group contribution model. Ortega and coworkers
[2-8] have recently carried out systematic investigations on several methyl ester—
alkane mixtures through measurements of excess enthalpies and excess volumes.
The excess enthalpies of alkyl ester—1-chloroalkane mixtures were also reported by
the same authors [9]. The excess enthalpies and excess volumes of mixtures of methyl
methacrylate with n-hexane, n-heptane, cyclopentane and cyclohexane were also
reported by Luo et al. [10,11]. Though the majority of studies invloved measurements
of excess volumes, excess enthalpies, vapour-liquid equilibria and vapour—vapour
equilibria, the estimation of other physical properties viz. viscosity, sound velocities
and dielectric constants and the excess functions derived therefrom is also expected to
provide insight into the nature and magnitude of the types of interaction in these
mixtures.

This work is a part of our systematic investigations of various thermodynamic
properties on binary mixtures containing acrylic esters as one of the components. The
excess volumes, isentropic compressibilities and viscosity functions of methyl metha-
crylate—alcohol mixtures have already been reported by us [12,13]. We have recently
communicated the excess volumes and isentropic compressibilities of several mixtures
of alkyl methacrylates with organic solvents [14]. This paper presents viscosity
measurements on binary mixtures of MMA, EMA of BMA with n-hexane, n-heptane,
carbon tetrachloride, chlorobenzene or o-dichlorobenzene at 303.15 K. The measured
viscosities are correlated with several equations. The Bloomfield-Dewan approach
based on Flory free-volume theory is also employed to ascertain the dominant
thermodynamic factor responsible for the observed viscosities of the mixtures.

2. Experimental
2.1. Materials

The acrylic esters MMA, EMA and BMA and the organic solvents n-hexane,
n-heptane, carbon tetrachloride, chlorobenzene and o-dichlorobenzene were the same
as described elsewhere [14]. The absolute viscosities of the pure and mixture compo-
nents were measured with an Ubbelhode suspended level viscometer. Our experimental
values of viscosities of the pure liquids at 303.15 K, along with selected literature values
for comparison, are given in Table 1. It can be seen from the table that our values agree
closely with the literature values.
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Table 1
Comparison of viscosities of pure liquids at 303.15K

Liquid Viscosity/(mPa s)
Exp. Lit.
MMA 0.5291 0.5142 [15]
EMA 0.5563 -
BMA 0.8508 -
n-Hexane 0.2830 0.2831 [16]
n-Heptane 0.3760 0.3707 [16]
Carbon tetrachloride 0.8450 0.8450[17]
0.8442 [15]
Chlorobenzene 0.7180 0.7184 [17]
0.7150 [18]
0.7134 [15]
o-Dichlorobenzene 1.1927 -
2.2. Methods

The binary mixtures were prepared by weight using a Mettler balance to a mole
fraction accuracy of +0.0001 units. The viscometer was placed vertically in an
electronically controlled thermostat which maintained at the temperature to a preci-
sion of +0.01°C. The absolute viscosities of pure solvents and mixtures were evaluated
using the relationship

n/(mPas) = p/(gem %) {At(s) — B/t(s)} (1)

where t = flow time, p = density, and 4 and B are the calibration constants estimated
by measuring the flow times of double-distilled benzene and triple-distilled water and
by solving the simultaneous equations derived for each. The flow times were measured
with a stop watch capable of recording to 0.01s. The viscosities were accurate to
4 0.0005 mPa s units.

3. Results and discussion
3.1. Correlation of experimental viscosities

The experimental viscosities and deviations from linear behavior for the acrylic
ester—organic solvent mixtures at 303.15K are listed in Table 2. An attempt was also
made to correlate the experimental viscosities of the binary mixtures with different
equations often employed for the prediction of viscosities of mixtures using adjustable
parameters.

Grunberg and Nissan [ 19] gave the following relationship to express the viscosity of
mixtures.

Inn,=xInn; +x,Inn, +x,x,6,, (2)
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Heric [20] correlated the viscosity of mixtures with the relationships
Inn,=xIny +x,Inn, +x;InM, +x,InM, +1n(x, M, + x,M,)+ H,, (3)
McAllister [21] gave a two-parameter equation of the following type,
Inn,, =x’Iny +3x,2x,(In M,,) + 3x,x,%(In M, ) + x,3In 7,
+3x,%x,In (M, + M,)/M ) + 3x,x,*In((2M, + M, )/M )
+3x;x,%In (3M + 2M,)/3M,) —In(x, +(x,M,)/M ) )

Auslaender [22] correlated the mixture viscosity using the following equation
containing three adjustable parameters,

xy(xy+ By, X)) (1, — 1) + Ay Xo(Byy Xy + %), — 1) =0 &)

The various parameters, viz. G,,, H,,, M,, M,,, B,,, A,, and B,, that appear in
Egs. (2)—(5) are the adjustable parameters that must be determined by fitting the
equations to the observed experimental viscosities; x, M, and # are the mole fraction,
molecular weight and viscosities of the pure components (subscripts) 1 and 2 and the
mixture (subscript 12).

The various adjustable parameters were evaluated from the fits of the experimental
viscosity data to Eqgs. (2)-(5) over the entire mole fraction range by a non-linear
regression method on a computer program based on the Marquardt algorithm. The
values of the parameters for all 14 binary mixtures containing an acrylic ester and an
organic solvent, and the standard deviation, ¢(%), are tabulated in Table 3. The (%)
values were calculated from the relationship

1 {100 - 27172
ff(%)/(mPas):[n_k{ (Mesp mo,,)}] B

r’exp

where n,,, and 5, are the experimental and correlated viscosities using Egs. (2)—(5)
and the adjustable parameters from Table 3. It can be seen from the table that the
values of ¢(%) for different correlating equations for all the binary mixtures studied
were small and close to each other and the correlated viscosities were observed to be
within the range of experimental precision. Thus it can be stated that the experimental
viscosities of binary mixtures of acrylic esters and organic solvents may be equally well
represented by all the correlating equations.

3.2. Viscosity deviations

The viscosity deviations as given in Table 2 for all the binary mixtures were
calculated from the relationship

on/(mPa s)=n,, —(x;n, +x,7,) (7
The 67 values were fitted through an equation of the type

dn/(mPas) = x(1 —x)ii" a,(2x — 1) (8)

i=0
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where x is the mole fraction of the ester molecules and q; is the polynomial coefficient.
The values of the coefficients a; were evaluated by multiple regression analysis based on
a least square method. The estimated coefficients and the standard deviations are given
in Table 4.

The experimentally calculated d# values together with the fitted values as calculated
using Eq. (8) and the coefficients from Table 4 are shown as a function of ester mole
fraction in Figs. 1-3. The viscosity deviations were, in general, found to be negative for
all the mixtures containing MMA and EMA. However the dn values were observed to
be positive initially for BMA—n-heptane and BMA—dichlorobenzene mixtures. Fur-
thermore d#, 5 values were found to increase with the slight increase in the alkyl chain
length of the aliphatic hydrocarbons, viz. n-hexane and n-heptane, in all mixtures. In
contrast, for a given mixture containing aliphatic hydrocarbon, the én values were
found to become more negative with increasing alkyl chain length of the methacrylic
esters. Similarly, 6y values observed in EM A—carbon tetrachloride mixtures were more
negative than those of MM A-carbon tetrachloride mixtures. We could not measure
changes in the viscosities of BMA—carbon tetrachloride mixtures because the closeness
of the viscosities of the individual components resulted in very small changes upon
mixing. The trend in d7,, 5 values of the acrylic ester—chlorobenzene mixtures was found
to be an increasing type, with even positive values for BMA—chlorobenzene mixtures.
The dn, 5 values for all three binary mixtures with MMA, EMA and BMA were found
to be close in sign and magnitude.

Table 4
Least square coefficients of Eq. (8) for the representation of viscosity deviations of acrylic ester-organic
solvent mixtures at 303.15K

a, a, a, o
MMA
n-Hexane —0.101947 0.0004390 —0.017744 0
n-Heptane —0.053670 —0.042543 —0.045783 0
Carbon tetrachloride —0.024797 —0.013751 0.007940 0.0001
Chlorobenzene —0.072200 0.079470 —0.356400 0
o-Dichlorobenzene —0.073600 0.028410 —0.099800 0.030
EMA
n-Hexane —0.156271 —0.036026 0.037337 0.0001
n-Heptane —0.071359 —0.015203 0.014871 0
Carbon tetrachloride —0.122782 —0.001818 0.016597 0.0001
Chlorobenzene —0.031364 0.072516 —0.078401 0.00001
o-Dichlorobenzene —0.085172 —0.071768 0.039641 0
BMA
n-Hexane —0.350823 —0.233826 —0.273340 0.0001
n-Heptane ~0.348417 —0.467606 0.345666 0
Chlorobenzene 0.126088 0.086310 —0.127384 0

o-Dichlorobenzene —0.137489 —0.179187 0.195788 0
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Fig. 1. Viscosity deviation of methyl methacrylate -organic solvent mixtures at 303.15K: l, n-hexane; A,
n-heptane; x, carbon tetrachloride; ®, chlorobenzene; ¥, o-dichlorobenzene —— calculated from
Eq. (8) and the coefficients from Table 4.
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Fig. 2. Viscosity deviation of ethyl methacrylate-organic solvent mixtures at 303.15K. Symbols as for
Fig. 1.

The more negative or smaller én values indicated the presence of dispersing
interactions and less negative and positive 65 values can be attributed to the balance of
dispersing and specific interactions in the favour of the later. Thus the results presented
in Table 2 and their trend in Figs. 1-3 indicate the presence of complex interactions.
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Fig. 3. Viscosity deviation butyl methacrylate—organic solvent mixtures at 303.15 K. Symbols as for Fig. 1.

3.3. Theoretical analysis

It was thought worthwhile to apply the Bloomfield-Dewan [23] approach based
on Flory’s free-volume theory to the viscosities of MM A—organic solvent mixtures to
gain insight into the dominant thermodynamic factor that decides the mixtures
viscosity. The thermodynamic contributions, viz. enthalpy, entropy and free volume,
to the mixture viscosities ie. Inny, Inng and Inn, were calculated for the binary
MMA-organic solvent mixtures at an ester mole fraction of 0.5 by means of the
relationships

AH

m

RT

Inn,=—

R
1 =— d
nfs=—p~ an

1
lanV:‘j_ - % —=

The individual enthalpy and entropy contributions can be obtained from rela-
tionships proposed by Flory and coworkers [24,25] as given below,

AHmzxxCx<1 l>+xzcz<i 1>+-’61C102%12

RT T, \s, ¥ T, \5, 7 VT, P*

9)
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and

AS®

= ~3|:{x1C11n(\71”3—1)(\7”3——1)_1}

+{x2C21n(\72”3 — 13— 1)-1}] (10)

The various terms that appear in Egs. (9) and (10) are derived by following the Flory
formalism. The reduced volumes of the mixture and the pure components, v, and v are
calculated by use of experimental densities and thermal expansion coefficients. The
parameter C, for a given pure component is defined as,

Ci=Pr VHRTH™! (11)

The characteristic parameters needed in the above calculations and the interaction
parameter y, , estimated from a fit of experimental equimolar excess volume data were
reported in our earlier paper [14].

The individual values of y, 7, and 54 at an equimolar fraction of MMA and their
combinations together with the ideal viscosities, #,,, for the various binary mixtures are
presented in Table 5. It is found that the combination #,,n, 55 is close to the
experimental viscosities in MMA-n-hexane and MMA-n-heptane mixtures. This
indicates that both the free volume changes upon mixing, unlike the molecular and
entropy changes due to the dispersing interactions, are dominant in MM A-aliphatic
hydrocarbon mixtures. Similarly both #,,#5 and 5,,,n5 were observed to be close to
the experimental viscosities for MMA-carbon tetrachloride mixtures, whereas for
MMA-—chlorobenzene mixtures, where specific interactions between the ester and Cl
groupings through O-ClI linkages, are expected to be present in addition to the
dispersing interactions, the experimental viscosities were best represented by combina-
tions of n,,n, and n,,1,. However it is interesting to note that the experimental
viscosities of MM A-o-dichlorobenzene mixtures was best expressed by the combined
product 5,,1, 1, whereas the individual #,,n, and n,,n, were found to be either too
high or too low in comparison with the experimental viscosities. This it can be
envisaged that the bulky Cl groupsin the 1,2 position of o-dichlorobenzene weaken the
specific interactions in these mixtures.
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