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Abstract 

A consistent description of temperature modulated differential scanning calorimeter (TM- 
DSC) curves based on irreversible thermodynamics is presented within the scope of the validity 
of the linear response approximation. Both time-independent and time-dependent processes are 
included. For time-dependent (linear) processes, the heat flow rate is connected to the convol- 
ution integral. This results in a generalized heat capacity which is frequency dependent and, on 
principle, a complex function of it. 
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1. Introduction 

In 1992, conventional DSC was extended with temperature modulation (TM-DSC)  
by Reading and coworkers [-1-4]. With the introduction of this technique, DSC was 
available for new applications. In our opinion, the extension of the experimental 
parameters with the frequency is especially important.  

The new technique consists of the superposition of the conventional temperature 
program of a DSC with a periodical temperature change and the measurement of the 
resulting heat flow rate. For data evaluation, two different procedures are known: 
separation of the "reversing" and "non- reversing" components [ 1], and the determina- 
tion of "storage" and "loss" heat capacity [5,6]. At present, problems exist due to the 
interpretation of some results. The reason for this is that up until now, there has been no 
self-consistent theory for the evaluation of the measured curves, that is based on the 
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general principles of thermodynamics. A first attempt is published in Ref. [5], but 
a direct connection to the laws of thermodynamics is lacking and the representation is 
relatively general. This may have led to some misunderstandings [7]. Here we will give 
a more detailed representaion of the theoretical background of TM-DSC measure- 
ments. However, we have to distinguish between time-dependent and time-indepen- 
dent processes or transitions of the sample and, in addition, those that react to rather 
small periodical temperature changes and those where the influence is so small that it 
cannot be measured. The latter are often processes which are thermally activated, but 
take place far from equilibrium. As a result, we are able to describe essential experimen- 
tal results from both conventional DSC and TM-DSC measurements. 

2. Theoretical background 

In the case of TM-DSC,  the sample response, i.e. the heat flow rate, is measured after 
a periodical stimulation, i.e. a temperature change. Such measurements are especially 
interesting if the measured process is time dependent and the characterstic intrinsic 
time z is of the same order of magnitude as the period tp (with z ~ tJ2~) of the 
temperature change. To get the maximum amount of information, the measurements 
should be carried out in as wide as possible frequency and temperature ranges. The 
influence of heat transfer (as one time-dependent phenomenon) must not be neglected; 
consequently heat transfer effects require a special procedure of correction and 
calibration which has been published elsewhere [8,9]. For simplification, we shall 
concentrate here on the thermal events of the sample. The measured curves are, strictly 
speaking, regarded as having been corrected due to heat transfer influences (de- 
smeared). 

This attempt at a consistent description of the measured curves is based on general 
principles of thermodynamics. The definition of new ideas or concepts shall, if possible, 
be avoided. A general theory of TM-DSC must be non-linear, and thus very complex. 
A more simple approximation is a linear theory. Special cases of this are the time- 
independent approach (reversible thermodynamics) and the "classical" description of 
time-dependent processes (kinetics) in conventional DSCs. In this paper we focus on 
the linear case. 

2.1. TM-DSC and reversible thermodynamics 

Reversible thermodynamics is, by definition, not able to describe time-dependent 
processes. It characterizes any system by thermodynamic potentials, which are func- 
tions of temperature, pressure and the other variables of state. None of these quantities 
is thought to be a function of time, and all the processes are assumed to be very slow. In 
this case the second law of thermodynamics reads 

d S -  6Q T (1) 

where dS is the entropy change and 6Q the exchanged heat. 
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With the degree of reaction 7 (as an additional variable), the total differential of 
enthalpy reads 

d H =  \ @p /r . ,  + -ff~ p. dT  + \ @a /p,T (2) 

If we formally define a generalized (isobaric) heat capacity C as 

,3, C(T)= ~ p 

we get from Eq.(2) at constant pressure 

d~ 
C(T) = Cp(T) + H ~  (4) 

where Cp is the usual heat capacity at constant pressure and H~ the partial enthalpy of 
reaction (which is practically temperature-independent.). We prefer this representation, 
because in DSC practice the result of a measurement is often normalized to values in 
units of a specific heat capacity (J g-  1 K - 1). The measured enthalpy change then reads 

dH = C(T)d T + Hrd~(T) (5) 

This equation is valid for temperature changes d T(t) too, if the reaction is so fast that 
the system is always in equilibrium in relation to the temperature change; in other 
words, the measured signal is in phase with dT(t). For DSC, this means that there must 
not be any smearing of the measured signal by heat transport and reaction kinetics. 

Under these circumstances, the heat flow rate into the sample, i.e. the DSC curve with 
the empty pan curve subtracted, is 

+ r ~ ) ~ ( t )  = Cp(T)fl(t) + ~r(T(t)) (6) 

where ~r is the heat flow of the reaction 

du dT 
¢~r = Hr dT  dt (7) 

and/~ is the rate of temperature change 

d T  
/~(t) = d~- (8) 

which in the case of TM-DSC reads 

/3(t) =/~o + C°o T~c°s COot (9) 

with /~o the underlying heating rate, T a the temperature amplitude and 
COo = 2=/tp = 21rfo(f o the frequency, tp the period). 
Inserting Eq. (9) into Eq. (6) gives the TM-DSC curve for such processes. The result 
depends on the temperature dependence of a, which may be written as 

~(T) = ~o + a, T + b~ T 2 + ... (10) 
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If the temperature interval of the modulation (T-- T a to T + Ta) is small enough, we 
start from the linear approximation of Eq. (9) and neglect the change in O r for the 
periodic part of the signal (T a can always be chosen so small that a~T a ~ 0). Then it 
follows from Eq. (6) that 

O(t) = (Cp(Tu)flo + ~r(T,)) + Cp(T,)CO o Ta cos COot (11) 

with T, = T o + fl0 t. 
We emphasize that this equation is only valid for sufficiently small temperature 

amplitudes T a. The terms in parentheses reproduce the conventional DSC curve. The 
additional periodic component of the signal is in phase with the temperature change 
rate ft. 
In the case of larger temperature amplitudes, the product a~T~ can not be neglected and 
we get 

O(t) =(Cp(Tu)flo + tI)r(ru) ) + (Cv(T,) + Hra~)CO o r a cos (COo t) (12) 

For even larger temperature amplitudes Ta, the quadratic term in Eq. (10) must also be 
included 

Oft) =(Cp(Tu)flo + O~(T.)) + (Cp(T.) + H,a~)CO o T~ cos (COo t) 

+ H~b~CO o T 2 sin (2 coot ) (13) 

In this case, higher harmonics appear in the periodic component of the measured 
signal. Eqs. (12) or (13) are valid even for small temperature amplitudes and large 
underlying heating rates where the relevant temperature interval becomes ( T -  T a to 
T+ T a+flOtp). 

From this consideration it follows that the measurements should be carried out 
under conditions such that Eq. (11) is valid, only in this case Cp can be determined from 
the periodic part, and an easy separation of the underlaying part into the Cp component 
and the reaction enthalpy is possible. This is true for sufficiently low temperature 
amplitudes and thermal events which do not explicitly depend on time. In this case all 
properties determined from the periodic component are frequency-independent. Phase 
shifts, if found in measurements, cannot be interpreted within the scope of this 
approach. 

The separation of the measured signal into reaction heat flow and underlying Cp 
change is possible in a similar way for those time-dependent (kinetically hindered) 
reactions which have a weak temperature dependence. The influence of the underlying 
heating rate and the temperature amplitude of the periodic part on the measured curve 
are the same as above. One example for such a reaction is the "cold crystallization" of 
PET [10]. Even in this case we find non-linear distortions in the measured signal if we 
use too large a temperature amplitude or too large as underlying heating rate [i  1]. 

However, frequency-dependent processes, e.g. the glass transition [11,12] and the 
melting of polymers, as first experimental results suggest [ 11,13], can not be interpreted 
in this manner. For this type of time-dependent function, we must use another 
approach. 
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2.2 TM -DSC signal in the case of time-dependent processes 

If the kinetics of the reaction cannot be neglected, the process is explicitly time- 
dependent and the properties used to describe such processes are function of time. The 
theoretical background for this is irreversible thermodynamics rather than equilibrium 
thermodynamics. We shall discuss linear processes below; from the theoretical point of 
view, these are the simplest time-dependent processes. (This includes such processes, 
which although not linear, can be linearized under special conditions.) The results 
presented in Section 2.1 are then a special case of this description. 

2.2.1. On the thermodynamics of time-dependent processes 
The discussion of linear time-dependent processes is presented in detail in textbooks 

of irreversible thermodynamics [14-16]. 
A time-dependent process is always a non-equilibrium process. The second law of 

thermodynamics in this case reads 

~Q 
d S > ~ -  with d S = d e S + d i S  (14) 

where deS is the entropy change of the system due to exchange of heat and dis the 
additional internal entropy change due to the irreversible processes. For a description 
ofd i S we have to introduce a time-dependent macroscopic variable ((t) which describes 
the distance of the system from equilibrium as an additional internal degree of freedom 
[16]. The total differential of enthalpy in this case reads 

/~H~ 
+ ~ ) p  d + ~ ) T p d ( ( t )  (15) 

\ c p / r z  , , 

The variable a (degree of reaction) of thermally activated reactions may be formally 
treated as one ~ and the equilibrium reaction of Section 2.1 is then a special case of no 
time dependence.).The generalized heat capacity C at constant pressure (cf. Eq. (3) is 
now 

- ~  p= - ~  p z + \ O ( , J p r \  dT  (16) 

which can be written as 

C(T, t) = Cst(T ) + Cdyn(T , t) (17) 

The toal heat capacity is the sum of a static (time-independent) heat capacity, Cst, at 
~a certain (, and a dynamic (time-dependent)heat capacity, Cdy ,. The latter corresponds 
to the heat flow of the process of the system from a non-equilibrium to an equilibrium 
state (characterized by the change in ~). 

In the case of processes far from the equilibrium, ~(t)is barely influenced by small 
temperature changes d T (from the periodic component) and the description of Section 
2.1 may be used. The new additional variable ~(t) provides special theories for the 
process in question, e.g. a special theory for the transition (or reaction), or a free volume 
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theory for the glass transition. If several independent processes occur in the sample, we 
have one additional variable (n(t) for each process 

Cdy.(T, t)= ~ .  p , r , : . . . kdT jp ,~ . . o  

A special situation occurs if two processes take place, one close to and the other far from 
equilibrium; Cdy . reads 

C d y n ( t  ) = Cd(t ) d- A; d((t) (19) 
dT 

where C d is the time-dependent part of the dynamic heat capacity describing the linear 
process (close to equilibrium) and the second term describes the far-from-equilibrium 
reaction characterized by ((t) and A; with 

p,T 

This quantity is assumed to be independent of small temperature changes and does 
not react on temperature modulation, to a first approximation. 

First we look at linfar processes close to equilibrium characterized by C a. In this case 
the dynamic heat capacity reads 

C d y  n = C d (21) 

For such processes, the time course of the enthalpy change depends on the time the 
sample has been at another temperature T t before. To explain the connection, we 
describe the reaction of the system on small step-like temperature changes AT for 
a quasi-isothermal process. If such a temperature change occurs at the moment t o, the 
enthalpy change may be written as 

AH(t, T) = C s t ( T ) O ( t -  to)A T + C d ( t  - -  to)®(t- to)A T (22) 

where ® is the "step function". If a step change is repeated at every t n = t o + n a t  
(n = 0,1,2,...), the respective enthalpy change depends on the time the sample was at the 
previous temperature and the total change is the superposition of all the individual 
responses 

AH(t) = ~ (Cst(T) + Cd(t - -  tn))A T ® ( t  - t,) = ~ C(T ,  t - t,)A T(tn) (23) 
n n 

Integration and approaching At-~0 yields the convolution integral 

f f o A H ( t ) d t = l i m ~ C ( T ' t - t ~ ) A T ( t " ) A t = f t o  C ( T ' t - t ' ) A T ( t ' ) d t ' ~ o  . (24) 

Fom that it follows that 

df A H ( T ,  t) = d t  C(T ,  t - t ' )A r(t')d t' (25) 
0 

This relationship is valid for non-isothermal experiments as well. 
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Only in the case of time-independent processes or processes that do not react on 
temperature modulation, does the convolution integral transform into the usual 
product corresponding to Eq. (5). If processes far from equilibrium are included, the 
total generalized heat capacity reads (Eqs. (17), (19)) 

d~ (26) C : Cst  -~- Cdy n : Cst -[- C d + A; d ~  

and Eq. (25) may be written 

A H ( t ) = f f o C ( t - t ' ) f l ( t ' ) d t ' = C ~ , ( T ) A T ( t ) + f f o C d y , ( t - t ' ) f l ( t ' ) d t '  

= C~t(T)AT(t ) + - t ' )Ar( t ' )d t '  (27) 

where day" is the same as C, because Cs, = 0. (The dots denote the first derivation with 
time). For the heat flow 

d H  f l  dt =*( t )  = Cst(T)fl(t ) + C(t - t')fl(t')dt' (28) 

If the ~(t) function is not influenced by the small modulation temperature change AT, or 
if the process in question is much slower or faster than AT(t), the respective term can be 
integrated separately and we get 

ftoCd(t • (t) = Qt(r) f l ( t )  + ~;(t) + - t')fl(t')dt' (29) 

where @; is that part of the heat flow rate which is caused by the process characterized 
by ff but not influenced by the small temperature modulation 

(I)~(t) = A~ d~(t) (30) 
dt 

The first two terms of Eq. (29) correspond to the result in the case of equilibrium 
(Eq. (6)) but are now also valid for slow irreversible processes far from equilibrium. This 
part of Eq. (29) is described in Refs. [1-4,7]. The third term must be included for all 
other (linear) time-dependent processes. 

2.2.2. The underlying component of  the T M - D S C  curves 
The underlying part of the signal results from inserting the corresponding part of the 

temperature program 

T~(t) = T O + flo t (31) 

into Eq. (27), or the constant heating rate flo into Eq. (28) 

@u(t, T) = C~t(T)fl o + d~;(t, T) + Cd(t , r ) f l  o 

= (Cst(T) + A; d~(t' T) ) d-----T~ + Ca(t' T) flo = C(t, T)fl o (32) 
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The result of Eq. (32), where the underlying heat flow rate is described as the product 
of a generalized heat capacity and the underlying heating rate, is only formal. For 
known functions of ((.T, t) and Cd(T, t), the generalized heat capacity depends on the 
scanning rate/30 

c~u(t ) = Cp(t, T)fl o (33) 

This is well known from chemical reactions, glass transition, recrystallization or 
melting which gives different results at different scanning rates (disregarding the 
additional effects due to the thermal inertia). Eq. (33) describes, of course, conventional 
DSC curves as well. 

2.2.3. The periodic component of  the T M - D S C  curves 
In the case of TM-DSC,  the constant heating rate is superimposed with a periodic 

temperature change. The periodic part is 

Tp(t) = T a sin co o t (34) 

with T a the temperature amplitude and coo the angular frequency. For the correspond- 
ing part of the heating rate, it follows that 

tip(t) = 6% T a cos coo t (35) 

For not too large scanning rates/3 o, the measured signal q) can be separated into the 
underlying component q), (corresponding to the conventional DSC signal) and the 
periodic component ~p. The underlying component ~ ,  is given in Eqs. (32) and (33). To 
calculate the periodic component ~p,/3p of Eq. (35) has to be inserted instead of/3 into 
Eq. (28) 

f'o~(t - (I)p(t) = Cst/3p(t ) + t')/3p(t')dt' ( 3 6 )  

To solve the convolution integral in this equation, it is useful to apply the Fourier 
transform 

O(co)=~(O(t))-ff,~(t)e-'°"dt (37) 

q)(co)ei°"dco (38) q , ( t )  = ~ - -  l ( o ( c o ) )  _ ~ o 

The convolution integral transforms into a simple product in Fourier space. As q~¢(cf. 
Eq. (30)) is usually very weakly influenced by a small temperature amplitude, it makes 
no contribution to the periodic component of the signal (cf. Section 2.1) and Eq. (36) 
reads, in Fourier space 

(1)p((.O) : Cst(T)flp(co ) : -  Cd(co) /3p(co  ) (39) 
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The dynamic part of the heat capacity Cd(co) is defined by 

Cd(co)= f[ Cd(t)e -i°'tdt (40) 

Because Ca(t),  by definition, is a real function, Cd(CO ) must be complex 

Ca(co ) = C'd(co ) - - iC~(co)  (41) 

(The unusual negative definition of the imaginary part follows from the principle of 
causality: the reaction of the system on any temperature change can only occur later in 
time.) 

Inserting Eqs. (35) and (41) into Eq. (39) yields for the periodic component 

~p(co) = coo Ta((Cd(co) -- iC"(co))nD(co -- COo) + Cst( T ) n b ( c o  - COo) ) 

= COO Ta(~Za(co - -  coo)(Cd(coo) + Cst(T)) - in6(co - coo)C"(coo)) 

= coo Ta0Za(co - -  coo) C'(coo) - iTza(co - coo) C"(coo)) (42) 

where 6(co - coo) is the Dirac function. The heat capacity C(co) is thus 

C(co) = C' (co) - i C" (co) = (Cst + C~(co)) - i C d(CO) (43) 

We designate the real part C' as "storage heat capacity" and the imaginary part C" as 
"loss heat capacity". As can be seen, time-dependent processes contribute to the 
imaginary part. The Fourier retransform yields the measured periodic component 

Op(t) = COO Ta(C'(coo) COS coo t - -  C"(coo) sin coo t) 

= coo Ta l f ( coo) l cos  (coot - ¢ )  (44) 

The modulus of the compex heat capacity reads 

IC(co, T)[ = x/C'(co, T) 2 + C"(co, T) 2 (45) 

One result of this calculation is that the amplitude of the periodic component is 
a function of the frequency. This is in agreement with experimental results from the 
glass transition process and polymer melting [-12-14]. 

The complete measured signal is the sum of Eqs. (28) and (44). The storage heat 
capacity C' and the loss heat capacity C" can be determined from it. In Section 2.1, we 
discussed the time-independent heat capacity C. This propery contains information 
related to the degrees of freedom of the molecular motions. This information is included 
in the real part C' of the complex heat capacity in the case of time-dependent processes. 
It may be frequency-dependent. To interpret the loss heat capacity C", we have to 
discuss the generalized work of dissipation Waiss which is connected to the entropy 
change diS (Eq. (14)) 

dWdiss = T d lS  (46) 

It can be shown that 

Waiss(coo) = ~ Ta C"(coo) (47) 
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So the loss heat capacity is proportional to the work of dissipation and thus connected 
to the entropy production diS. In the case of glass transition, for example, this entropy 
change is connected to the influence of the specific cooperative movements in the liquid 
on the heat flow at the given temperature and frequency (see Refs. [5,12]). Finally, we 
consider the toal measuring signal of an TM-DSC. With the underlying component 
from Eq. (33) and the periodic component from Eq. (44), for the total heat flow rate we 
get 

• (t) = ((Cst(T) + Cd(T u, t, flo))flo + dP¢(Tu, t, flo)) 

+ Wo Tal C(T., ~oo)lcos (Wot - q(Tu, ~o)) 

= Ct~o + ¢Oo Talflcos (¢Oot- go) (48) 

Time-dependent reactions far from equilibrium influence only the underlying compo- 
nent. The static heat capacity in the conventional DSC curve which is usually covered 
with the reaction enthalpy can be estimated from the periodic component. If the result 
is frequency-independent, it can be used as a baseline for the reaction peak in the 
underlying component. Cold crystallization and curing reactions are examples for such 
reactions. The essential phenomena of such processes, however, have already been 
described in Eqs. (11)-(13). It is possible to calculate the shift of the peak temperature 
with respect to the underlying scanning rate of such reactions. 

3. Conclusion 

A description of TM-DSC curves by means of thermodynamics is advantageous for 
a more certain interpretation of the experimental results. The introduction of addi- 
tional internal variables is necessary. Knowledge of a concrete theory for the inves- 
tigated thermal event and thus the ( function makes an experimental check of this 
theory possible. 

Furthermore, we can show that by using reversible thermodynamics for the descrip- 
tion of the measured curves, experimental results, as the influence of the temperature 
amplitude on the measured curve in the cold crystallization region [10,11] or non- 
linearities in the transition region [17], can be described. Temperature-dependent 
functions are, however, necessary to understand the separation of the measured curve 
into the conventional heat capacity and a part connected with the reaction enthalpy 
change. If the reactions, however, are frequency-dependent, the investigated results are 
only describable by means of (time-dependent) irreversible thermodynamics. The 
simplest way to succeed is to use the linear response theory. In this case the enthalpy 
change can be described as the convolution integral of the generalized heat capacity 
and the temperature change rate. The behaviour of the sample is reflected in the storage 
heat capacity C' and the loss heat capacity C". The latter is connected to the entropy 
production in the system. This approach is valid for the calculation of both the 
conventional DSC and the TM-DSC signal. The description of time-independent 
reactions is a special case of this linear response approach. 



J.E.K. Schawe, G.W.H. HShne/Thermochimica Acta 287 (1996) 213-223 223 

References 

[1] M. Reading, D. Elliott and V.L. Hill, J. Therm. Anal., 40 (1993) 949. 
[2] P.S. Gill, S.R. Sauerbrunn and M. Reading, J. Therm. Anal., 40 (1993) 931. 
[3] M. Reading, Trends Polym. Sci., 1 (1993) 248. 
[4] M. reading, A. Luget and R. Wilson, Thermochim. Acta, 238 (1994) 295. 
[5] J.E.K. Schawe, Thermochim. Acta, 261 (1995) 183. 
[6] J.E.K. Schawe, Thermochim. Acta, 260 (1995) 1. 
[7] M. Reading, personal communication. 
[8] J.E.K. Schawe, The influence of heat transfer on temperature modulated DSC measurements, 

Thermochim. Acta, submitted. 
[9] J.E.K. Schawe, M. Margulies and B. Cassel, in preparation. 

[10] J.E.K. Schawe and G.W.H. H6hne, J. Therm. Anal., 46 (1996) 893. 
[11] J.E.K. Schawe, Thermochim. Acta, 271 (1996) 127. 
[12] A. Hensel, J. Dobbertin, J.E.K. Schawe, A. Boller and C. Schick, J. Therm. Anal., 46 (1996) 1935. 
[13] S.R. Sauerbrunn, P.S. Gill and J.A. Foreman, 23rd NATAS Conference Proceedings, Toronto, 1994, 

p.51. 
[14] I. Prigogine, Introduction of Thermodynamics of Irreversible Processes, Wiley, New York, 1967. 
[15] R. Haase, Thermodynamics of Irreversible processes, Addison-Wesley Publishing Company, Read- 

ing,1969. 
[16] H.-W. Kammer and K. Schwabe, Einf/.ihrung in die Thermodynamik irreversibler Prozesse, Akademie 

Verlag, Berlin, 1984. 
[17] 1. Hatta, H. Ichikawa and M. Todoki, Thermochim. Acta, 267 (1995) 83. 


