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Abstract

New derivative methods have been developed using inflection points. More accurate nonisothermal kinetic parameters can
be obtained by using these methods. One of the methods provides a more accurate order of reaction than the Freeman—Carroll
method. The application of these methods to polymer decomposition is also presented. © 1997 Elsevier Science B.V.

1. Introduction

Isothermal procedures for determining the kinetic
parameters of simple reactions are relatively simple,
but a single nonisothermal procedure may replace
many isothermal experiments. A wide variety of meth-
ods have been reported for the analysis of TGA curves,
each method claiming special advantages. These may
be classified as derivative and integral methods.
Among the derivative methods, the Freeman—Carroll
[1] method is widely used despite its limited precision
[2] because it is the only method available for estima-
tion of the order of reaction. This method also allows
the estimation of activation energy, but suffers from
disadvantages [2—4]. In the method of multiple heating
rates [5,6], the analytical form flor), where « is the
fraction decomposed, is to be assumed in order to
obtain nonisothermal kinetic parameters. In the
Sharp—-Wentworth [2] method, if a correct order is
assumed and substituted in the Arrhenius temperature
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dependence equation, the logarithmic plot is linear.
Nonisothermal kinetic parameters can be determined
from such a plot.

Doyle [7] proposed a curve fitting method for single
thermogram by assuming an approximation which
reduces the speculative nature of the method for
estimating nonisothermal kinetic parameters. In all
integral methods, a correct assumption of the order of
reaction, depending on the equation used, gives linear
plots from which the nonisothermal kinetic para-
meters are estimated. Coats and Redfern [3] used
an asymptotic approximation for the evaluation of
exponential integral of the Arrhenius equation. Sev-
eral methods of varied heating rates for the estimation
of activation energy have been described [8-11];
however, all available methods almost always involve
the assumption that reaction follows a simple reaction
order.

In this communication an attempt is made to
develop a new differential method to estimate the
order of reaction, nonisothermal kinetic parameters,
and to modify the Freeman—Carroll as well as Sharp—
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Wentworth methods. In a TG curve at the inflection
point, the value of (da/dT) is maximum and related to
the order and activation energy of the reaction. Hence,
the possibility of using this as a reference point to
develop new equations has been explored.

TG data of calcium oxalate, copper sulfate, high-
impact polystyrene (HIPS), polycarbonate bisphenol
A (PB) and vanadium pentoxide coated with HIPS and
PB separately, as described by Jais and Gupta [12], are
used in this present study.

2. Method of obtaining derivatives

Let « be the fraction decomposed at temperature, T,
then o may be expressed as a polynomial in T as,

" =X1 4+ Xo + XoT + X3T? + - + X, TP
(1

where p is the total number of data points, X,
Xz, ..., X, are the coefficients of the polynomial and
m is a real number which can be varied till the criteria
mentioned by Viswanath et al. [4] are satisfied. Gen-
erally, m is varies between 1.00 to —1.00, but cannot
be zero. In other words, the degree of the polynomial is
equal to one less than the total number of data points.
The coefficients of the polynomial are obtained by
nonlinear regression method (least squares method)
as,

P . p—-l p—i .
T Ta" =X & T + X, x T'?
I=l =

i=0
p-l i1
44 Xp igo TP+i- (2)

Eq. (2) generates p equations for different values of i.
Each term in each equation and « are considered as the
elements of px(p+1) matrix. The coefficients of the
polynomial are obtained by solving the matrix as
described earlier [4].

Fitting a collocation (interpolating) polynomial to
irregular data leads to very poor estimates of deriva-
tives. Even a slight error in the data is magnified [13].
This regression polynomial does not collocate, but
passes between the data points and provides smooth-
ing. This smoother function gives better estimates of
derivatives [13]. The higher the degree of the poly-
nomial the lower the error in the determination of
derivatives. Hence, the (p—1)th degree polynomial is

considered here. Taking the dependent variable, in
which m is varied till minimum average percent
deviation (A.D) and maximum correlation coefficient
(C.C) is obtained, further reduces the error in these
estimates. The statistical definition for the terms C.C
and A.D are given in Appendix A This polynomial is
differentiated and the T values substituted to obtain the
derivatives. Since this polynomial represents the
data in all respects, and the derivatives can also
be obtained, it is possible to estimate (1—c«) and
fractional.

3. Derivative methods

The fraction decomposed, « is defined as,

_(Wo — Wy)
°= W) @

where Wy, W;, Wrare the initial mass, final mass and
mass of the substance at temperature 7, respectively,
and the Arrhenius equation is written as

da/dT = (1 — )" (A/B)e E-/RT @)

where n, A, 3, and E,, are the order, pre-exponential

factor, rate of heating and activation energy of a

reaction, respectively. The second derivative of
Eq. (4) will be,

d2a/dT? = —n(1 — )" (A/B)ef/RT (dadT)

+ (1 — a)"(A/B)(Ea/RT?)e 5/T

&)

At the inflection point the second derivative,

(d®a/dT?) =0 and (da/dT) is maximum. Hence
Eq. (5) can be written as

(da/dT), = {(1 — &) /n}{(Eq/RT?) ©)

The subscript, s defines the quantities at inflection
point and Eq. (6) is rearranged as,

(Ea/R) = {nT{/(1 — o) }(da/dT), (7)
Eq. (4) at inflection point can be written as
(da/dT), = (1 — a;)"(A/B)e E/RT: ®8)

Using (Egs. (6)—(8)), we may develop three different
methods which will be referred as (1) — the reference,
(2) - the absolute, and (3) — the standard methods.
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The inflection point is very sensitive to temperature.
Hence, search for the maximum derivative is carried
with 0.01 K temperature difference. Such search for a
maximum derivative manually from a TG curve is a
tedious process. Therefore, a computer program writ-
ten in Turbo Pascal language is used to determine the
maximum derivative and the corresponding tempera-
ture as well as fractional residue, (1—a).

3.1. The reference method

In this method, differences are obtained by sub-
tracting the logarithmic form of Eq. (8) from the
logarithmic form of Eq. (4). Since Eq. (8) is taken
relative to Eq. (4) at the inflection point, we may also
call this method as the relative method. The general
equation of this method is written as

In{(da/dT),/(de/dT)}
—nn{(1—ay)/(1—a)— (Ea/R){1/T,~ 1/T}
)
Eq. (9) may be written as
Spllenn) G,
The plot of {Aln(de/dT)/Aln(l —a)} vs.

{A(1/T)/AIn(1 — &)} results in a straight line from
which the activation energy, E,, and the order of
reaction, n, can be obtained. These values along with
the rate of heating, (3, are substituted in Eq. (8) to
obtain the pre-exponential factor. When » is substi-
tuted in Eq. (7), we get the expected activation energy
for the reaction. If the activation energy from the slope
and the expected activation energy are same, or nearly
the same within experimental error, one can take this
as the correct order of reaction. Thus, this method

provides a good verification for the estimates of non-
isothermal kinetic parameters. Further, the accuracy
can be cross-checked by finding C.C. and A.D. This
method avoids ambiguity of selecting a data point to
find differences. Table 1 gives results of nonisother-
mal parameters of some compounds and Fig. 1 gives
plots for these compounds. The activation energy, E,,,
is expressed in kJmol™' and the pre-exponential

factor, A, in s,

3.2. The absolute method

In this method, the (E,/R) value from Eq. (7) is
substituted in Eq. (4), and then the logarithmic form of
the equation can be written as

In(da/dT) = n{In(1 — @) — ¢/T} + In(A/B)
an

where ¢ = {T?/(1 — «;)}(da/dT),. The plot of
In(da/dT) vs. {In(1 — @) — ¢/T} gives a linear plot
with a slope n, the order of reaction and intercept (A/
(). By substituting the value of n in Eq. (7), E, is
obtained. Nonisothermal kinetic parameters estimated
by this method for some compounds are presented in
Table 2 and plots are shown in Fig. 2. For the accuracy
of this method, one has to rely on C.C. and A.D.

3.3. The standard method

The order of reaction, n, obtained from the first and
second methods is substituted in the logarithmic form
of Eq. (4) and the general equation is written as

In(k) = (Eo/R)(1/T) + In(4/3) (12)

where k = (da/dT)/(1 — «)". The plot of In(k) vs. (1/
7) results in a straight line, from which E, and A can
be determined. This method avoids searching for

Table 1

Nonisothermal kinetic parameters by the reference method

S. No. Name of Order of E, from E, from A AD C.C.
compound reaction slope Eq. (7)

1 CaC,0, 1.1 315.7 315.8 1.0 x 10%° 8.77 0.9999

2 CuSO, 1.9 300.8 265.8 1.1 x 10" 1.96 0.9993

3 HIPS 1.1 118.8 119.3 5.0 x 107 5.48 0.9996

4 PB 2.1 363.3 363.7 2.4 x 108 2.68 0.9992

5 PB V,05 1.2 178.7 178.1 1.0 x 10! 4.53 0.9988

6 HIPS V,0s 0.6 158.1 158.6 1.0 x 10" 2.87 0.9999
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Fig. 1. Plots from the reference method: 1) ® CaC,0y4; 2) x CuSQy; 3) + HIPS; 4) ] PB; 5) A PB V;04; and 6) 57 HIPS V,0s.

Table 2
Nonisothermal kinetic parameters by the absolute method

S. No. Name of compound Order of reaction E,, from Eq. (7) A AD c.C

1 CaC,0, 1.1 306.8 2.2 x 10" 0.52 0.9990
2 CuSO, 2.3 315.9 8.5 x 10' 0.31 0.9991
3 HIPS 1.1 120.1 6.6 x 107 0.08 0.9999
4 PB 2.1 365.0 3.2 x 102 0.19 0.9996
5 PB V,0s5 1.2 177.5 8.1 x 10" 0.23 0.9996
6 HIPS V,054 0.6 158.1 1.0 x 10'° 0.05 1.0000

correct order of reaction by the trial and error method.
Table 3 lists the results obtained by using n values
from the first and second methods in case of non-
isothermal kinetic parameters for some compounds.
But Fig. 3 shows plots drawn with n values obtained
the from absolute method.

For zero order reactions, the logarithmic form of
Eq. (4) is written as,

In(da/dT) = —(E./R)(1/T) + In(A/3) (13)

The plot of In(da/dT) vs. (1/T) results in a straight line
from which both E, and A can be determined.

4, Results and discussion

If the data of Tables 1 and 2 are compared, the A.Ds
are very high for the reference method than for the
absolute method; moreover, correlations are better for
the absolute method than for the reference method. If
the results of Tables 1 and 3, which contain results
obtained by substituting the order of reaction from the
reference method, are compared, the deviations go
down to a minimum in the standard method and
correlation coefficients are almost one. Similarly, if
the data of Tables 1 and 3, that contain results
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Fig. 2. Plots from the absolute method: 1) O CaC,04; 2) x CuSOy; 3) + PB; 4) (O HIPS; 5) A PB V,0s; and 6) 57 HIPS V,0s.

Table 3
Nonisothermal kinetic parameters by the standard method

S. No. Name of compound n used from first method n used from second method
E, A AD c.C E, A A.D c.C

1 CaC,0,4 307.2 2.4x 10" 0.58 0.9996 3158 4.6 x 10" 0.33 0.9996
2 CuSOy4 316.8 9.6 x 10" 0.34 0.9996 306.3 23 x 10" 0.11 0.9999
3 HIPS 120.0 6.4 x 107  0.10 1.0000 119.4 58 x 107 0.07 1.0000
4 PB 365.2 23 x 102 024 0.9999 361.3 1.7 x 102 022 0.9999
5 PB V,0;5 177.9 8.7 x 101 0.23 0.9997 178.2 9.2 x 10 023 0.9997
6 HIPS V,0;5 158.1 1.0 x 10 0.06 1.0000 158.4 1.1 x 10" 0.04 1.000

obtained by substituting order of reaction from the
absolute method, are compared, there is not much
change in deviation values as well as in the correlation
coefficients. Hence, it is better to obtain the order of
reaction from the absolute method and use it in the
standard method to get more accurate nonisothermal
kinetic parameters.

In Table 4, the order of reaction and activation
energy obtained with respect to different data points
are presented for calcium oxalate and HIPS as used in
the Freeman—Carroll method.

If this table is examined carefully, the activation
energy reaches a minimum, and thereafter rises. It is
thus proposed to determine A values with respect to
the inflection point in the reference method. The
reference method not only allows the estimation of
the activation energy and order of reaction but also the
pre-exponential factor.

Horowitz and Metzer [14] proposed an integral
method for the determination of nonisothermal kinetic
parameters using an inflection point. They derived the
following relationship between the order of reaction



156 $.G. Viswanath, M.C. Gupta/Thermochimica Acta 292 (1997) 151-157

-2.657

—

-4.093

T

,—\—5_529
X
~
£
~-6.965
-8.401 ] | 1 o | | |
1.041 1.153 1.266 1.378 1.491 1.603 1.715
1000/ T

Fig. 3. Plots from the standard method: 1) O CaC,0,; 2) x CuSq; 3) + HIPS; 4) (] PB; 5) A PB V,0s; and 6) 7 HIPS V,0s.

Table 4

Activation energy and order of reaction obtained with respect to different data points

Points selected to Calcium oxalate

HIPS

find difference (A’s)
Activation energy

Order of reaction

Activation energy Order of reaction

2 333 1.3
3 408 1.8
4 409 1.8
5 381 1.6
6 369 1.5
7 343 1.3
8 342 1.3
9 359 1.5
Inflection point 316 1.1

122 1.1
122 1.1
127 1.2
116 1.1
119 1.1
122 1.1
123 1.1

119 1.1

and fraction decomposed at the inflection point.
(1 —a;) =n"/0=" (14)

The order of reaction calculated from Eq. (14) is
higher than that obtained by the other methods. Dhar-
wadkar and Karkhanavala [15] opined that large var-
iations are due to the inherent limitations in the
method.

MacCallum and Tanner [16] claimed that the
kinetic parameters obtained by nonisothermal meth-
ods are in poor agreement with the values obtained by
isothermal methods for thermal decomposition of
polymers, at least in some cases. They also believed
that the basic equation in the dynamic method might
be inaccurate. The poor agreement between the results
of these methods may be due to other reactions, such
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as side reactions or parallel consecutive reactions, etc.
taking place due to a constant change of temperature.
It is apparent from Eq. (6), which is independent of the
heating rate, that the nonisothermal kinetic parameters
depend on the inflection point, and not on the heating
rate.

Appendix A

If a; and Y, are the experimental value and the value
obtained from a regression line or curve, respectively,
for p data points, the correlation coefficient (C.C) is
then defined as

CC= rl/(rz.r\;)]/2
where r|, r, and r; defined as
r =So; - Yi/p — LY Sai/p*;
r, = XY?/p — (2Y,/p)* and
rs = Soi/p — (Sey/p)°.
The average percent deviation (A.D) is defined as
AD = [Zpps{(as — Yi)/a;} x 100]/p
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