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Abstract 

Based upon the Barker and Martin treatment developed for the analysis of vitreous phases, an analysis of both 
polycrystalline and crystalline phases of various complexity is described. Primarily, cryogenic heat-capacity measurements 
and spectroscopic vibrational analysis are involved. Some history of the development of the phonon dispersion equations is 
incorporated. The applicability of the phonon velocity dispersion to polycrystalline and single-crystal copper are used as 
convenient examples to illustrate the application of the theory. They emphasize the complications occasioned by anisotropies 
in single crystals even in polycrystaUine aggregates, where they are only partially obscured by the macroscopic isotropy of 
aggregates. Copper does involve the treatment of the electronic terms and demonstrates a competence of critical relevance to 
other types of crystalline and vitreous materials. © 1997 Elsevier Science B.V. 
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1. Historical overview 

1.1. Introduction 

The treatment of  the vitreous state - once consid- 
ered unacceptable for an equilibrium thermodynamics 
analysis - was pioneered in 1959 by Barber and 
Martin [ 1 ] in their interpretation of the deviation from 
Debye-like heat-capacity data results. 

Over recent decades, glasses have been a favorite 
subject in our heat-capacity evaluations at the Uni- 
versity of  Michigan. As long ago as 1950, the silica 
glass, quartz, cristobalite, coesite and stishovite were 
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all measured together with metamict, the intermediate 
density phases generated by nuclear pile radiation on 
both vitreous silica and quartz. All had the composi- 
tion SiO2, but great variation in mass density. Later, 
more than twenty polymeric vitreous macromolecular 
polymers and vitreous B203 were also examined. A 
number of  alkali di- and tri-silicates were also treated 
and analyzed. Still more recently, we initiated mea- 
surements on nearly a score of  selected binary and 
ternary alkali and alkaline-earth systems at Ann Arbor 
(1994 and 1995). Currently, a series of  vitreous phases 
of  ternary silicate oxides are underway. 

Although all of  these studies have enhanced our 
knowledge of the vitreous phase (e.g. a near Schottky 
representation of the remarkable glass-crystal differ- 
ence, etc.), the definitive presentations have not yet 



68 E.E Westrum Jr./Thermochimica Acta 300 (1997) 6782 

been consummated. This document can only hint at 
the progress underway, while reviewing and correlat- 
ing this important matter which is exciting enough to 
justify a preview. 

As indicated, the measurements of low-temperature 
heat capacities, analyzed and interpreted, were begun 
in a comprehensive program in 1950-55 to determine 
experimentally and understand theoretically the dis- 
tributions, g(v), of thermally excited modes of motion 
as a function of their frequencies, ~. Such functions, 
conventionally represented by g(~,) vs. ~,, are implicit 
in all thermal, mechanical, and optical properties of 
elastic solids and, in principle, can be found by 
inversion of heat capacities as functions of Kelvin 
temperature T, volume per mole of oscillators V, and 
pressure P. Conversely, when g(v) vs. v is known, all 
physical properties of elastic solids, can, in principle, 
be formulated as functions of it. 

In general, g(v) comprises two classes of modes 
which must be distinguished because their frequencies 
are functions of distinctly different parameters of 
elastic solids: (1) acoustic modes of frequency 
lJ a = l / (Wp) ,  where Wp(va)  is the phase velocity in 
at least two polarizations Pa - over macroscopic 
distances in a solid defined by its macroscopic elastic 
constants c O and mass density p; and (2) optic modes 
of frequency ~'o ---- (J~i/mi) 1/2, where the ~ are force 
constants constraining the motion of atomic masses mi 
and densities of atoms specified by the subscript 'i'. 
Optic modes are localized in stationary distributions 
of atomic masses m i and, therefore, do not travel or 
contribute to the thermal conductivity, n, which 
depends exclusively on acoustic modes. 

To facilitate distinction of optic from acoustic 
modes, our measurements of Cv (T) were comple- 
mented by correlating determination of IR- and 
Raman-spectra of optic modes (t,o) to be compared 
with Cv (T), which is a function of all frequencies, 
both L'a and Vo. 

Our 1950-55 heat-capacity measurements on vitr- 
eous silica were the first ever at liquid helium tem- 
peratures, and they appeared so anomalous with 
respect to generally accepted interpretive theory that 
no analyses of it could be made until an appropriate 
analytical formula for the acoustic component of Cv 
vs. Tcould be derived as a function ofga(v, ~'~), where 
v a is a limiting frequency defined by parameters of 
geometric arrangements of atoms in the solid. Such a 

formula was derived from first principles and pub- 
lished by Barber and Martin [1], and represents the 
foundation of this terse presentation. Meanwhile, our 
measurements on alkali silicate glasses and crystals 
were completed and measurements on vitreous silica 
up to T<<4.5 K were initiated by others who were 
convinced that the expected linearity of Cv vs. T 3 
would be found at T sufficiently near 0 K. Such 
expectations were more justified in silica glass, 
because of its perfect isotropy, than in quartz where 
it was immediately evident in our data, regardless of 
significant anisotropy; but the T 3-law is not found in 
glasses even at T < 0.1 K - a fact that justified our 
immediate attention to refinement of relevant theory. 
Indeed, vitreous silica has heat capacities at T < 1 K 
about three orders of magnitude higher than crystal- 
line quartz. 

1.2. Derivation of  the dispersion formulas 

The necessary refinements of conventional Debye 
functions [2] for g(v) vs. ~, and Cv(T) were easily 
perceived and readily formulated. The Debye func- 
tions were known by Debye himself to be crude 
approximations, because they were simplified by 
the assumption that acoustic wave velocity is inde- 
pendent of frequency, whereas Wp in both transverse 
and longitudinal polarization is v-dependent. As will 
be shown, they can be improved to fit essentially 
within experimental uncertainties by introducing 
W(/J) VS. /'/a in place of Debye's constant W(0); i.e. 
by representing velocity dispersion in g0(v, ~ )  vs. v. 
Such dispersion formulas were derived and published 
by Schr6dinger [3], but the dramatic improvement in 
them has not been appreciated and they have been so 
neglected and underappreciated by reviewers and 
monograph writers that they have been rederived 
and evaluated by Barber and Martin [1 ] independently 
of Schr6dinger, and again by Kieffer [4]. Such long 
neglect and repeated rediscoveries of the dispersion 
formulas - in spite of their quite obvious and self- 
evident advantages and the cogent logic of his deriva- 
tion - is a problem to be understood before proceeding 
further. This text is intended to deter additional inde- 
pendent rediscoveries and unjustifiable detractions in 
the light of the persistence noted. 

Derivation of the dispersion formulas (Barber 
and Martin, 1959) follows from Brillouin's [5] 
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fundamental description of wave propagation. Bril- 
louin, Schrtdinger's contemporary, certainly influ- 
enced him - as well as us. Both men were 
renowned scholars in wave mechanics and their pres- 
tige should have inspired more consideration of the 
dispersion formulas than was accorded them. Failure 
to do so is evidently due, in part, to at least one faulty 
review, but in greater part to circumstances beyond 
control or comprehension of reviewers. 

1.2.1. Blackman and de Launay 
Two comprehensive reviews were available to us 

during planning of our project: those of Blackman [61 
and of de Launay [7]. Blackman [6] reviews not only 
his many earlier papers, but evaluates a dispersion 
formula (Eq. (5.8) in Ref. [6]): 

72N 3 arcsin(u/uo) 2 
P ( " )  = (2 )3 _ . 2 ) 1 / :  

similar to Schrtdinger's, for which he cites Schrtdin- 
ger's reference to an earlier paper by Born and von 
K~irm~in [8], where u0 is the limiting frequency (iden- 
tified here as v~). This formula differs from Eq. (13) of 
Barber and Martin [1], where the arcsine is squared 
instead of its argument (~/Vo). The latter is in error and 
may explain Blackman's [6] ill-informed criti- 
cism:"There is little doubt that the Born-von K~irm~in 

function gives a less good fit with experimental 
data than the Debye function. It suffers further 
from a much less obvious derivation, nor does it 
link the specific heat data with elastic data of the 
solid. It is therefore not surprising that the theory 
should have attracted less attention than the 
Debye theory, though it is astonishing that this 
has occurred without any critical investigation." 
Every statement in this quotation raises a serious 

question. First, replacement of the most suspect 
approximation in Debye's theory with more cogent 
assumptions should improve its conformance to 
experimental data. Failure to do so obviously indicates 
error in the derivation or in the experimental data and 
should be corrected rather than rejecting the more 
cogent theory. Second, our dispersion derivation is 
more obvious, rather than less, compared to Debye's 
approximation and it does "link the specific heat data 
with elastic data" more rigorously and with fewer 
arbitrary simplifying assumptions. Third, if he thinks 

"it is astonishing that this has occurred without any 
critical investigation," Blackman should make the 
critical investigation needed to support his contention. 
We did that and are led to firmly contradict his 
conclusions. 

Most of the error in Blackman's judgments - cited 
here - arise from misapplication of his Eq. (5.8), 
despite the already noted error. Referring to it he 
writes, "The heat capacity function for the solid then 
depends on only one parameter 00 = h~,o/k in the form 
Oo/T, where Oo/T has to be chosen empirically." An 
adequately "critical investigation" would have shown 
that no solid can be accurately represented by "only 
one...Oo/T." At least two 0o'S, representing transverse 
(0t) and longitudinal (01 > 0t), must be used and the 
effective mean 0tl of these can be constant only at 
T <,-~ 0tl/50 - much lower than the T between 22.8 
and 86 K considered by Blackman [6] (cf. his Table 3, 
p. 334). In this range, 0tl increases with T contrary to 
his calculations of OD, which decrease from 244 K at 
22.8-215 K at 86 K. It will be shown later, that this 
surprising trend of 0tl (7) is implicit in the analytical 
dispersion formula found first by Schrtdinger [3], then 
rediscovered by Barber and Martin [1] and by Kieffer 
[41. 

Criticism of Blackman, however, must be tempered 
by the fact that when he wrote his review, accurate 
experimental data at temperatures sufficiently low to 
verify the dispersion formulas were non-existent. 
Furthermore, tables of Cv vs. O/Twere first published 
by Barber and Martin [1] and Eq. (13) and (15) of that 
text could be verified only recently - 25 years after 
their publication. 

Both Blackman and de Launay consider the ~,- 
dependence of acoustic wave velocities and, after 
reviewing the relevant - but inadequate - experimental 
Cv (7) data available to them, both favor the conven- 
tional Debye formulas in which acoustic wave velo- 
cities are assumed constant - independent of t,, 
although the real limit v~----(2/Tr)un was common 
knowledge. The obvious error factors in 
un, (2/7r = 0.6366), and in Cv(OD), [(2/7r) 3 
= 0.2580] were tolerated for mathematical tractabil- 
ity, and ad hoc modifications of Debye's formulas 
were made to correct for them. De Launay's elabora- 
tions of Debye's formulas were the more rigorous and 
analytical in principle, but were derived for specific 
body-centered, face-centered, and diamondoid cubic 
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lattices and cannot be generalized for application to 
glasses wherein the detailed parameters of atomic 
lattices involved are intrinsically indeterminable, 
and cannot be inferred from experimental Cv vs. T 
data in any case. Furthermore, they are unnecessarily 
complicated and inconvenient. As will be shown, the 
dispersion formulas are much easier to modify for 
specific cases than are Debye's formulas because they 
are vastly more accurate generalizations. 

Conventional inversion of Cv (73 functions employs 
Debye's heat capacity function of a single 
OD = hVD/k as an idealized reference function in 
which 0D is constant for 0 > u < UD and for all T. 
Experimental values of Cv (73 can be represented by 
deviations of 0app from the ideal constant value of 0D 
calculated from elastic constants cij and mass density p 
of the solid, where 0app is the 'apparent' value of 0D 
required in the Debye function to make it match the 
experimental Cv at every experimental temperature T. 
Obviously a plot of 0app(73 can represent any solid as 
accurately as Cv(73 can be measured and the plot 
inferred from Lapp = hOapp/k characterizes a solid 
nearly as well as do its Raman- and IR-spectra. Even 
so, its interpretation is obscure and misleading, 
because it represents deviations from a function that 
is irrelevant to any solid except as u ~ 0. Indeed, any 
nominal function of 0(73 can serve as a reference 
function regardless of error in it and will yield a 
characteristic 0app vs. T plot. Eq. (15) of Barber and 
Martin [ 1 ] serves this purpose but because it conforms 
so exactly to the behavior of real solids, deviations 
from it are relatively small and their implications 
regarding density of states are immediately apparent. 
Its use in this way can be demonstrated on selected 
simple crystals and its application to glasses better 
understood. 

1.2.2. Tarassov' s development 
We were not the first to seek structural information 

from Cp(73 of glasses. Between 1945 and 1957 - 
before any data suitable for such inferences was 
available - Tarassov published a series of papers in 
which he claimed to show that "specific heat functions 
for chain-like structures" could be found in "tem- 
perature dependence of the specific heat of vitreous 
B203," for example, and that similar evidence of 
layered structures could be found in certain silicate 
and borate glasses. Several of his papers are reviewed 

collectively and expanded into a book [9]. Some of his 
papers were available to us during planning of our 
measurements on silica glass but were of no value to 
us because the data analyzed in them were, in every 
case, for temperatures so high that essentially all optic 
as well as acoustic modes were excited and no isola- 
tion of acoustic modes from overwhelming densities 
of optic modes was conceivable. The data on vitreous 
boron anhydride, for example, between 68.6 K and 
169.4 K, where he found quite precise linearity of Cv 
vs. T in accord with his ardent - but unjustifiable - 
expectations. Linear extrapolation of this data (from 
68 K to 0K)  even yields Cv = 0 at T = 0 as his 
hypothesis required; but such linearity is not in accord 
with dispersion formulas for such high temperatures. 
Some linearity at such temperatures is always 
expected near unavoidable inversions of slope in 
Cv(73 curves regardless of chain-like or layer-like 
elements of structure. 

In the first part of his book, Tarassov reviews 
derivations of dispersion formulas for distributions 
of states in one, two, and three dimensions, citing 
Born and von K~irm~in (1913) [8] and Blackman 
(1955) [6]; but, like his predecessors, he provides 
no numerical values of heat capacity vs. O/T for any 
of these dispersion functions. Evidently, he derived 
them only to show that they reduce to Debye-like 
functions of (T/O1)1, (T/02)2, and  (T/03) 3 as T --~ 0, 
where dispersion effects are negligible. Then, know- 
ing that such functions can exist at some temperature, 
he looks for them at any temperature and assumes any 
value of 01 or 02 required to fit the data. In crystalline 
B203, for example, his values of 02 for 'layer struc- 
tures' vary from 943 K at T = 104.82 to 1320 K at 
271.1 K and 01(0.2) for 'chain-like structures' varies 
from 1556 K at T = 104.12K to 1869 K at 296.00 K. 
These values are absurd even for optic modes domi- 
nant at such temperatures, and more absurd for acous- 
tic modes which could be observed only at T < 15 K. 

In 1955, when our data on vitreous silica and 
cristobalite were first available, Dank and Barber 
(1955) [10] showed that both glass and crystal of 
identical composition have remarkably similar 
Cv(73 curves, and both conform quantitatively to an 
ad hoc modification of a formula in T 2 and T 3, 
originally proposed by Tarassov [9]. Because the 
dominant term in that formula was C2(02/73, repre- 
senting a two-dimensional distribution of modes and, 
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by assuming mass units of Si306 as would be appro- 
priate for quartz, we could infer plausible values of 
v~ = 115cm -1 and 117 cm -1 in vitreous silica stabi- 
lized at 1070 and 1300°C, respectively, and 113 cm- 1 
for cristobalite from slopes of Cv vs. C2; we could say 
that "These new observations...suggest the existence 
at low temperatures of highly anisotropic structures 
for cristobalite and vitreous silica..." In the same 
sentence, however, we cautioned that both of these 
solids "have been regarded as isotropic on the basis of 
X-ray studies and the macroscopic isotropy of various 
physical properties." Our latest analyses will show 
that these earliest results were entirely fortuitous, 
however provocative they seemed then. 

Years later, Tarassov (1967) [11] discussed our data 
on silica. As could have been predicted from his 
earlier book [9], he found evidence that the 'chain 
model' applies to the thermal capacity of vitreous 
silica up to 900 K. Evidently, it did not occur to him 
that any model applies equally well to any material at 
900 K because heat capacities approach their classical 
(Dulong and Petit) limit at T << 900 K, where they 
tend to become constant and completely independent 
of structural details. His curve-fitting exercises with- 
out due account of velocity dispersion cannot lead to 
credible results; but, because they have been published 
and can mislead others, it was necessary to 'describe' 
them before a more germane procedure could be 
presented - the ultimate purpose of the following text. 

2. The preeminence of velocity dispersion 

Contrary to the opinions of the reviewers, Blackman 
[6] and de Launay [7], and to conventional practice 
favored by them and by most textbook writers, ana- 
lyses of experimental Cv vs. T curves to find distribu- 
tions of acoustic modes is more reliably, and more 
conveniently done by inversion of heat-capacity func- 
tions of velocity dispersion than by inversion of Debye 
functions. This is self-evident, because velocity dis- 
persion is a sensitive function of structural parameters; 
all of these are neglected or obscured in complicated 
effective averages in Debye's formulas. Such relia- 
bility and convenience is not realized without reliable 
formulas for acoustic components of Cv vs. T and 
tested procedures for applying them. Because conven- 
tional practice does not prescribe such formulas or 

procedures, they are prescribed as follows: first, the 
formulas for acoustic components of Cv and their 
inversions to values of 0app = hv*/k are required to 
make the functions match experimental values of Cv 
for all temperatures measured. The bar in ~* indicates 
that 0app(T ) always represents an effective mean of two 
or more quite different limiting frequencies; all of 
these must be specified in formulas for 0app(T). 

Admittedly, the form of Schr6dinger's equation was 
mathematically difficult to integrate, but it is correct. 
Some reviewers and textbook authors have cited 
Schr6dinger's dispersion equation among their refer- 
ences but few - if any - have discussed it adequately 
and virtually none have published tables of its heat- 
capacity integral, comparable to the ubiquitous Debye 
function tables. 

It is interesting to note in passing that Debye's 
unmentioned neglect (simplification) of dispersion 
has fueled, in recent years, not only the Barber and 
Martin [ 1 ] treatment of glasses, but the Kieffer [4,12] 
treatment of mineral thermodynamics as well, and the 
Komada and Westrum [13,15] or Komada [14] devel- 
opment of a single parametric phonon dispersion 
approach for evaluation of the temperature depen- 
dence of Cv for lattice contribution in material phases. 

In order to demonstrate the approach for two dis- 
tinguishable phases I have elected to choose a metallic 
rather than a vitreous phase for an illustration. A 
vitreous phase had been tersely discussed Ill, and 
to contrast such a phase with a crystalline one of the 
same composition would have taken much more space 
here. Moreover, the comparison of polycrystallne 
copper with single-crystal copper (said to be 'indis- 
tinguishable' by the person who measured their heat 
capacities) provides an opportunity to treat the elec- 
tronic contribution also. The treatment applied as well 
to diamond, tungsten, aluminum, sodium chloride, etc. 
is also shown to be of wide utility in dealing with the 
thermophysics of phases other than the vitreous one. 

It would, however, have been logical here to discuss 
the nature of the frequently misunderstood primitive 
cell both for the vitreous and metallic phase, but space 
does not permit that. 

3. Treatment of copper metal 

Copper (fcc,f = 1, isotropy index - 0.317) is cho- 
sen to model the effects of anisotropy on acoustic 
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Table 1 
Experimental Cv vs. T and elastic constants, c O, sij, vs. T in crystalline and polycrystalline copper 

Relevant physical properties 
Gram formula mass (GFM)=63.54 
Mass density at T = 0, p = 9.0305 g cm 3. 
Number density of atoms, N/V = 8.553 × 1022 cm 3 

Cv vs. T: Shown as a continuous function of T in the 0-300 K range 

Cv vs. T OD (K) 0(0) = 20D/rr (K) 10sT/3R Reference 

1.3-20 K 
1.0-30 K 
0.3-3 K 

Single crystal 
0.3-3 K 

Polycrystalline 
20-300 K 

Polycrystalline 

346.3 220.5 2.790 [ 16] 
343.7 218.85:0.6 2.763 [ 17] 
347.75:0.8 a 221.44-0.5 2.764 [18] 

346.65:1.4 a 220.75:0.9 [19] 

[201 

a Martin [19] concludes "that, within experimental accuracy, there is no difference in the specific heat of pure single-crystal and pure 
polycrystalline copper." (p. 1254). Differences of this magnitude are significant in Eq. (12) of [ l] which may indicate what differences should 
be expected and for what reasons. 
Comment: Phillips [21 ], in his review, Low Temperature Heat Capacity of Metals, cites 26 independent values of 0i) for copper. Three of these, 
371.7,338.9, and 327.0, are extreme and can be rejected as outliers. The remaining 23 are between 342.0 and 345.6 and randomly distributed 
around his selected value 344.5. The spread (larger than experimental uncertainties) must be explained. Experimental values of 0(T) inferred 
from Cv vs. T measurements cited are represented graphically in Fig. 1 where the limiting values of 0(0) and 0 are labeled. The highest value 
of 0(0), 221.4 K, is Martin's value for a single crystal. This is the highest reliable value reported in the literature, while 218 is the lowest 
reliable value. The intermediate value, 220.5 is the mean of Wycherley's data below 4 K adjusted to be consistent with -~/3R = 2.795 x 10 -5 
as shown in Fig. 2. Wycherley's values (~,=6.696 mJ (g at) -~ K -2, 0D=346 K) had to be extended to four significant figures to be mutually 
consistent with 0(0) in plots of ln(Cv - "~T)/3RT 3 vs. In Tas shown in Fig. 2 which represents his primary data to five significant figures. 
Methods of inte~retation used here allow greater precision than he could claim by conventional Debye methods. 
The upper limit, 0(4/7r) I/3 = ~ 280, is less accurately determined graphically because apparent values of 0(T) are relatively insensitive to T 
near 0v Preliminary values within ~ 5:2% are easily adjusted within ~5:0.5% by iterations through Eq. (12) of Ref. [1] to be consistent with 
0(0) to four significant figures. 

spectra in o therwise  s imple  mona tomic  pr imi t ive  lat- 

tices, because  it is most  adequate ly  character ized 

exper imenta l ly  for T f rom 0 to 300 K as required 

for comprehens ive  val idat ion of  Barber  and Mar t in ' s  

[1] Eq. (12). The  exper imenta l  data required are 

presented in Table 1 which includes  selected values 

of  Cv vs. T along with der ived values of  0D and 

0(0) = 20D/Tr. The  exper imenta l  0(T) vs. In T is pre- 

sented in Fig. 1 so as to display the ex t reme values,  at 

0(0) and 0 at T > 01, and for detai led compar i son  

with calculated values f rom Eq. (12) in Ref.  [1] over  

the range A0  =- 0 -  0(0). The  corresponding 

I n ( C v / 3 R T  3) vs. In Ta re  presented in Fig. 2. Formu-  

las for elast ic constants c 0 as funct ions o f  T, as der ived 

f rom literature tables are assembled  in Table 2 and 

represented graphical ly  in Fig. 2 where  the bulk mod-  

ulus of  the conduct ion electron gas, t%(T), is correlated 

with lattice bulk moduli ,  nL, and r igidi ty moduli ,  GL, 
both as funct ions of  T. 

3.1. Critical effects o f  anisotropy in copper 

The exper imenta l  Cv vs. T data for copper  display 

several cri t ical  consequences  o f  anisotropy in metals,  

some of  which are inadequate ly  unders tood and must  

be clarif ied in this text. 

(a) The  range of  variat ion in 0(T) f rom T = 0 to 

T = 0(4/7r) 1/3 is quite large in copper  as shown in 

Fig. 1, where  A0  ~ 60K.  In large single crystals, 

where  all acoust ic  modes  can be accounted for as 

famil ies  o f  parallel  plane waves ,  0(0),  0, and A0  are 

funct ions o f  elast ic constants  cij (in stress) and s o (in 
strain) which are convent ional ly  assumed to be inde- 

pendent  o f  Tove r  ranges o f  interest  when  the Ce - Cv 
correct ion to constant  v o l u m e  is applied. In this s imple  

case, the bulk modul i  of  the lattice, nL, are increased 

by the relat ively large bulk modulus  ne o f  the con- 

duct ing ' e lec t ron  gas '  enmeshed  under  pressure in the 

crystal  lattice o f  atoms as expla ined in de Launay ' s  
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_Fig. 1. Apparent 0(T) vs. In (T/K) for copper. 0 = 221.4K, single crystal; 0 = 220.7K, polycrystal; 0 = 218.0K lowest reliable value. 
0(4/7r) n/3 ~ 180K. A0 ~ 60K. 
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Fig. 2. Ln (Cvl3RT 3) vs. In (T) for polycrystalline and single crystal copper. • - Wycherly [16] 0(0) = 220.5, intercept=-13.189; O - Cetus 
et al. [17]; [ ]  - Martin [201, single crystal; 0(0) intereept=-13.199, and Martin [19], polycrystalline, 0(0) intercept=-13.189. 

review [7]. In small crystals constrained to fixed 
positions in polycrystalline aggregates, complications 
due to constraints and deforming forces from contig- 
uous, randomly oriented crystals are added to the 
isotropic pressure effects o f  the electron gas. More- 
over, in this case the rigidity moduli,  G, can also be 
modified by ~e as a measure of  deformation strain. 

They are not independent of  n~, as de Launay could 
assume for strain-free single crystals: 

(b) Complications considered in (a) imply that 
polycrystalline aggregates differ significantly from 
single crystals - contrary to Martin's conclusion from 
experimental evidence "that, within experimental 
accuracy, there is no dif ference. . ."  (p. 1254 in 
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Table 2 
Temperature dependence of mode distribution in polycrystalline copper 

0 (lmn) at T -- 0 As a linear function of T > 100 Eq. 

0~(100): 368.9 371-0.0322T, T < 600 378-0.0400T, T > 600 (5.1) 
01(110): 423.5 425-0.0333T, T < 400 429-0.0444T, T > 400 (5.2) 
0~(111): 440.2 442-0.0333T, T < 400 448-0.0500T, T > 400 (5.3) 

01e(100): 411.5 413-0.0344T, T < 400 417-0.0322T, T > 400 (5.4) 
01e(110): 442.8 445-0.0278T, T < 400 450-0.0389T, T > 400 (5.5) 
0~e(111): 452.7 454-0.031 IT, T < 400 459-0.0433T, T > 400 (5.6) 

0tl(100): 251.3 
0t2(100): 257.3 
0tl(110): 251.3 
0t2(110): 140.7 
0tl(111): 185.0 
0t2(l 11): 185.0 

254-0.0378T T > 100 
254-0.0378T T > 100 
254-0.0378Y T > 100 
144-0.0311Y T > 100 
188-0.0311T T > 100 
188-0.0311~ T > 100 

(5.7) 
(5.8) 
(5.9) 
(5.10). 
(5.ll) 
(5.12) 

0~(100): 182.6 181+0.01937 
0~(110): 182.6 181+0.0193T 
0~(111): 182.6 181+0.0193T 

T > 100 (5.13) 
T > 100 (5.14) 
T > 100 (5.15) 

Comments:(1) All coefficients of Tare negative except in equations for 0~(lmn) vs. T. This is important because all additive combinations of 0e 
with lattice modes makes their T-dependence negligible. (2) Transverse (111) modes are nearly equivalent to 0e at T = 0. Their difference, 
7-0.0504T, is zero when T- - ,  139K which approximates 0t2(110) = 140.7. This suggests that 0e may augment 0t2(110), 0t l ( l l l ) ,  and 
Ot2(111) in strained copper crystals. It may also combine with 0t = 251.3 to create a deformation mode at 173-0.0571T. 

[20]). That conclusion was inferred from measure- 
ments below 3 K where velocity dispersion is 
negligible. It does not apply  at T > 3K through the 
interval A0 and above 0. Unfortunately, no measure- 
ments through such high T have been found in the 
literature; but relevant c~/vs. T of single crystals are 
known. 

(c) Fig. 2 displays two features of  critical impor- 
tance in the analysis to follow. With two exceptions at 
In T < 0.5, the data points at In T < 1.4 scatter ran- 
domly in the narrow band between Martin's -13 .199  
for single crystals and -13 .189  for polycrystals, 
and the latter matches Wycherley's [16] value for 
polycrystalline aggregates. The zero slope around 
which all of  the 17 points average confirms the 
value of "7/3R = 0.00002795 as consistent with 
0(0) = 220.5 K. Wycherly 's  "7, reported to only three 
significant figures, led to systematic positive devia- 
tions from the best value as indicated by the dashed 
line in Fig. 2 at In T < 0.6. The best values of  ~, 
and 0(0) in combination are consistent with 
(Cv - "TT)/3RT 3 = 10.106110(0)] -3 = const at all 

T < 0(0) /50  where, in this case, 0(0) = 220.5 when 
"y/3R = 0.00002795. 

The second feature to be noted is that the maximum 
dispersion is not at In Tm = 3.547 = In 0.15730(0), as 
it would be in an isotropic solid, but at a slightly lower 
l n T m , ~  3.4. This shows that the formulas, 
0(0) = [3/(73 + 2)]1/30h ('y = 0t/01), derived for iso- 
tropic solids by Barber and Martin [1] do not hold for 
polycrystalline copper although the aggregate is 
macroscopically isotropic in acoustic wave velocities 
due to random orientations of  its crystalline compo- 
nents. Hence, conventional methods of averaging the 
three longitudinal moduli and six transverse moduli of  
single crystals over all orientations to find the one 
effective bulk modulus t~L and two equal rigidity 
moduli, GL, of  the aggregate are not appropriate for 
Eq. (12) in Ref. [1] which is derived to represent all 
differing moduli separately, regardless of  their number 
or their differences. It would be pointless, therefore, to 
obscure the differences by conventional methods of 
averaging although, as will be shown, alternative ways 
of averaging can be applied to reduce the number of  
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terms in Eq. (12) [ 1 ] to three or more (but not less than 
three). 

Considerations (a), (b), and (c) imply that single 
crystals, which may require from 9 to 18 terms in Eq. 
(12) of  Ref. [ 1 ], must be understood before polycrys- 
talline aggregates can be adequately represented as 
functions of  c 0. To do this, the required c o, s o and 
formulas relating them to Eq. (12) of  [1] are repre- 
sented in Table 1 and Fig. 3. 

3.2. Elastic constants and acoustic mode 
distributions in single crystal and 
polycrystalline copper 

The elastic constants co and sq of  single crystals and 
the several conventional averages of  them, represent- 
ing bulk (~) and rigidity (G) moduli, are from a 
comprehensive Handbook by Simmons and Wang 
[22]. 

Three sets of  parallel plane waves account for nine 
distributions of  acoustic modes in cubic crystals. As 
shown in de Launay's  review [7], these are functions 
of c 0 in single crystals, where they are defined by three 
sets of Miller indices: (100), (110), (111). Nine 
separate values of  01(100), 01(110), 0 j ( l l l ) ,  
0t l (100)=0t2(100) ,  0tl(110), 0t2(110), 0~(111) 
= 0t2 (111 ) are defined in copper by the general equa- 
tion 

O(lmn) = [h / ( k r rap l /2 ) ] (Z  cij),/2 
= 

When, according to de Launay, the bulk modulus of  
electron gas, ~e = c12 - c44, is added to each lattice 
bulk modulus, ~L; three higher values of  81(lmn) are 
defined: 

ij 11 12 4 4  ~e = c12 - c44 

c 1012 dyn  c m  - 2  1.7620 1.2494 0.8177 6.4317 
s 10 ~z dyn cm 2 1.3788 0.5720 1.2229 

clj and sq at T = 0, density = 9.0305 gcm -3. 
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0e(lmn) ---- h(ksrapl/2)(~L + ~e) 1/2 

= 277.85(~L + he) 1/2 

In anisotropic crystals constrained toward more 
isotropic symmetries by pressures from contiguous 
crystals in polycrystalline copper, three equal values 
of 0t must be considered, one for each set of Miller 
indices: 

1/2 0e(lmn) = h(Trapl/2)(t%) =- 277.85 R e 

Thus a total of 90(lmn) + 301e(lmn) + 30e(lmn) 
must be considered to determine 0(0) according to 
the equation 

~ ] -1/3 

0 ( 0 ) =  1/n 1/On3(lmn) 

where n = 9 if Re = 0 and n = 18 if ~e > 0. 
* Note: Sets of 01(lmn), 01~(lmn), 0,(lmn) must be 

considered separately and the ratios 01: 0tl : 0t2 must 
be defined for each Ol. 

The high temperature limit of 0(1), defined by 
0(T) = [II0, (lmn)] z/~ (4/71") 1/3 requires the T-depen- 
dence of all 18 0(lmn). These are implicit in tables of 
cij vs. Tby Simmons and Wang [22] and the following 
equations are inferred from plots of 0(lmn) vs. T. 
Because the plots are not exactly linear for 
T < 100K, the values at T = 0 are listed indepen- 
dently to show how they differ from intercepts linear 
in T. 

3.3. Determination of-O(O) as a Function of c o 

The most critical parameter of Eq. (12) of Ref. [1] is 
the effective mean of all relevant 01, 01e, 0tl, 0t2, 0e at 
T = 0 as listed in Table 2. At such low temperatures, 
all acoustic waves are mutually independent and 
velocity dispersion is zero for all 0 = hu*/k. Then, 
the effective mean is defined by the arithmetic mean of 
reciprocals cubed as defined in the equation 

)-'in(1/0, (lmn)] . 0(0) = [1In 3 - 1 / 3  

The next most critical parameter of Eq. (12) in ReL 
[1] is the high-temperature limit of 0(T). This is 
defined in Section 3.2 as the geometric mean of all 
the T-dependent 0's involved. In strain-free single 
crystals, these two means apply to all 0's listed in 
Table 2, except 0~ which does not combine with any 
transverse plane waves. In strained polycrystals, 0~ 

couples with some but not all transverse modes, and 
the degree of coupling depends on obscure variables 
such as dimensions of polycrystals, degree of strain in 
them, and magnitude of Re = c12 - c44. These effects 
can be assessed empirically by finding what combina- 
tions of O's account for the experimental values of 0(0) 
and ~(4/7r) 1/3 as labeled in Fig. 1. 

The problem of inferring appropriate means for the 
O's from the several combinations of eighteen or more 
possible values is most conveniently understood from 
a two-dimensional array in which three sets of parallel 
plane waves are represented in columns and intersect- 
ing combinations of planes are represented in rows. 
Arithmetic means of each column and geometric 
means of each row should thus be_most appropriate 
in effective total means, 0(0) and 0, respectively. 

Table 3 presents such an array with the several 
arithmetic and geometric means and defines the sev- 
eral combinations that must be considered. 

The array of 3 columns and 4 rows excluding 0e in 
Table 3 represents the sum of two 3 × 3 arrays in which 
0tl and 0t2 rows  are identical while 01 is specified in 
one array and 01e in the other. Both arrays represent a 
single crystal in which the deforming strain is zero; i.e. 
(c12- cl4) is in equilibrium with deviations from 
spherical symmetry imposed by the anisotropy of 
the lattice. In such a crystal, according to de Launay 
[7], ne of the electron gas is added to the bulk modulus 
of the lattice, e;L, making the effective modulus 
(/'i;L -[- /'~e) > /~L and 01e > 01 in each set of parallel 
plane waves, as shown. Although de Launay consid- 
ered only the higher modulus, the lower one must also 
be considered here, because the lattice modes can 
persist in a homogeneous isotropic atmosphere of 
electrons at any nominal pressure. 

The combination of modes expected in a large 
single crystal is char_acterized by the values of 0(0) 
and 0)0e line (a). The 0(0) =- 215.0 is 6.4 K lower than 
Martin's value for single crystal copper, 221.4, indi- 

3 - 1 / 3  . cating that [)-'~'~(1/0 )/n] IS not appropnate for all 
18 modes. The geometric means of each row averaged 
by this formula yields 0 = 228.4 K > 221.4 K by 7 K. 
This higher value is expected in nonparallel plane 
waves defined by three different sets of Miller indices 
interacting by coupling on mutual intersecting lines, 
while the parallel plane waves in each set do not. The 
results indicate that the arithmetic mean of these two 
extremes, (215.0 ± 228.4)/2 = 221.6 K do match the 
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Table 3 
Calculation of 0(0) and 0(T) for plausible combinations of 01, 0tb 0rE, and 0e in crystalline copper" 

77 

0 Miller indices 0(0, [I) 0 0, 

(K) g(0) (1130) (110) ( 111 ) (K) (K) (K) 

0~ l/ Plane waves I 368.9 423.5 440.2 406.2 409.7 409.7 
01e l[ Plane waves 1 411.5 442.8 452.7 434.2 435.4 435.3 
0~1 II Plane waves 2 251.3 251.3 185.0 219.4 221.9 226.9 
0~2 II Plane waves 2 251.3 140.7 185.0 172.9 187.0 
0e Deformation waves 2 182.6 182.6 182.6 182.6 
0(0) 215.0 228.4 225.0 

0(0) = (1/2)(0(0, H) + 0(0) = 221.7 220.0 
= ( 0  t • 01 - 021 ' [922) 1/6 = 2 6 1 . 7  2 5 9 . 6  

0(4/7r)_ 1/3 183.6 281.4 

A0 = 0 - 0(0) 62.1 61.4 
0(0) if g(01) = 0 and g(01e) = 2 215.4 228.7 225.4 

"The numbers in this array are for T = 0 from Table 2. 0(0) is a function of those only while 0 is, in principle, the geometric mean of the same 
0"s at T > 01 according to Eqs. (5.6) through (5.20). With one exception, coefficients of T in these formulas are small and decrease in 
significance as parameters of Cv as T increases above ~200 K. In these preliminary calculations they have been neglected because the one 
exception, 0e(T) increases with T so as to compensate those that decrease and make their means nearly independent of T. 
Modes that involve ~e are distinguished (by subscript 'e ') from those that do not because we wish to decide whether they couple or combine so 
as to obscure some lattice modes or not. 

experimental 221.4 K, as it should in accord with the 
very plausible assumption that there are as many 
coupled states as there are parallel states. 

3.4. Tentative conclusion 

In single crystals free of deforming strain, 
0(0)---[(0(0)11)+0(0')]/2, where 0(0) represents 
parallel waves, O' represents intersecting plane waves, 
for equal number densities of each. 

Item (b) in Table 3 is identical to (a) except that all 
0] are changed to 01e. This increases both 0(0) and 0; 
but the increases are so trivial that they neither confirm 
nor refute co-existence of 0j < 01e. They only show 
how insensitive 0(0) and 0 are to changes in 01, 
representing only 1/6 of the modes. Both are much 
more sensitive to changes in 0t, representing 1/3 to 2/3 
of the modes. 

The column headed 0(0e) (implying transverse 
modes are functions of 0~) represents single crystals 
in shape-changing strain as in polycrystalline aggre- 
gates. Such conditions generate deformation modes 
characterized by 0e = 182.6K in copper. This is 
essentially equivalent to transverse modes in the 
( l i d  planes, 0 t ( l l l ) =  185.0K but is not to be 
identified with them because it vanishes when 
~ -~ 0 while transverse modes do not. It differs from 

them in that it is independent of direction while 
transverse modes vary with direction between 251.3 
and 140.7 K. Hypothetically, it should approximate 
the effective mean of transverse modes in isotropic 
polycrystalline aggregates as function of strain-con- 

(;,1/2 stants so. This is given by 277.85 ~R ~ 183.5 K, 
where GR at T = 0 is 0.436 × 1012 d y n  c m  - 2  in tables 
calculated by Simmons and Wang [22]. The approx- 
imation to 182.6 K is remarkable and elucidating 
when the reasons for it are understood. 

To understand why 0e(0) approximates a mean of 
transverse modes in polycrystalline copper, alternative 
ways of averaging over the cij and sij of single crystals 
are to be considered. 

3.5. Mean values of  Or, Ore, Ot in isotropic 
polycrystalline copper 

Simmons and Wang [22] list values of bulk mod- 
ulus, ~, and rigidity modulus, G, for polycrystalline 
copper at T = 0 as shown in Table 4. 

The lines V, H, S, R are effective averages of single 
crystal cij and sij according to Voight (cij) [23] Hashin 
[24], Shtrikman [25], and Reuss (s o) [26]. In the 
literature, there is uncertainty about which, if any, 
of the four values of G is reliable, but there is a general 
consensus that G, -- 0.593 and GR = 0.436 are limit- 
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Table 4 
Bulk and rigidity moduli for polycrystalline copper 

Author 1017 tz 1012 G OK : 01 0G : 0t ~(0) 
(N cm 2) (N c m  -2)  (K) (K) (K) 

V(23) 1.420 0.593 331.1 214.0 
H(24) 1.420 0.537 331.1 203.6 
S(25) 1.420 0.500 331.1 196.5 
R(26) 1.420 0.436 331.1 183.5 
(V+R)/2 1.420 0.5145 331.1 199.3 220.4 

ing values between which certainty must be found. 
These limits as defined by Simmons and Wang 
are: 

G, = (Cll - c12 q- 3c44)/5, 

GR = (4Sl l  --  4S12 + 3 S 4 4 ) - 1 / 5  

Anderson [27] proposed the arithmetic mean 
of these two values as most appropriate, with 
this estimate being confirmed by 0(0) 
= {[(1/03) + (2/03)]/3} -1/3 = 220.4K in remark- 
able accord with Martin's experimental value for 
polycrystalline copper, 220.7 K, and Wy__cherley's 
220.5 K. But the corresponding 0(4/7r) 1/3 
---- [0n02(4/71")] 1/3 = 255.8 K is much too small (com- 
pared to 280 K to reproduce the experimental 0(T) vs. 
T. Furthermore, no reasonable combination of the six 
0t's in Table 3 yields a mean value of 199.3. None of 
these averaging schemes can work without adding ~e 
to ~v on each of the three axes to yield 

01ve = (1.420 + 3 x 0.4317) 1/z - 277.85 

= 457.8 K 

This approximates 01e (111 ) = 452.7, but 
0t = 199.3 must be lowered to 195.1 if 0(0) is to 
remain at 220.5 K. 

Evidently no reasonable combination of the Voight 
and Reuss [23,26] parameters can reproduce O(T) vs. 
T of polycrystals, because they do not account for 
deformation modes related to ~e in small crystals in 
deforming stress fields of contiguous crystals. How- 
ever, these values, being functions of observed elastic 
constants, must be significant in the heat capacity of 
polycrystalline copper. Since 0~ = 182.6 K occurs in 
both polycrystals and single crystals, subject to 
deforming external forces, and since 0c (in 
strain)=183.5 K and 0t(111) = 185.0 K are so similar, 

these three values can be interchanged in any of the 
plausible combinations without significantly changing 
the values of 0(0) or ~ in them. These substitutions 
alone justify combinations of parameters from both 
single crystals and isotropic polycrystals to represent 
polycrystalline aggregates. Furthermore, it shows that 
other substitutions can improve conformance of Eq. 
(12) in Ref. [1] with experimental data, if they are 
compatible with experimental limits 0 and 0(4/7r)1/3. 

3.6. Calculation of O(T) vs. T for predictable 
combinations of acoustic mode density 
distributions 

Table 3 contains all of the parameters required to 
represent the following predictable status of copper if 
(as justified earlier) the temperature dependence of 
elastic constants c 0 is neglected: 

1. Single crystals free of shape-changing strain but 
constrained to constant volume against internal 
pressure of valence electron gas. 

2. Single crystals assisting shape-changing stress 
from external forces while constrained to constant 
volume as in a polycrystalline aggregate at 
T << Tmelt. 

Different combinations of arithmetic and geometric 
averaging over different combinations of parameters 
are required for cases (1) and (2). 

Case (1) 

Parameters : Ol/ K : 368.9(1)*,423.5(1),440.2(1) 
OlelT : 411.5(1),442.8(1),452.7(1) 
On~T: 215.3(2), 215.3(2), 185.0(2) 
Ot2/T: 215.3(2), 140.7(2), 185.0(2) 

* (n)=number of terms having this value of 0. 
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As shown in Table 3, 

0(0)according to Section 3.5 = 221.7 

}(T) -~ O(r/Tr) 1/3 = 283.6 
A0 = 62.1 

0(T) vs. In T, according to [1] with these parameters, 
is represented in Fig. 2 by the solid line. Agreement 
with experimental points (O)  is remarkable at 
In T < 3.55 corresponding to T < 35 K, very similar 
to T m =  0.1573,0 = 34.9K. At lnT > 3.55, the 
experimental points fall farther below as In Tincreases 
to 5.3 (T = 200 and at higher temperatures the (O)  
points are increasingly scattered and uncertain. 

Case (2): 
Parameters: Identical with those in (1) except that 

two levels of deformation strain are represented: 

(a) by substituting 0e---182.6(4)K for 0 t ( l l l )  
= 185.0(4)K because these values, differing by 
only 2.4 K, lead to 0(0) -- 220.7 K in exact accord 
with the experimental value, 220.5 K; 
(b) by substituting 0e = 182.6(3) K for three 
values of 0t2, namely 251.3, 140.7, and 185 K 
because  the ef fec t ive  mean of this row, 
(172.9 + 187)/2 = 180.0 K, is 2.6 K lower than 
0e and 5 K lower than 0t(111) indicating that (b) is 
more probable than (a). 

Other reasons for preferring (b) are that it represents 
a lower average of deforming strain - three terms 
instead of four in (a) - and a more even distribution of 
strain - three dimensions compared to one (111) in (a). 

The average level and distribution of deforming 
strain in polycrystalline copper depends on the size 
and orientations of crystals and is, therefore, 
unknown; but assumptions (a) and (b) represented 
by (Vq) and (e), respectively, in Fig. 3 show the 
expected trends toward lower 0(0). Between 
In T = 3.5 and 4.5, the experimental points (O)  drift 
from the solid lines toward the (I-7) points. The further 
lowering of experimental points as In T increases 
above 4.5 indicates that values of 01 and 01e are 
depressed to lower effective means in polycrystalline 
aggregates. Small effects of this kind may be due to 
the small decreases of cij with increasing Tas shown in 
Eq. (5.1) through Eq. (5.12) in [Table 2]. These are 
neglected in Fig. 3 because they appear to be fully 

compensated by increases in 0e vs. T as indicated in 
Eq. (5.13) through Eq. (5.15) [in Table 2]. 

Whatever causes the lower than expected values of 
0(T) between ln T - - 4 . 6  and ~5.4, they are well 
represented by a simpler combination of effective 
means from Table 3. Evidently the coupling of all 
modes as In T --~ ln0(0) = 5.4, as labeled in Fig. 4, 
levels all terms in Table 3 to the effective means of 
each row. This suggests that the means of each row can 
be used as parameters in Eq. (12) of Ref. [1]. 

3.Z Combinations ofO, Ole, Otl, Ot2 

Several combinations of mean values from Table 3 
are plausible. Maximum levels of deformation strain 
associated with severe anisotropy of copper may be 
best represented by only six terms from four rows in 
Table 3: 

406.2 + 409.7 K 
01 -= 2 = 408.0(1) K 

434.2 + 435.3 K 
Ole = = 434.8 K 

2 

0tl ~ 219.4 + 226.9 K 
2 = 223.2(2) K; 

0e = 182.6(2) K 

0 ( 0 ) = 2 2 2 . 2 K ;  A 0 = 5 7 . 8 K ;  

}(4/r@/3 = 280 K 

O(T) vs. In T as function of these parameters is 
shown in Fig. 5. The agreement with experimental 
points is the most that can be expected from such 
averaging at all T's represented. The largest deviations 
from experimental values are between In T = 3.0 and 
~3.7, where calculated values of 0(T) are lower 
than experimental values. This is due to loss of 
the lowest 0t2(= 140.7 K) in the mean. 
0t2 ~ (172.9 + 187)/2 (1/2)K = 180K which is 
replaced here by 0e = 182.6 K. Had 0t2 ~- 180 K been 
used instead of 0e = 182.6 K, this part of the curve 
would have been shifted about -0.01 K toward lower 
Tand provided slightly better accord with experiment. 
But 0(0) would have been reduced from 222.2 to 221.8 
and this would make the calculated points slightly 
lower than in Fig. 4. The points at In T > ~  4 would 
not be changed significantly because A0 would be 
increased to about 58.2 K. 
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Fig. 4. 0(13 for polycrystalline copper. Selected curve for polycrystalline copper (strained) ; Eq. (12) [1] values 01(0) = 406.2(1) K; 
01e(0) = 434.2(1) K; t(0) = 219.4(2) Re = 182.6(2); 0(0) = 222.2; A0 = 57.8 and 8(4/7r) I/3 = 280K. • - calculated values; and O - 
experimental points. 
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Fig. 5. 0(T) for polycrystalline copper; six terms in Eq. (12) [11. El (0) = (406.2 + 409_.7)/2 = 408.0 K(1 term); ~le(0) = 434.2 + 435.3)/2 = 
434.8 K(1 term); 0tl = (219.4 + 226.9)/2 = 232.2(2); 0t2 = 182.692); 8(0) = 222; ~(4/7r) 1/3 = 280; A0 = 57.8. • - theoretical; and O - 
experimental. 

T h e  e f f e c t  o f  a v e r a g i n g  o u t  0 t2 (111)  = 140 .7  K is  

b e s t  s e e n  in  F ig .  6 w h e r e  t he  ra t io ,  C v ( c a l c ) /  

C v ( e x p t l ) ,  is  p l o t t e d  as  a f u n c t i o n  o f  In T. T h e  
m a x i m u m  d e v i a t i o n  f r o m  the  r e f e r e n c e  l ine ,  

C v ( c a l c ) / C v ( e x p t l )  = 1.00,  is  a t  In T c o r r e s p o n d i n g  

to t he  l o w e s t  0 t2 (111)  : -  140 .7  K in  s i n g l e  c r y s t a l s  - 

t he  t e m p e r a t u r e  a t  w h i c h  Eq.  (12)  o f  Ref .  [1] f o r  s i n g l e  

c r y s t a l s  c o n f o r m s  m o s t  e x a c t l y  to  e x p e r i m e n t a l  da ta .  
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Fig. 6. Calculated Cv ratio for copper for six and three terms. 

The points (o) for six terms in Fig. 6 simply show what 
accuracy is lost by averaging out the lowest frequen- 
cies in the crystals. The loss is only about 2% of Cvand 
less than 1% of 0(0), when six terms are averaged. 

It is interesting now to consider what accuracy is 
lost by averaging to only three terms (i.e., assuming 
perfect isotropy) in polycrystalline copper. This is 
done by choosing 

01 ~ (408.0 + 434.8)/2 = 421.4(1) K 

0t - (223.2 + 182.6)/2 = 202.9(2) K 

These values imply 0(0) = 228.1 K and 
~(4/7r)1/3 = 280.6 K. The latter remains in excellent 
accord with experiment, but 0(0) = 228.1 K is unac- 
ceptably high. A better value would be found if 
0t2 ~ (223.2 + 172.9)/2 = 198.0K is assumed. Then 
0(0) = 222.9K in exact accord with the six-term 
averages. This corresponds to assigning only half as 
many transverse modes to 0e = 182.6K - a choice 
allowed because it depends on unknown sizes of 
crystalline components. 

The points representing three-term averages in 
Fig. 6 were calculated from the same values of 8(0) 
and A0 as were the six-term averages. This allows 
most meaningful comparisons with the six-term 
points. The (C)) points, representing complete 

isotropy, are higher than the (o) points by about 
1%. Thus, inaccuracies of the three-term function 
are only about 3 % at their low-temperature maximum. 
This is still a very useful approximation when - as is 
often true - accurate values of c 0 are not available. 

The calculations presented here for copper exem- 
plify the complications and inaccuracies arising from 
anisotropies in single crystals created by polycrystal- 
line aggregates even where these anisotropies are only 
partially obscured by the macroscopic isotropy of 
aggregates. The greatest difficulties occur in determi- 
nations of the limiting values of 0(T),0(0), and 
AO(T) = 0(4/7r) 1 /3 -  0(0). If these are known, the 
T-dependence of Cvis represented well by Eq. (12) of 
Ref. [ 1 ] even when its parameters are averaged to only 
3 terms corresponding to perfect isotropy of randomly 
oriented anisotropic crystals in strongly bound aggre- 
gates. 

These conclusions and considerations are also cri- 
tically relevant to glass-forming crystals and the 
glasses made from them. 
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