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Abstract 

A method to evaluate the temperature dependence of the reaction rate from the variation of the 
amount reacted at the end of a number of experiments at various scan rates is deduced from the 
fundamental equations of DTA. The method was applied to the synthesis of P~i~ikkrnenite and 
gave parameters in good agreement with those determined for the same reaction by using other 
experimental data and the differential method of Sharp and Wentworth. Furthermore, an 
empirical procedure previously used to get the same results is compared with the present 
elaboration. The parameters evaluated are reported and discussed. 

Keywords: Conversion and scan rate; Kinetic parameters; P~i~ikk6nenite; Thermal methods; 
Theoretical analysis 

1. Introduction 

When the rate of transformation does not increase rapidly enough with temperature 
(low activation energy), it may happen, unless the scan rate g is sufficiently low, that the 
time employed to cross a certain temperature interval is insufficient to complete the 
transformation. This is what happened in a study [1] of the pyrosynthesis of P/i~ik- 
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k6nenite, Sb2AsS2, from stibnite, Sb2S 3, and stibarsen, SbzAs 3 

2 Sb2S 3 _1_ ½Sb2As 3 ~ Sb2AsS2, (1) 

where the amount of stibnite which reacted (before its melting) in the overall transform- 
ation decreased upon increasing the scan rate. In these instances, it appears logical that 
there exists (perhaps in a restricted range of values of g, the reaction being complete 
below a certain g and not taking place measurably above another higher g) a propor- 
tionality between the amount transformed and the time spent at a certain temperature, 
or, equivalently, between reaction rate and scan speed. For transformations reaching 
completion at every g, this proportionality law has already been assessed [2,3]. When 
otherwise the transformation is incomplete, as in the present case, and the degree of 
conversion changes with g, the problem of evaluating the temperature dependence of 
the rate from such data may arise. Here we develop some considerations aiming at the 
solution of this problem. We also suggest a possible justification for an empirical 
approach previously used for this purpose [1]. Such a procedure consisted in evaluat- 
ing the overall conversion rates at various gk, simply dividing the amount transformed 
by the time spent to scan the whole temperature interval with rate g. Successively, the 
corresponding g-dependent temperatures T for the construction of Arrhenius-like 
diagrams were calculated for each g by adding g times s to the initial temperature T~, 
s being an arbitrarily chosen time interval, constrained only by the inequality 
T i + gs < Tf (the final temperature at which (1) is completed). The diagrams showed 
good linearity (R > 0.95), and the parameters obtained this way compared well with the 
"kinetic" ones evaluated by means of a differential method [4] in which the specific 
reaction rate [ f ( ~ ) ] - l d ~ / d T  is calculated using for f(~) the form proposed by 
Ginstling and Brounshtein (see Ref. [5]). 

We stress here that since the Arrhenius coefficients deduced by means of the 
empirical procedure are independent of the mechanism of the reaction, in the present 
report we do not use the usual term "kinetic parameters" for them. 

2. Experimental 

The relevant data on the pyrosynthesis of P~/ikk6nenite were collected by a Netzsch 
STA 409 quantitative DTA apparatus, the reactants being sealed in stoichiometric 
amounts into the ad hoc quartz vials also used in previous experiments [6]. The use of 
such vessels significantly reduces the sensitivity of our apparatus; however the choice of 
these vessels is compulsory for the thermal analysis of these systems. Scan rates g in the 
range 0.2-1.5°C min- 1 were used. For further experimental details, see Ref. [1]. 

3. Results and discussion 

3.1. Data 

A set of three representative thermal curves of the pyrosynthesis of P~fikk6nenite 
recorded at different g values is reported in Fig. 1. The size of the peak corresponding to 
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Fig. 1. Selected thermograms showing the variation of the melting peak of Sb2S 3 with g at ~ 510°C and the 
fusion of Sb2AsS 2 at m 530°C. Indicated points were selected from a series of readings taken from a strip 
chart. 

the melt ing of st ibnite at 510°C is seen to increase with g, indicat ing a decrease in the 
a m o u n t  of st ibnite consumed dur ing  the reaction. F r o m  the know n  value of the heat of 

fusion of stibnite, it was then possible to determine the overall fractional a moun t s  of 

st ibnite unreacted at various g (see in Table  1), i.e. the data  that led to the above 
described empirical in terpre ta t ion and to the present work. 

Table 1 
The change in curve parameters with increasing g 

g/Of min -~ TJ°C TJ °C 0 

0.2 100 460 0 
0.3 75 455 0 
0.4 130 440 0.018 
0.5 80 450 0.035 
0.7 115 435 0.083 
0.8 102 457 0.0904 
0.9 110 440 0.0999 
1.2 137 467 0.16 
1.3 140 460 0.17 
1.4 120 450 0.18 
1.5 125 450 0.23 
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3.2. Theory 

Let us start by defining some useful quantities. To simplify notations within the 
analysis of reaction (1), we denote the reactants Sb2S 3 and Sb2As 3 by "A" and "B" 
respectively and the product Sb2AsS 2 by "C". 

We also denote by mx(t, g) the value of the mass of the component X at time t when 
the heating process takes place with constant heating rate g = (d T/d t). Then, because of 
the principle of mass conservation and of the stoichiometric ratio 7, we have 

mA(t , g) + mn(t, g) + mc(t, g) = mA(0, g) + mB(0, g) = M, for all t > 0 (2) 

mA(t, g) 
mB(t , g ) - ? ,  for all t > O  (3) 

The specific values of the above constants used in our experiments are M = 1 mole of 
C and 7 = 2. The molecular weight of C is equal to 382.542. 

As a consequence of (2) and (3), we get 

m c ( t , g ) = M -  1+ mA(t,O), for all t_>0 (4) 

Eq. (4) holds in particular for t = tf(g), the instant in which the reaction A + B --* C 
virtually ends (no thermal activity can be detected by the instrument). Since all 
experiments are performed at constant heating rate, we have 

r -  r o 
t(T, g) = - -  

g 

where T O is the initial temperature. 
However, our observations show that the temperatures T~ at which the reaction 

starts show some dependence on the heating rate g (see Table 1). For  the temperature 
Tp, at which the reaction reaches its peak, such a dependence is not evident, although it 
should be expected in consideration of the Arrhenius theory. The small range of g we 
considered, together with the experimental procedure used (silica vials), can account for 
the above. Furthermore, the temperature Tf, at which the reaction ends, seems to be 
practically independent of g and equal to - 480°C. 

Our data are rather noisy and a definite trend is hard to identify, although there 
seems to be a tendency of T~ to increase with g. We decided, in the spirit of a more 
general approach, to point out this expected dependence by writing, from now on, Ti(g), 
Tp(g) and Tf(g) explicitly. Therefore, we have ti(g ) = t (T i (g), g) and similarly for tf(g). If 
we now write relationship (4) at t = tf(g) we get 

mc(tf(g),g)= M - - ( 1  +~)mA(tf(g),g ) (5) 

Experiments show that mA(tf(g), g) increases with g; therefore Eq. (5) can be used to 
measure the "inhibitory effect" on the main reaction when a higher value of g is chosen. 
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Indeed it should be expected that for very high values of g, mA(tf(g), g) will remain 
practically equal to its initial value mA(0 ), while for very small values of g, the whole 
mass mA(0 ) reacts with mB(0 ) to form mc(tf(g ), g). In other words, we introduce an 
"inefficiency" function ~b(g) and write 

yM 
mA(tf(g ), g) = mA(0)~k(g) - - - - ~  ~,(g) (6) 

where ~(g) can be identified by a "curve fitting" analysis and has to satisfy following 
limit conditions 

0 _< ¢(g) ___ 1 

The relevant data are shown in Table 1. As shown in Fig. 2, ~ is practically linear for 
relatively small values of g. 

Eq. (5) can also be used to measure both the specific and molar enthalpy of the 
process. Indeed we recall (see Refs. [7-9]) that if d H is the heat generated in the reacting 
sample during the interval of time d t, then 

d H  = C'pd(EA T ] f -  [A TJi ) + K(T)A Tdt  (7) 

Here K denotes the instrument calibration factor (see Fig. 3), A T = T~ - T r the tem- 
perature gap between the sample and the reference, and C'p the heat capacity of the 
empty reference and sample holders. (From now on the subscript "s" and "r" represent 

, . . . , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . 

,x* 
~20 
"~ -4.62406 + 17.2377 x 

15 R=0. 992 

1.1 

0 . . . . .  A . . . .  
0 0.2 0.4 0.6 0.8 1 1.2 1.4 
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Fig. 2. The percentage of unreacted mass ofA (stibnite) vs. the heating rate. Data refer to the measured area 
corresponding to the melting of A; this occurs at ~ 510°C. 
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Fig. 3. Instrument calibration factor K(T) in the temperature range used for experimental analysis. Points 
correspond to the instrument response when calibration elements or compounds, whose melting points and 
enthalphy changes are well known, are used. Tests performed at scan speeds of 0.2 and 1.0°C min- 1 show 
essentially the same response. 

"sample"  and "reference" respectively, while "i" and 'T '  s tand for "initial" and  "final"). 
In our  experiments,  since T(t, g) = gt  + T o, the way K changes with t ime depends on the 
heat ing rate 9; the functions A Ta l so  show a strict dependence on g (see Fig. 6). If  we 
denote, for simplicity, A T b y  h(t, 9), an integrat ion with respect to t ime of Eq. (7) yields 

f t r l g )  

A H  = C',(hf(g) - hi(g)) + K(T(t ,  g))h(t, g)dt (8) 
dt i (g)  

where hf(g) = h(tf(9), 9) and similarly for hi(g ). In our  experiments,  we have hf(g) ~- hi(0); 
therefore, Eq. (8) is rewrit ten simply as 

C 
t f ( g )  

A H  = K(T(t ,  g))h(t, 9)dt (9) 
J t~(g) 

However  (see Ref. I-9], p. 164, Eq. (15)), one also has 

~ (Ts)f 

A H  =mc(tf(g), 9) Cp(T~)d T~ (10) 
d(Ts)i  

where Cp(T~) is the heat  capaci ty  of the sample  and, because of Eqs. (5) and (6) 

mc(tf(9), g) = M(1 -- ~b(9)) (11) 
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Therefore  the enthalpic change related with the process A + B ~ C, appears  to 
depend on g. Exper imenta l  da ta  allow one to calculate, directly f rom Eq. (9), the 
enthalpic  change of the sample  and, dividing the result by mc(tf(9), g), the specific 
en tha lpy  var ia t ion as well (see Table  2). 

Fig. 4 shows a non-l inear  fitting curve of the pairs (9, AHsample). We obta ined  a rather  
high value of the regression coefficient (R = 0.97) by using powers  of 1/9: the fitting 
function turned out  to be 

2.12 1.46 0.48 0.05 
AH(9) = - 0.63 q- - - g  g ~  + g ~  g4 (12) 

By means  of Eqs. (10) and (11), we can also calulate the mean  value (~p of Cp(T) over  the 
whole t empera tu re  range. Indeed we have 

1 A H  
= C.(T~)d T~ = (13) 

Cp ~ ( r ~ ) ,  M(1-~(g) )AT~(g)  

Fig. 5 shows da ta  f rom Table  2 and a non-l inear  fitting curve of these da ta  

Cp(9) = (30 - 15/9 + 20/92 - 2.7/93) × 10 -4  (14) 

Fig. 6 shows some exper imental  thermograms;  a l though h changes considerably 
with g, it remains essentially linear before and after the peak t empera tu re  Tp(9). 
Symbolical ly this relat ionship can be expressed by 

I 0, if0 < t < ti(9) or t > tf(~) 

h(t, g) = m(9)(t - ti(9)), ifq(g) < t < tf(9) - e(g) ~ (15) 

"[m(g)(tf(9) -- e ( g ) -  ti(g)) (tf~gj_~--'-' t)," iftf(9 ) _ e(9) < t < tf(9) 
etg~ 

Table 2 
Enthalpy change and specific enthalpy variation with change in O 

o/°C min- 1 AHsample/k J AHsp¢c/kJ g- 1 ~,/J g- ~ °C- 

0.2 1.851 0.00483 0.01273 
0.3 1.734 0.00453 0.01119 
0.4 0.904 0.0024 0.00687 
0.5 1.012 0.00274 0.00685 
0.7 0.344 0.00095 0.00261 
0.8 0.752 0.00214 0.00567 
0.9 0.384 0.00111 0.00301 
1.2 0.461 0.00143 0.00418 
1.3 0.364 0.00114 0.00318 
1.4 0.268 0.000858 0.00237 
1.5 0.238 0.00077 0.00228 
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Fig. 4. Enthalpy change of the sample vs. g. Calculated points and a non-linear fitting curve are shown. 
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Fig. 5. Mean specific heat change of the sample vs. 9. Calculated points and a non-linear fitting curve are 
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Table 3 
Experimental data 

9/°C min - ] Ea/kJ mol - 1 In A A/min - i 

0.2 57.75 2.24 9.45 
0.3 50.75 1.21 3.36 
0.4 69.49 3.40 30.18 
0.5 56.09 1.39 4.05 
0.7 66.2 1.28 3.63 
0.8 55.34 1.01 2.75 
0.9 56.24 --0.01 0.98 
1.2 68.39 2.63 13.88 
1.3 69.72 2.51 12.3 
1.4 71.08 2.26 9.63 
1.5 61.47 0.36 1.44 
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Fig. 6. Thermograms corresponding to the main reaction at different rates of the heating program. 

where e(g) measures the lapse of time between tp(g)( = t(Tp(g), g)) and tf(g). It is worth 
noticing that the values of the correlation coefficient Rlat, a t  least in the range of the 
g values considered, are rather close to 1 (Table 4). 

The main point of this approach to the kinetic analysis is that we base our 
subsequent deductions upon the linearization of the key data h described by the above 
expression. Bearing in mind the table for Rut a t  all g values, we feel very confident with 
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Table 4 
Correlation coefficients, Rht, at dif- 
ferent g values 

g/°C min - 1 Rh t 

0.2 0.988833 
0.3 0.998214 
0.4 0.998634 
0.5 0.994456 
0.7 0.98121 
0.8 0.997283 
0.9 0.990119 
1.2 0.99782 
1.3 0.99743 
1.4 0.990556 
1.5 0.99233 

this idea, which, by the way, has the advantage of minimizing all possible errors related 
to the calculation of the reaction velocity by means of numerical techniques. 

We now define the fractional reaction, ~, as 

f t h(s,g)ds 
ti (g) ~(t,g)-- t~o) (16) 

h(t, groin) dt  
J ti(g) 

where groin is the lowest value ofg used in the experiments. It should be noticed that our 
data definitely indicate ftt(o)htt a]dt< ftr(o)Mt gmi,)dt for all g values. Therefore 

J t i ( g ) ' ~ Y ~  ~ p  - -  j t i ( g ) , ~  
a(tr(g),g) remains < 1 for all g values. 

We write the rate equation as 

d~ 
dt  ~of (~) (17) 

where, in the present instance, f(c0 has the form proposed by Ginstling and Broun- 
sthein for solid-state reactions based on diffusion mechanisms, i.e. 

2 
f(ct) = ~ [(1 - 00 (-1/3)- l] 1 (18) 

Indeed at all values of g used in the experiments, the above form (18) of f is the one 
which turns out to offer the best fit of the Arrhenius-like plots to our data. 

Of course, the specific reaction velocity co depends on g: we set 

Ea 
o9(t,g)=A(g)exp[ R~ ,g i ]  (19) 

where, as usual, E a denotes the activation energy (considered as a constant in the 
temperature range considered here), R the molar gas constant and A the pre-exponen- 
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tial factor. The logarithm of Eq. (19) is 

In ~o(t, 0) = In A(g) - r(t, g) 

Fig. 7 shows the pairs 

(In f 1 de'~, 1000K'~ 
\f(~) dt/I T(t, g) ] 

(calculated by using the functions (15), and Eqs. (16)-(18)), their linear fitting and their 
relevant regression coefficient. As one can see, the latter are all very close to 1. 

If the reaction takes place by a single mechanism, E a should not depend on g. Hence 
experimental data should agree with Eq. (20) in such a way that the slope remains 
practically constant while the intercept on the y-axis changes with g. This turns out to 
be suffÉciently well verified in our case: indeed our E a data do not show any correlation 
at all with g, thus showing that the oscillatory trend of E a with g is essentially due to 
instrumental noise. Indeed we see from Table 3 that Ea has a mean value of about 
62.05 4- 7.17 kJ mol-  1 to  be compared with 62.09 _+ 9 kJ mol-  1 obtained with the 
differential method [1]. 

The calculated values of A(g) are also reported: it should be considered that, since 
data are concentrated in an interval of 1000 K/T whose range is about 1 and the lower 
bound of this interval is ~ 1.5, small variations in the slope may generate significantly 
large variations in A (see also Ref. [10]). Anyway, both the low values and the 
dispersion of the data agree with the results of the kinetic analysis presented in Ref. [1]. 
The rough increase of E~ with g simulates the compensation effect [11, 12], also 
observed in Ref. [1]. 

4. Conclusions 

From experimental data on the change of the overall amount of reactant trans- 
formed during the pyrosynthesis of P/i/ikk6nenite, a method for evaluating kinetic 
parameters from such data has been developed and described. An analysis of the 
"Empirical Method" used in Ref. [1] is outlined in the Appendix. 

Appendix A. Comparison of the "Empirical Method" with the present elaboration 

A.I. The underlying idea 

Considering now the empirical procedure used in Ref. [1] to evaluate the tempera- 
ture coefficient of the rate from the overall conversion deduced by determining the 
amounts of stibnite reacted at various g, let us assume that the Arrhenius equation 
applies in the present instance and that the transformation does not change mechanism 
with g. Then for the values of the rate constant at any temperature T(s, g) = T~ + gs, we 
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can write 

I - 7 -  E a 
k(T(s, g))= Aexp Ll~S,g'AIR-~r--- t (A1) 

where A and E a are constants and s an arbitrary time interval. The empirical procedure 
used in Ref. [1] may be justified by considering the natural logarithm of Eq. (A1) when 
T(s, g) can be reached in two different ways. Indeed in a variable temperature 
experiment, beginning at T~ and ending at Tf, any intermediate temperature T (and 
hence a defined value of the rate constant) can be reached either changing g for a given 
s or vice versa. The amount transformed "at" a certain temperature is proportional to 
the time spent in an infinitesimal temperature range centred at T,, i.e. 1/g, so that the 
lower the scan rate the higher the amouht transformed. However, using the two 
different ways to reach T, the fraction transformed "up to" T will not be the same, thus 
giving different values of f (a)  and hence of the rate of transformation. Anyway, in 
a certain interval of temperature the rate constant k (T) will repeat the same set of values 
at each g; therefore the overall amount transformed will depend only upon 1/g, and we 
can evaluate a rate of transformation averaged over the temperature interval by 
dividing the total amount transformed by the time (Tf - T.,)/g. If we consider a tempera- 
ture T, the amount transformed up to that temperature will likewise depend upon 
( T -  Ti)/9. Now if we take the arbitrary time interval s, the temperature reached after 
s units of time will be T = T~ + 9s. The amounts transformed up to the various T's, 
depending only on 1/9, will be in the same ratios as the corresponding ones measured 
up to Tf. So, for each 9, we can relate the overall averaged rate to the corresponding 
temperature T in order to construct Arrhenius-like diagrams. 

However we must take into account that the selection of the value to be assigned to 
s is critical. Indeed, provided that Arrhenius plots, obtained from Eq. (A1) with s fixed 
and 9 variable, remain linear, the slope (and the intercept) of the line will change with 
s (because of the hyperbolicity of the temperature axis) simulating a compensation 
effect [11, 12]. For  the present data, the best empirical value ofs was approx, one tenth 
of the time taken to scan the total temperature interval at g = I°C min-  1. Up to now we 
have no rational interpretation or can even guess at the reason for this value of s. 

A.2. Theory 

The "Empirical Method" developed in Ref. [1] needs to be compared with that 
presented in the previous subsection both from the point of view of theory as well as 
from that of the data. To begin with, we recall that the average velocity of the process 
(per unit mass) is defined as the overall reacted amount (in percentage) over the reaction 
time, i.e. 

mc(tf(g)' g) (A2) 
v(g) = M At(Tf(g), g) 
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Fig. A1. Average velocity of the process vs. g. Our observations are, however, restricted within a small 
interval of 0. 

From Eq. (11), we may write ~ as 

8(g) = g(1 - ~,(g)) (A3) 
A T~(g) 

In our experiments, A T~(g) does not show a definite trend with respect to g; its mean 

value in AT ~ 367°C. If we use the mean value of A T(g) in Eq. (A3), then g has the 
pseudo-parabolic behaviour shown in Fig. A1. Although our observations are confined 
to a restricted range of values ofg and ~h(g) may not remain linear for higher values of g, 
the global behaviour shown by the graph seems to be physically significant since ~h(g) 
must tend to 1 anyway for higher g's. Indeed by increasing g one leaves less and less time 
for the reaction to be completed; thus the overall amount  is reduced to zero when the 
reaction has not even begun at the time the fusion temperature is reached 

For the sake of simplicity, throughout this section we systematically use A T instead 
of A T~(g). 

The "Empirical Method" rests upon the following fact: if we plot y(g) = log 5(g) 
versus x(s, g)= 1000 K/T(s ,  0), the pairs (x(s, g), y(g)) distribute along a straight line 
when g is allowed to vary in the range considered. As we recalled in the previous 
subsection, the slopes of these lines change with the choice of s; since the idea is to use 
the slope to determine the energy of activation of the process, the dependency on s is 
definitely an undesirable defect of the method unless some physically significant way to 
select one value of s among all possible ones is identified. 
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Fig. A2. Regression lines for the pairs {(1000 K/T), log ~} parametrized with 9; the steepest line corresponds 
to s = 30, the less steep one to s = 300 
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Fig. A3. The mean velocity ~(g): points are obtained by using Eq. (A2) and experimental data; the dashed line 
is a quadratic fit of these data; the solid line uses the formula Eq. (A3). 

The cons t ra in t  T(s, g) < Tf implies 

A T  
0 < s < - - ,  (A4) 

g 

Hence,  for the present  case, in pr inciple  s should  not  be chosen greater  than  

(A T/1.5) "-~ 244. 
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Fig. A2 shows the above straight lines for several values of s; there are three facts 
worth pointing out: 

(i) The regression coefficient R(s) increases with s, always attaining values very 
close to 1 (>  0.958). 

(ii) The straight lines meet at (Xo(S), yo(S)) (see Fig. A2); Xo(S) increases while yo(S) 
decreases with increasing s. 

(iii) If y = a(s)+ b(s)x denotes the generic straight line, a(s) and b(s) behave as 
- 5.23 + (480.01/s) and -0 .94 + (184.39/s) respectively. Thus the limit line for 
s = 244 is y = - 3.2627 -0.1843 x. 

Since a rational interpretation for this method is still missing, we try to link the 
definition of ~ with the fractional reaction a defined by Eq. (16). By recalling relation- 
ships Eqs. (9)-(13), it is easily seen that 

g I '~g) gAH 
0(g) M C j ~ ) 2  j,,(o) K(T(t, g))h(t, g)dt = M(~p(~_~) 2 (A5) 

Fig. A3 shows experimental points, their parabolic fitting and the function (A3). As can 
be seen, the agreement is satisfactory. 
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