

ELSEVIER Thermochimica Acta 287 (1996) 299-310

therm0chimica acta

Synthesis and kinetics of thermal decomposition of complexes of rare earth bromides with glycine

Sun Tong-Shan^{a,*}, Xiao Yu-Mei^a, Wang Da-Qing^b, Wang Feng-Lian^a, Zhao Yu-Ting^a

^a Department of Chemistry, Shandong University, Jinan, Shandong 250100. People's Republic of China ^b Testing Center, Shandong Teacher's University,Jinan, Shandong 250014. People's Republic of China

Received 27 December 1995; accepted 23 April 1996

Abstract

Complexes of rare earth bromides with glycine, $REBr_3$ · 3Gly · 3H₂O (RE is Ce, Pr, Sm, Eu, Gd, Tb, Dy and Y; Gly is glycine) have been synthesized and characterized by means of chemical analysis, elemental analysis, molar conductivity, thermogravimetry, IR spectra and X-ray diffractometry. The IR spectra of the above complexes indicate that in the complexes glycine is coordinated to rare earth cations through oxygens of the carboxylic group. The thermal decomposition processes of these complexes were studied by means of TG and DTG techniques from ambient to 1000°C.

The kinetics of thermal decomposition of these complexes were studied under non-isothermal conditions by TG techniques. The kinetic parameters (activation energy, E, and pre-exponential factor, A)and the most probable mechanisms of thermal decomposition were obtained from analysis of the TG and DTG curves by using combined integral and differential methods.

Keywords: Bromides; Complexes; Glycine; Kinetics; Rare earth

1. Introduction

Glycine an important amino acid in biology and medicine. Interest in the study of the coodination chemistry of rare earth ions with amino acids is increasing. Thermal investigations of complexes of rare earth chlorides and isothiocyanates with amino acids have been carried out by several groups $\lceil 1-4 \rceil$, but studies of complexes of rare earth bromides with amino acids are comparatively rare [5,6].

^{*} Corresponding author.

^{0040-6031/96/\$15.00 © 1996 -} Elsevier Science B.V. All rights reserved *PII* S0040-6031(96)03025-0

In this paper, we have prepared and characterized eight complexes, $REBr_3.3Gly.3H₂O (RE is Ce, Pr, Sm, Eu, Gd, Tb, Dy and Y Gly is glycine). We have$ studied the thermal decomposition processes and the kinetics of the thermal decomposition of these complexes under non-isothermal conditions by means of TG and DTG techniques. The most probable mechanism functions and kinetic parameters of the thermal decomposition of these complexes were determined by means of combined differential and integral methods [7,8].

2. Experimental

2.1. Purity of reagents and preparation of the complexes

The purities of the rare earth oxides were better than 99.9%. Glycine was purified by means of recrystallization. The purified glycine was kept in a desiccator containing CaCl, until its weight became constant.

REBr₃ $nH_2O(n = 6$ or 7) compounds were prepared as described by Mayer and Zolotov_[9].

The complexes $REBr₃·3Gly·3H₂O$ were prepared by the following method. $REBr₃·nH₂O$ and glycine (in molar ratio 1:3) were dissolved in distilled water, and concentrated at a constant temperature of 50° C. The crystals obtained were filtered off, washed with alcohol and dried over 50% H₂SO₄ to constant weight. The resulting complexes were $REBr_3$ · $3Gly \cdot 3H_2O$ (RE is Ce, Pr, Sm, Eu, Gd, Tb, Dy and Y).

2.2. Component analysis of the complexes

The rare earth contents of these complexes were determined by EDTA titration, and the Br^- contents were determined by the Volhard method. The contents of C, H and N were determined with a Perkin-Elmer 240C Elemental Analyzer.

2.3. Physical measurements

The IR spectra of the complexes were recorded with a Nicolet Model FTIR5DX Spectrophotometer. The samples were mounted as mulls in KBr discs and examined between 4000 and 400 cm^{-1}.

The X-ray diffractograms of these complexes were obtained with an X-ray Diffractometer (D/Max-rA, Rigaku, Japan), using copper radiation and a nickel filter.

The molar conductances were determined with a DDS-11A Model Conductometer (made in China) at 25°C.

2.4. TG experimental equipment and conditions

TG experiments were carried out on a Perkin-Elmer TGA 7 Thermogravimetric Analyzer, in an N₂ atmosphere (40 ml min⁻¹) at a heating rate of 10 K min⁻¹. The sample weights were between 3 and 7 mg.

3. Results and discussion

3.1. Component analysis of the complexes

The results of component analysis and the molar conductance values of these complexes are given in Table 1. The formula weights of all complexes agree with the general formula $REBr_3$ · 3Gly · 3H₂O, where RE is Ce, Pr, Sm, Eu, Gd, Tb, Dy and Y.

3.2. Physical measurements

The molar conductance values of aqueous solutions $(10^{-3} M)$ of these complexes were observed in the range $372.8-380.6$ s cm² mol⁻¹, which indicates that these complexes are electrolytes of 1:3 type and that all bromide ions are situated in the outer sphere of the coordination ions.

The IR wavenumbers of some group vibrations in the complexes are listed in Table 2.

If we compare the frequencies of some group vibrations of glycine in free and complex forms, the results indicate that glycine retains its zwitterionic structure in its rare earth complexes. This excludes the possibility of coordination of nitrogen to the rare earth ions. There remains the possibility of coordination of the carboxylic group of glycine to the rare earth ions. In free glycine, $\Delta v = v_{\text{ad}}(\text{COO}^-) - v_{\text{d}}(\text{COO}^-) = 226 \text{ cm}^{-1}$; in complexes of glycine, because the symmetric stretch frequency of the carboxylic group shifts to higher wavenumbers (violet shift), $\Delta v(COO^-)= 197-219$ cm⁻¹. This indicates that in the complexes the two oxygens of $-COO^-$ have a higher symmetry and the two oxygens are coordinated to the rare earth ions.

The stretch of $-NH_3^+$ in complexed glycine shifts to a lower wavenumber. In free glycine, $v(NH) = 3100 \text{ cm}^{-1}$ in complexed glycine, $v(NH) = 3038-3081 \text{ cm}^{-1}$. Lower shifts $(19-62 \text{ cm}^{-1})$ in complexed glycine may be due to the formation of hydrogen bonds between glycine and water in the complexes. The O-H stretch of the water molecules in these complexes is observed from 3408 to 3419 cm^{-1} . This shows that these water molecules are hydrogen-bonded.

Table 1

Results of component analysis and molar conductance of the complexes (theoretical values in parentheses)

Complex ^a	RE in $%$	Br in $%$	C in $%$	H in $%$	N in $%$	Molar cond./ s cm ² mol ⁻¹
CeBr, $3L \cdot 3H$, O	21.10(21.26)	35.98(36.37)	10.96(10.93)	3.16(3.21)	6.24(6.38)	379.3
PrBr, 3L.3H, O	21.35(21.35)	36.21 (36.32)	10.87(10.92)	3.16(3.21)	6.20(6.37)	375.4
$SmBr_{3} \cdot 3L \cdot 3H_{2}O$	22.49(22.46)	35.62(35.81)	10.52(10.77)	3.01(3.16)	6.50(6.28)	373.1
$EuBr33L3H3O$	22.60(22.65)	35.54(35.73)	10.70(10.74)	3.12(3.15)	6.53(6.26)	372.8
$GdBr33L3H2O$	23.39(23.25)	35.42(35.45)	10.79(10.66)	2.96(3.13)	6.41(6.22)	372.9
TbBr, 3L.3H, O	23.59(23.44)	35.34 (35.36)	10.71(10.63)	2.93(3.12)	6.24(6.20)	380.3
$DyBr_3 \cdot 3L \cdot 3H_2O$	24.08 (23.85)	35.29(35.18)	10.36(10.57)	2.94(3.10)	6.35(6.17)	375.0
YBr, 3L.3H, O	14.60 (14.63)	38.97(39.43)	12.00(11.86)	3.32(3.48)	7.01(6.91)	380.6

a L is Gly.

b Intensity of peaks: s, strong; m, medium; w, weak; sb, strong, broad; mb, medium, broad.

$PrBr_3.3Gly.3H_2O$		$PrBr_3.6H_2O$		Glycine	
$20/\text{deg}$	I/I_0	2θ /deg	I/I_0	2θ /deg	I/I_0
7.646	8.5	10.273	54.5	14.944	15.5
11.115	100.0	12.604	32.7	19 109	22.2
14.546	11.6	13.070	15.6	20.239	7.4
15.665	19.3	16.207	18.9	24.037	14.5
16.673	9.4	19.294	26.4	29.307	10.2
18.199	44.9	20.174	74.9	29.996	100.0
22.379	29.0	21.442	100.0	35.512	11.8
23.094	3.3	22.320	15.0	36.679	5.6
24.303	10.1	25.810	14.1	44.537	3.2
26.256	70.1	27.439	27.1		
27.391	6.7	28.209	42.1		
29.054	24.9	31.836	25.4		
29.483	7.9	33.116	18.3		
35.664	13.8	35.513	34.6		
37.528	21.8	40.007	16.8		
41.550	10.6	45.506	10.8		

Table 3 X-ray diffraction data of $PrBr_3$ 3Gly 3H, O, $PrBr_3$ 6H, O and glycine

As an example, the X-ray diffraction data of $PrBr_3$: $3Gly: 3H_2O$, $PrBr_3: 6H_2O$ and glycine are listed in Table 3. The X-ray diffraction results indicate that these complexes are very similar in structure. Their maximum values of I/I_0 appear when 2θ equals about 11°, which is different from the X-ray diffraction results of $REBr_3$ nH₂O and glycine. We can see that the prepared complexes are not simple mixtures of $REBr₃·nH₂O$ and glycine but are new substances.

3.3. Thermal decomposition processes

The TG and DTG curves of the four complexes of Ce, Pr, Sm and Tb are shown in Figs. 1-4. The complexes of Eu and Sm, and the complexes of Gd, Dy, Y and Tb are similar, respectively. The thermal decomposition data of these complexes are listed in Table 4. The TG and DTG curves suggest that the thermal decomposition processes of these complexes are very similar. In the given range of experimental temperatures, they may be described by the following sequences

$$
REBr_3:3Gly:3H_2O \xrightarrow{-H_2O} EBr_3:3Gly:2H_2O \xrightarrow{-2H_2O} EBr_3:3Gly \xrightarrow{-2H_2O} EBr_3:3Gly \xrightarrow{-2Gly} EBr_3:3Gly \xrightarrow{-2Gly} EBr_3:3Gly \xrightarrow{-2Gly} EBr_3:3Gly \xrightarrow{IV} EBr_2O_3(RE \text{ is Sm, Gd, Dy and Y})
$$
\n
$$
REBr_3:Gly \xrightarrow{IV} \begin{cases} RE_2O_3(RE \text{ is Sm, Gd, Dy and Y}) \\ REO_2(RE \text{ is Te}) \\ RE_4O_7(RE \text{ is Tb}) \\ RE_6O_{11}(RE \text{ is Pr}) \end{cases} (1)
$$

Fig. 1. TG and DTG curves of $CeBr_3$ '3Gly'3H₂O (--, TG ---, DTG).

$$
\begin{aligned}\n& \text{EuBr}_3 \cdot 3\text{Gly} \cdot 3\text{H}_2\text{O} \xrightarrow{-\text{H}_2\text{O}} \text{EuBr}_3 \cdot 3\text{Gly} \cdot 2\text{H}_2\text{O} \xrightarrow{-2\text{H}_2\text{O}} \text{EuBr}_3 \cdot 3\text{Gly} \xrightarrow{-3\text{Gly}} \text{EuBr}_3 \\
&\xrightarrow{\text{IV}} \text{Eu}_2\text{O}_3\n\end{aligned}
$$
\n
$$
(2)
$$

In the first-stage dehydration, the four complexes $REBr_3$ 3Gly $3H_2O(RE$ is Gd, Tb, Dy and Y) lose one water molecule in two small steps.

3.4. Kinetics of thermal decomposition of complexes

For the kinetic analysis, the differential equation of Achar et al. [10] and the modified Coats-Redfern integral equation [11] were used. The differential and integral equations are

$$
\ln\left(\frac{d\alpha/d\,t}{f(\alpha)}\right) = \ln\,A - \frac{E}{RT} \tag{3}
$$

$$
\ln\left(\frac{g(\alpha)}{T^2}\right) = \ln\frac{AR}{\beta E} - \frac{E}{RT}
$$
\n(4)

where α is the fraction of material reacted, T is the absolute temperature, β is the linear heating rate, R is the gas constant, E and A are apparent activation energy and

Fig. 3. TG and DTG curves of $SmBr_3$. $3Gly.3H_2O$ (--, TG; ---, DTG).

Fig. 4. TG and DTG curves of TbBr₃' 3Gly $3H$, O (--, TG; ---, DTG).

pre-exponential factor, respectively, and $f(x)$ and $g(x)$ are differential and integral mechanism functions, respectively.

We carried out the kinetic analysis for the first three steps of the decomposition of the complexes ofCe, Pr, Sm and Eu, and for the second and third steps for the complexes of Gd, Tb, Dy and Y.

The range of values of α for these steps from the TG and DTG curves are listed in Table 7, below. The original data for these steps from the TG and DTG curves were analyzed by means of Eq(3) and Eq(4) with the possible forms of $f(x)$ and $g(x)$ from Table 5. The kinetic analyses were completed with the linear least-squares method on a computer.

As and example, the data of kinetic analysis in Table 6 clearly show that the the values of E and In A from the two methods are approximately same, and that the linear correlation coefficients are better ($r \approx 1$), when the most probable mechanism function is function No. 10 (D3: $f(\alpha) = 1.5(1 - \alpha)^{2/3}$, $[1 - (1 - \alpha)^{1/3}]^{-1}$, $g(\alpha) = [1 - (1 - \alpha)^{1/3}]^{2}$).

By analogy, we may infer the other thermal decomposition processes for these complexes. The results for the kinetic parameters and the most probable mechanisms for the eight complexes are listed in Table 7.

Although non-isothermal kinetics of thermal analysis as compared with isothermal kinetics when applied to solid state heterogeneous reactions has limitations and failures [12], we have now obtained some reliable results from the non-isothermal

Decomp. step of complex	Temp. range/ ${}^{\circ}C$	Weight loss in %	
		Calc.	Meas.
$CeBr_3$ 3L 3H ₂ O \rightarrow CeBr ₃ 3L 2H ₂ O	$104 - 159$	2.73	2.85
CeBr ₃ 3L $2H_2O \rightarrow$ CeBr ₃ 3L	159-234	5.47	5.75
$CeBr_3:3L \rightarrow CeBr_3: L$	$234 - 355$	22.78	20.27
$CeBr_3 \cdot L \rightarrow CeO_2$	355-467	42.91	45.64
$PrBr_3 \cdot 3L \cdot 3H_2O \rightarrow PrBr_3 \cdot 3L \cdot 2H_2O$	$89 - 151$	2.73	286
$PrBr_3:3L:2H_2O \rightarrow PrBr_3:3L$	$151 - 247$	5.46	5.95
$PrBr_3:3L \rightarrow PrBr_3: L$	247-422	22.75	22.45
$PrBr_1 L \rightarrow Pr_6O_{11}$	422-991	43.26	43.20
$SmBr_3$: $3L \cdot 3H_2O \rightarrow SmBr_3 \cdot 3L \cdot 2H_2O$	$94 - 156$	2.69	2.88
$SmBr_3:3L.2H_2O \rightarrow SmBr_3:3L$	$156 - 244$	5.38	6.16
$SmBr_3:3L \rightarrow SmBr_3:L$	244-401	22.43	22.36
$SmBr_3: L \rightarrow Sm_2O_3$	$401 - 863$	43.44	43.84
$EuBr_3$ $3L$ $3H_2O \rightarrow EuBr_3$ $3L$ $2H_2O$	$100 - 157$	2.69	2.61
$EuBr_{3} \cdot 3L \cdot 2H_{2}O \rightarrow EuBr_{3} \cdot 3L$	$157 - 235$	5.37	5.87
$EuBr3·3L \rightarrow EuBr3$	235-417	33.57	33.08
$EuBr3 \rightarrow Eu2O3$	$417 - 788$	32.14	33.26
GdBr ₃ .3L.3H ₂ O \rightarrow GdBr ₃ .3L.2H ₂ O	$70 - 158$	2.66	2.83
$GdBr_3$ 3L $2H_2O \rightarrow GdBr_3$ 3L	158-242	5.33	6.30
$GdBr_3 \t3L \rightarrow GdBr_3 \tL$	$242 - 408$	22.20	22.18
$GdBr, L \rightarrow Gd, O,$	$408 - 881$	43.01	42.92
$TbBr_3$: 3L: 3H ₂ O \rightarrow TbBr ₃ : 3L: 2H ₂ O	$89 - 187$	2.66	2.63
$TbBr_3$ $3L$ $2H_2O \rightarrow TbBr_3$ $3L$	$187 - 278$	5.32	5.90
$TbBr, 3L \rightarrow TbBr, L$	$278 - 445$	22.15	23.35
$TbBr_3: L \rightarrow Tb_4O_7$	445-807	42.29	40.42
$DyBr_3 3L 3H_2O \rightarrow DyBr_3 3L 2H_2O$	$68 - 193$	2.64	2.29
$DyBr_3 \tcdot 3L \tcdot 2H_2O \rightarrow DyBr_3 \tcdot 3L$	$193 - 269$	5.29	5.87
$DyBr_3 3L \rightarrow DyBr_3 L$	269-433	22.03	22.02
$DyBr_3: L \rightarrow Dy_2O_3$	433-859	42.67	42.30
$YBr_3:3L \cdot 3H_2O \rightarrow YBr_3:3L \cdot 2H_2O$	$87 - 179$	2.96	2.49
YBr_3 3L 2H ₂ O \rightarrow YBr ₃ 3L	$179 - 276$	5.93	5.23
YBr_{3} $3L \rightarrow YBr_{3}$ L	$276 - 414$	24.70	24.24
$YBr_3:3L\rightarrow Y, O_3$	$414 - 841$	47.84	50.50

Table 4 Thermal decomposition data of $REBr_3: 3L: 3H_2O^2$

a RE is Ce, Pr, Sm-Dy and Y; L is Gly.

kinetics of the thermal decomposition for complexes of rare earth bromides with glycine. This is important for both non-isothermal kinetics itself and the properties of rare earth complexes.

4. Conclusions

It can be concluded from the above results (see Eqs. (1) and (2) and Table 4) that the thermal decomposition processes for the complexes of rare earth bromides with glycine

Funct. no.	Mechanism	$q(\alpha)$	$f(\alpha)$
	PI	$\gamma^{1/4}$	$4\sigma^{3/4}$
	AI.5	$[-\ln(1-\alpha)]^{2/3}$	$1.5(1-\alpha)$ $\lceil -\ln(1-\alpha) \rceil^{1/3}$
	A2	$\lceil -\ln(1-\alpha)\rceil^{1/2}$	$2(1-\alpha)\sqrt{(-\ln(1-\alpha))^{1/2}}$
	A ₃	$[-\ln(1-\alpha)]^{1/3}$	$3(1-\alpha)\sqrt{(-\ln(1-\alpha))^{2/3}}$
	A4	$[-\ln(1-\alpha)]^{1/4}$	$4(1-\alpha)\Gamma - \ln(1-\alpha)$ ^{3/4}
6	R ₂	$1-(1-\alpha)^{1/2}$	$2(1-\alpha)^{1/2}$
	R3	$1-(1-\alpha)^{1/3}$	$3(1-\alpha)^{2/3}$
8	D1	γ^2	$1/(2\alpha)$
9	D ₂	$(1-\alpha) \ln (1-\alpha) + \alpha$	$[-\ln(1-\alpha)]^{-1}$
10	D3	$\lceil 1 - (1 - \alpha)^{1/3} \rceil^2$	$1.5\Gamma(1-(1-\alpha)^{1/3})^{-1}(1-\alpha)^{2/3}$
11	D4	$(1-2\alpha/3)-(1-\alpha)^{2/3}$	$1.5\Gamma(1-\alpha)^{-1/3}-1$] ⁻¹
12	F1	$-\ln(1-\alpha)$	$1-\alpha$
13	F2	$(1-\alpha)^{-1} - 1$	$(1-\alpha)^2$
14	F3	$(1-\alpha)^{-2}-1$	$0.5(1-\alpha)^3$

Table 5 The common forms of $f(x)$ and $g(x)$

take place in four steps and are very similar due to the nature of the rare earth element. These complexes lose water in two steps, then the anhydrous complexes lose two glycine molecules, except $E u B r_3$. 3Gly which loses three glycines, and finally form oxides.

The results in Table 7 show that the kinetic mechanisms of the thermal decomposition for $REBr_3$: 3Gly: 3H₂O (RE is Ce, Pr, Sm, Eu, Gd, Tb, Dy and Y; Gly is glycine)

Table 7
Kinetic parameters for the thermal decomposition of $REBr_3$: $3Gly$: $3H_2O$ (RE is Ce, Pr, Sm, Eu, Gd, Tb, Dy and Y; Gly is glycine) Kinetic parameters for the thermal decomposition of REBr₃.3GIy.3H₂O (RE is Ce, Pr, Sm, Eu, Gd, Tb, Dy and Y; Gly is glycine) S. Tong-Shan et al./Thermochimica Acta 287 (1996) 299-310

depend mainly on the nature of the rare earth elements. Except for the third step of the complex of Ce, the kinetic mechanisms of all the thermal decomposition steps of these complexes have an improved regularity, i.e, the mechanisms are the same in the corresponding steps.

The most probable mechanisms for the thermal decomposition of the four complexes of Ce, Pr, Sm and Eu are F1 $(f(\alpha) = 1 - \alpha, g(\alpha) = -\ln(1 - \alpha))$ with the loss of one water molecule. The most probable mechanisms for the thermal decomposition of the eight complexes are D3 $(f(\alpha) = 1.5(1 - \alpha)^{2/3}[1 - (1 - \alpha)^{1/3}]^{-1}$, $g(\alpha) = [1 - (1 - \alpha)^{1/3}]^{-2}$ with the loss of two water molecules, and F2 $(f(\alpha) = (1 - \alpha)^2, g(\alpha) = (1 - \alpha)^{-1} - 1)$ with the loss of two or three glycine molecules, except for the Ce complex which is D3 $(f(\alpha) = 1.5(1 - \alpha)^{2/3} [1 - (1 - \alpha)^{1/3}]^{-1}$, $(g(\alpha) = [1 - (1 - \alpha)^{1/3}]^2$.

References

- [1] B.S. Mathur and T.S. Srivastava, J. Inorg. Nucl. Chem., 32 (1970) 3277.
- [2] Wu Jigui, Deng Ruwen, Wang Liufang and Yu Ming, J. Lanzhou Univ, Natural Sciences Edn. (P.R. China), 20 (1984) 69.
- [3] Chen juxiang, Ran Xinquan, Guo Zhizhen and Chen Yunsheng, Chem.J.Chinese Univ. (Chinese Edn.), 11 (1990) 555.
- [4] Shu-Rong Yang, Jian-Hua Zhang, Ben-Gao Jiang and Zhao-He Yang, Thermochim. Acta, 176 (1991) 209.
- [5] M.C.Lavin Guemes, M.C. Lequerica Gomez, J.G. Ribas Bernat and F.J. Garay Sanchez, An. Quim., 73 (1977) 1292.
- [6] Tongshan Sun, Yuting Zhao, Jiahui Jin and Daqing Wang, J. Therm. Anal., 45 (1995) 317.
- [7] T.P. Bagchi and P.K. Sen, Thermochim. Acta, 51 (1981) 175.
- [8] J.M. Criado and M. Gonzalez, Thermochim. Acta, 46 (1981) 201.
- [9] I. Mayer and S. Zolotov, J. Inorg. Nucl. Chem., 27 (1965) 1905.
- [10] B.N. Achar, G.W. Bridley and J.H. Sharp, Proc. Int. Clay Conf. Jerusalem, 1 (1966) 67.
- [11] A.W. Coats and J.P. Redfern, Nature, 201 (1964) 68.
- [12] T.P. Prasad, S.B. Kanungo and H.S. Ray, Thermochim. Acta, 203 (1992) 503.