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Abstract 

Catalytic pyrolysis of waste polymers over zeolitic catalysts has the potential to recover valuable hydrocarbons. 
Thermogravimetric analysis has been used as a tool to characterise the activity, regenerability and deactivation behaviour of 
zeolite US-Y in the degradation of high density polyethylene (HDPE). Deactivation of the catalyst occurs due to the deposition 
of coke. Analysis of the TGA results allowed a relationship between catalyst activity and coke content to be derived. The 
catalyst activity was found to fall exponentially with coke content. © 1997 Elsevier Science B.V. 
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1. In t roduc t ion  gives a very broad range of  products - from coke to 
hydrogen. It also requires high temperatures, typically 

Polymer waste is a cause of  increasing environ- 400-600°C [3]. This approach has, for example, been 
mental concern in the developed world [1-4]. In view adopted by BP in the construction of  a fluidised bed 
of  their biodegradability, most polymers are felt unsui- thermal cracker for mixed polymer wastes. However, 
table for landfill disposal. Polymer manufacture is a the BP process is believed to be uneconomic to the 
significant consumer of  fossil fuels, and the recovery extent of  £100 per tonne, processed at the price levels 
of  the energy/raw material value of  waste polymer is of 1994 [4]. 
attractive [2]. The production of  liquid hydrocarbons Catalytic pyrolysis is being investigated as a means 
from polymer degradation would be beneficial in that to address these problems. Suitable catalysts can both 
liquids are easily stored, handled and transported, control the product range from pyrolysis and substan- 
However, these aims are not easy to achieve. Few tially reduce the reaction temperature, potentially 
industrially important synthetic polymers are readily leading to a cheaper process with more valuable 
converted back to their monomers. Pyrolysis, i.e. products. Some recent studies of  polymer catalytic 
thermal cracking of  the polymers to give low mole- pyrolysis are summarised in Table 1. 
cular weight materials, is attractive, but unfortunately Of course, there are problems with the use of  

catalysts. Coke formation occurs during the reaction, 
and the catalysts gradually deactivate. Zeolite cata- 
lysts can be regenerated by burning off the coke, but 
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= ~ ~ This paper reports laboratory studies of the use of 
~ -- ~ " ultrastable-Y zeolite (US-Y) for the catalytic degrada- 

~ ~ - - -  ~ - - - ~ tion of high density polyethylene. In order to deter- 
mine kinetic parameters for the degradation, TGA and 
standard data analysis methods can be used. One 

w .~ ~ objective of this work was to develop a protocol for 
~ ~ the screening of other potential catalysts for their 
L~ -~ ~ activity, deactivation behaviour and regenerability. 

~ -:~ ~ ~ While Audisio et al. [20] used TGA to compare 
~ ~ ~ .~ ~ ~ ~ ~ polymer decomposition kinetics for various catalysts, 

~ i ~  " ~ . = =  ~ .~ the method has until now not been used to investigate 
°~ ~ ~ t j ~  ~ ~ ~ ~o= ~ catalyst deactivation behaviour and regenerability. 

,-~ ~ ~ L ,~ -~ ~ ,-~ A problem in the interpretation of TGA results is 
~ N i ' ~  g '~ quantification of the deactivation behaviour. Changes 

i ~ ! ~ "*-~ ~ ~ ~ in the rate ofweight loss could be due either to catalyst 
.= .= .~ "~ ~ .~ ~ ~ ~ .= deactivation or to changes in the composition of the 

.~ .~ ~ .~ .~ .~ .~ polymer residue during a run. In an attempt to decou- 
• =- .e .=- .~ ~ ~ ~ .~ .-= ~ -=- .e pie these two effects, a method was adopted which 
~= ~ ~= ~ ~ ~ ~ ~ ~ involved the addition of fresh polymer to catalyst 

~ ~ - ~, ~ samples which had already been coked to different O 

"~,~ ..~ .~ .~-.~ ~ ~ ~ .~ .~ .~ "~.~.~ levels. If polymer passes through the same composi- 
r~ c~ r~ r~ ~ r~ ~ -~ ~ ~ tion profile during TGA degradation, the influence of 

composition difference is eliminated, and the effect of 
coke can be determined. Of course, this is a crude 

• ~ assumption, but as will be shown, it does lead to an 
• ~ effective means of separating the two effects. The 

~. ~ approach is preferred to the addition of different 
~= ~. amounts of polymer to fresh catalyst, as with higher 

~ amounts of polymer it is believed that significant 
-~ ~ proportions of the polymer are degraded thermally, 

~ ~ ~ without ever coming into contact with the catalyst. 

~ ~ ~ -~ ~ ~ 2. E x p e r i m e n t a l  
~ ~ ~ E ~ ~ ~ ~~  

~ ~ ~ ~ ~, ~. ~ ~ ~ Z Z Experiments were carded out using an STD-2960 
-~o simultaneous TGA-TDA system. Temperature and 

~ ~ sample weight were recorded at 10s intervals. 
• ~ . .~ ~ The materials used were zeolite US-Y (H form, 

~ ~ z ~ Si/AI 5.7 Crossfield Chemicals, Warrington, UK) 
~ " ~  ~< " ~>= "i~- and pure high density polyethylene (destabilised, 

~ ~ "~ ~ "~ MW ~ 20000, p---- 960.3kgm -3, ref HLMJ-200 
= - MJ-8, BASF). 

" ~  .~ ~- ~ "~ '~ "~ <~.~ '~ "~'~= Two types of experiment were carried out: polymer 
! ~ z  i ,  ~ • ~ "  ~ degradation and catalyst regeneration. During poly- 

,.,~ "~ ~ -~ -~ ~ -  ~ -~ =~ ~ mer degradation, the sample was swept with nitrogen 
~ ~ ~ ! ~ , ' ~  ~ ~ .~  :~ ~ ~  ~. . . . . ,  =~ ~.-.~ at a fixed rate (30ml/min). The temperature was 

• ~ ~ ~ "~ ~ ~ ~ ~ ~ ~ raised from ambient to 500°C at a constant rate (in 
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the 5-20°C/rain range, depending on the purpose of 3. Results 
the experiment). In all experiments, catalyst and poly- 
mer were present in equal weights, the total weight Three sets of experiments carried out, as follows: 
(catalyst plus polymer) being about ~10-15 mg. A 
previous work [14] showed that at these catalyst/ (i) Experiments were carried out at four heating rates, 
polymer ratios the values of activation energy and using fresh catalyst. The method of Ozawa [15] was 
reaction order determined from experiments (at least used to obtain the kinetic parameters for fresh catalyst. 

Experimental results are shown in Fig. 1. These data 
for fresh catalyst) were almost independent of the ignore the initial loss of weight due to water evapora- 
exact catalyst/polymer ratios. This gives some con- tion, which is essentially complete by 130°C. Com- 
fidence that the results were not being biased by the 
influence of mixing and mass transfer in the molten plete weight loss (i.e. 0% residue) refers to the final 
polymer. During the experiments it was found that, if nonvolatile residue of catalyst and coke, and does not 
polymer and catalyst were unmixed, significantly imply that polymer was completely decomposed. The 

activation energies determined by Ozawa's method at 
higher (50-100°C) degradation temperatures were different levels of conversion from 5-95% were in the 
required. However, mixing of catalyst and polymer 87-115kJmol  t range, with a mean value of 
before the start of each run ensured that results were 

101 kJ mol 1. The apparent reaction order was 2. 
reproducible to within ±2°C. This supports the view 
that contact between polymer and catalyst is essential (ii) The regenerability of catalyst was investigated. 
to obtaining intrinsic (i.e. not mass-transfer limited) Coked catalyst was regenerated and cooled, before a 
kinetic parameters. Thorough mixing of catalyst and further amount of polymer (equal in weight to the 
polymer was carried out prior to all experiments, catalyst) was added. Fig. 2 shows the degradation 

During catalyst regeneration, the cokedcatalyst was weight loss curves for fresh catalyst (RO) and the 
cooled from 500 ° to 300°C under nitrogen, and then catalyst which had been used and regenerated between 
heated in air (30 ml/min) from 300 ° to 600°C at 10°C/ one and four times (RI to R4). The greatest loss in 
rain. The temperature was maintained at 600°C for activity was during the first regeneration, with smaller 
10 min before cooling, losses during subsequent regeneration. 
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Fig. 1. Weight loss curves for HDPE in the presence of US-Y at various heating rates. 
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Fig. 2. Polymer weight loss curves for HDPE using fresh and regenerated US-Y catalysts. 
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Fig. 3. Polymer weight loss curves for HDPE using fresh and pre-coked US-Y catalyst. 

(iii) The change in activity of the catalyst with increas- were well mixed and a further degradation run was 
ing levels of coke was investigated. Instead of regen- carried out. This procedure was repeated to find 
erating the catalyst, fresh polymer - equal to the initial weight loss curves for catalyst which carried the coke 
fresh catalyst - was added to coked catalyst. These from one, two or three degradation runs (C1, C2 or 
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Table 2 make some assumptions regarding the mechanism of 
Coke content after various numbers of polymer degradation runs deactivation: that the effect of  coke was to obstruct 

Number of fresh polymer Coke content at end of run (%w/ active sites, and that the uncovered sites would give 
additions w of catalyst) rise to the same reaction mechanism, and should thus 
0 7.13, 7.13 give the same apparent reaction order and activation 
1 11.35, 11.97 energy as had been determined using Ozawa's 
2 13.87, 14.34 method. The only kinetic parameter to be affected 
3 15.21, 15.78 would thus be the pre-exponential factor. By modify- 

ing the pre-exponential factor, the predicted weight 
loss curve could be shifted until it was as close as 

C3). Fig. 3 shows these results plotted together with possible, or become coincident with the experimental 
the weight loss for fresh catalyst (CO). curve. The criterion for coincidence was minimum 

Besides measuring the polymer weight loss, the sum of square differences between measured and 
residual coke in catalysts exposed to one to four model weight loss curves. By this method, the appar- 
degradation runs, was measured by regeneration in ent pre-exponential factor A i could be determined for 
air. Table 2 shows the coke contents measured during each of  the i different initial levels of  coke. The 
two sets of  experiments. For each of  the coke deter- catalyst activity was then defined as: 
minations of  Table 2, a corresponding polymer weight r~ -- Ai/Ao (1) 
loss curve had been measured. This allowed the 
relationship between catalyst activity and coke con- where A0 is the pre-exponential factor determined for 
tent to be quantified. The method used for this is fresh catalyst. 
described in the following section. A further complication is that the coke content 

clearly changes over the course of  a polymer degrada- 
tion. Thus, the activity z/as defined here refers to a 

4. Analysis  of  the effect of  coke  on activity value intermediate between the initial and final coke 
contents. The mean coke content for a TGA run was 

To be able to quantify the change in activity of  taken as that corresponding to the average activity 
catalyst at different levels of  coke, it was expedient to over a particular run. 
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Fig. 4. Catalyst activity as a function of coke content. 
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Fig. 4 shows the activity defined by Eq. (1) plotted Acknowledgements 
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7/= e -kc (2) 

where k is the constant and C the coke content of the 
catalyst. For US-Y degrading HDPE, the value of k References 
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