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Abstract  

Various peak maximum evolution methods and isoconversional methods are compared, and the specific characteristics of 
each method are shown, from a mathematical viewpoint and by using simulated data. A convenient way of correcting the 
activation energy of the Ozawa method is proposed. Isoconversional methods should be preferred to peak maximum evolution 
methods, especially when an interpolation on the power and/or the temperature is performed. 

In the case of a complex mechanism of two parallel reactions, peak maximum evolution methods give only a mean value of 
the kinetic parameters, while isoconversional methods are useful in describing this complex mechanism. © 1997 Elsevier 
Science B.V. 

Keywords: Activation energy; Complex process; Differential scanning calorimetry; Isoconversional methods; Nonisothermal 
kinetics; Peak maximum evolution methods; Simulations 

1. I n t r o d u c t i o n  extended to any set of  parameters or mechanisms. 
The multiple linear regression method with one 

In our previous studies, theoretical data [1,2] with kinetic exponent gave the best modellings,  without 
and without various amounts of  random Gaussian leading to unrealistic kinetic parameters (i.e. negative 
errors, have been used to test the validity of  single values), such as those obtained with a multiple linear 
peak methods. This procedure was applied to various regression method with two kinetic exponents. 
multiple linear regression algorithms with one or two Among multiple scans methods (multiheating rate 
kinetic exponents, and to the Achar -Br ind ley-Sharp ,  methods), we can distinguish the peak maximum 
Freeman-Carro l l  and Ellerstein methods. Simulations evolution and isoconversional methods. We present 
were performed according to the results previously in this paper an evaluation of  these two kinds of  
obtained for an experimental  polymerizat ion of  an methods, from simulated thermoanalytical  curves 
epoxy-novolac  resin, but the procedure can be with, and without additional noise, for a single-step 

as well as for a complex process. The chief  virtue of  
these methods is to yield the activation energy without 
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versional methods, their possible use for complex of the temperature and power at a given conversion 
reactions, degree. This interpolation of the simulated data has 

been applied to all isoconversional methods, with very 
similar results to Lagrangian interpolation. 

2. Theoretical 
2.2. Integral equations 

2.1. Differential equations: Friedman method 
The methods based on the integral form of Eq. (1) 

The general equation for the reaction rate is gen- are restricted to the use of a linear heating or cooling 
erally written as [3]: rate. For nonisothermal conditions, at a constant heat- 

dce ing rate V = dT/dt, Eq. (1) may be rewritten as: 

d~ = k(T)f(a) (1) da  _ A 

(where k(T) is the Arrhenius rate constant, a the extent dT -- e-e/Rrf(a) (3) 

of reaction (conversion degree), t the time, T the let us call g(a) =- fa d~ J0 f(~), then the integral form of 
temperature and f(a) the reaction model). For the Eq. (3) is obtained [7]: 
differential scanning calorimetry (DSC) data, the 
extent ofreaction is defined as a i=Hi/Q,  where AE[e~_~ ~ ( ~ )  ] 
H i is the partial heat of reaction at time i and Q the g(a) = ~ - dx (4) 
total heat of reaction. Taking the logarithm of Eq. (1) 

gives: where x = E/RT is the reduced activation energy at 
( d H )  E~ the temperature T. As no exact solution exists for 

In ~ = ln[QAof(a)] - RT~ (2) Eq. (4), this equation is generally written as: 

AE (where R is the gas constant; As, E~, (dH/dt)~, and T~ g(c~) = ~ p ( x )  (5) 
are, respectively, the pre-exponential factor, the acti- 

vation energy, the heat flux and the temperature at a where p(x) is the temperature integral. 
given conversion degree a). This is the equation upon 

which Friedman [4] based the differential isoconver- 2.2.1. Ozawa-Flynn-Wall method 
sional method for calculating activation energies E in Using Doyle's approximation [8]: 
the case of a single step reaction and E~ for a multiple 
step reaction. This equation is established without lnp(x) = - 5 . 3 3 0 5 -  1.052x (20 < x < 60) 
introducing any approximation, and is not restricted the linear equation of Ozawa-Flynn-Wall can be 
to the use of a linear heating or cooling rate. Using this 

obtained [9,10]: 
generalized description, the determination of the acti- 
vation energy is not influenced by the proper choice of ( ~ _ ~ )  
the function describing the mechanism, although this lnV ~ In - In g(c~) - 5.3305 

influence has been widely studied [5,6]. ( ~ _ )  
From a computational aspect, the method of Fried- - 1.052 (6) 

\ a /  
man requires the determination of the heat flux and of 
the temperature at a given conversion for various The error introduced into the calculation of activation 
scanning rates. The Friedman plot can be obtained energy by the use of a linear approximation of the 
directly from DSC data using Eq. (2), because the heat logarithm of the temperature integral had already been 
flux is measured vs. temperature with this technique, discussed [11], and corrections proposed [11,12]. 
Nevertheless, very large errors can be observed if no We provide a different way of obtaining corrected 
interpolation is performed. Hence, our computer code activation energy values and, in further discussion, this 
has been optimised using simulated data, and a second type of calculation will be referred to as the numerical 
order polynomial has been retained to fit the variation procedure. This simple and powerful method consists 
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in first computing Eq. (6), to obtain an approximate On the other hand, the Kissinger-Akahira-Sunose 
value of E~ at a given conversion. Thus, the mean method [15] is valid at any given conversion, but is 
value of the temperature (T-~) for the various scanning derived using an approximation for p(x), 
rates used can be evaluated. The expression forlnp'(x)  (p(x) ~- e-X/x 2 (20 < x < 50)). Under this assump- 
is estimated by a numerical integration of the tem- tion, Eq. (8) is obtained as follows: 

perature integral (Eqs. ( 4 ) a n d  (5)), by using the 1 (~)V = l n ( a ~ R ) _  lng(o 0 E~ (8) 
trapezoidal rule, with a step of 10 -3, and for the n 
interval [x, cx~]. Therefore, lnp'(x) values are fitted \-ff~-~l RT~ 
by a first-order polynomial on the interval All the isoconversional methods (Friedman, Ozawa, 
x = E~(1 + 0.2)/(RT~~), for each given conversion, Ozawa corrected and Kissinger-Akahira-Sunose 
and we will call this method the corrected Ozawa methods) will be applied for a = 50% and for the 

method, overall conversion interval (cf. Section 3.1.3) using 
For convenience, the KissingerandOzawamethods the procedure presented above for the Friedman 

are often performed using the top of the peak tem- method. 
perature. In fact, the Ozawa method can be applied at a 
given conversion degree (Eq. (6)). As the conversion 2.3. The Malek method 
degree values are never exactly constant in experi- 

mental reactions, we will compare the Ozawa method The Malek method [14] allows the calculation of 
with the isoconversional method of Ozawa, which we the kinetic exponents m and n and of the logarithm of 
will call Ozawa 50%, and in which a is exactly 50%. the pre-exponential factor (In A), but requires the 
Henceforth, the Ozawa method, corrected or not, will previous determination of the activation energy by 
be applied as a peak maximum evolution method another method. Generally, the Kissinger method is 
(Ozawa) and as an isoconversional method, used for this determination, but we can also use the 

Ozawa or the Friedman methods. The function that 
2.2.2. Kissinger and Kissinger-Akahira-Sunose best describes the mechanism can be chosen from the 

methods shape of the plot of the standardized curve y(a). Only 
In regard to the given definition of Eq. (1), if the two of the three possible models of this method will be 

reaction rate is maximum, we can state that: studied here: the reaction-order RO(n) and the Sestak- 

d ( d a )  Berggren (SB) models with two kinetic exponents 
dt ~ -  = 0 with a = c~(t, T) and T = T(t) (also called the autocatalytic model), which are most 

often used for curing reactions. 
The plot of In (V/Tp z) vs 1/Tp known as the Kissinger 
method [13] and was initially developed for first-order 2.3.1. Reaction-order models 
reactions. In fact, this equation holds for any kinetic The flu) function of the reaction-order model is 
model [14]. If the maximum of the reaction rate suits expressed as follows: 
the peak maximum, then we obtain Eq. (7) by differ- 
entiating Eq. (1): f (a)  = (1 - a )  n (9) 

(~p2) ( _ _ ~ )  E (where n is the reaction order).The kinetic exponent n 
In V = In RTp (7) is obtained by iteration (or dichotomy) of the follow- 

ing equation: 

[ where ap ~ -  - a=ap ap ~ 1 -- 1 + (Xp) (10) 
n 

Eq. (7) was established without any approximation 
and holds for any kinetic model, but is only valid where ap is the conversion degree at the top of the 
for the peak maximum. In this way, the Kissinger DSC peak and I I ( x ) =  e--~P(x).Various approxima- 
method will be applied as a peak maximum evolution tions for p(x) were proposed [16]. The approximation 
method, derived by Gorbatchev [17] was initially used by 
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Malek [ 14] for the reaction-order model of  its method: Sestak-Berggren model. Indeed, since the reaction- 
e_ x order model implies a strictly decreasing function 

p(x) ~ - -  (11) y(c~), we find that OL M = 0, such tha tp  = 0 and, thus, 
x(x + 2) m -- 0, if y(a) is computed over the entire interval of  

Nevertheless, this approximation may be too limited the reaction. In other words, from a purely mathema- 
for modelling purpose [18]. When more precision is tical aspect, setting p = 0 in Eq. (13), leads to the 
required, the 4th rational expression of  Senum and equation of  a reaction-order model (Eq. (9)). 
Yang [19], further used as an approximate expression In the following, the Sestak-Berggren model (with 
of  the p(x) function obtained by Sestak and Malek m set to zero) will be used as an alternative to the 
[20], should be used: reaction-order models. So, the influence of  the error in 

the preliminary activation energy on the calculated 
e x (  x 3 + 1 8 x 2 + 8 8 x + 9 6  ) 

p ( x ) - ~ -  . x 4 + 2 0 x 3 + 1 2 0 x 2 + 2 4 0 x + 1 2 0  values of  the two other kinetic parameters n and In A, 
and the influence of  the approximations of the reac- 

(12) tion-order RO1 and RO2 models, will be shown using 
simulated data. 

The reader should refer to Flynn [21,22] for more 

precise information on this equation. 2.4. Numerical simulations 
In this paper, we will evaluate the accuracy of each 

of  the two ways of  computing p(x). For clarification, in The generation of  the simulated data was previously 
the case of  the first approximation (Eq. (11)), the presented [ 1 ]. Simulations without, and with Gaussian 
method will be called Malek (RO1), while in the noise (mean = 0 and standard deviation = 0.2) on the 
second (Eq. (12)), we will call it Malek (RO2). 

power were carried out. Evaluation of  the kinetic 
parameters was performed on the artificially created 

2.3.2. Sestak-Berggren model data by using a computer program described else- 
For the Sestak-Berggren model, thef(c0 function is where [3]. Absolute relative errors have been com- 

expressed as follows: puted by comparing the value obtained with that of  

f(t~) - c~m(1 - a) n = [aP(1 - c~)] n (13) reference (the values mentioned are always absolute 
relative errors); the average of  five separate simula- 

where m and n are kinetic exponents, p = m/n can be tions was used to obtain the mean relative errors on the 
computed using: kinetic parameters, in the case of  noisy simulated data. 

p -- c~M/(1 - aM) (14) For peak maximum evolution methods, the determi- 
nation of  the top of  peak temperature was obtained 

where aM is the maximum of the function y(ct). From after a linear extrapolation of the baseline. 
Eq. (1), we can write: The kinetic parameters used in the simulations of  a 

single-step process were: scanning rates V -- 1, 2, 4, , q / 4  

y(a) = ~-~-'e e/RT = A' f (a)  (15) 5 K min -1, heat of  the exothermic cure Q = - 7 7  J, 
kinetic order n = 2, activation energy E=77  kJmo1-1, 

with A ~ = QA. Taking the logarithm of Eq. (15), we logarithm of the pre-exponential factor lnA = 19, 
obtain: acquisition time s r =  ls and initial temperature 

[d-~- ] T 0 = 2 3 3 . 1 5 K .  These parameters were previously 
In e e/Rr = lnA' + nln[of(1 - a)] (16) obtained from an experimental polymerization of  an 

epoxy-novolac cured with amine [18]. As a first 
n is determined from the slope of  Eq. (16), p from approximation, it was shown that these parameters 
Eq. (14) and the pre-exponential factor A from accurately model the reaction considered, using a 
Eq. (7). reaction-order model, for the most part of the tem- 

Instead of  using approximations, there is evidence perature interval. More information on the complete 
that the reaction- order model can be deduced from the kinetics of  this transformation may be obtained in 
plot of  ln[(dH/dt) exp (E/RT)] vs. ln[c~P (1 - c~)] of  the [23]. Fig. 1 shows the shape of  the curves obtained at 
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Fig. 1. Thermoanalytical curves of a single-step process (1, 2, 4 Fig. 2. Thermoanalytical curves of a complex process of two 
and 5 K min-I) ,  parallel reactions (1, 2, 4 and 5 K m i n t ) .  

various scanning rates (1, 2, 4, 5 K min -~) using this 3. Resul ts  of numerical simulations 

model. The temperature interval where the reaction 
occurs is between 0 ° and 250°C, which corresponds to 3.1. Single-step mechanism 

a reduced activation energy (x -- E/RT)  between 17.5 
and 40. Various acquisition times were used for the four 

To test the numerical procedure for a value of  x<20, heating rates studied (Table 1). For the peak max- 
we performed the same simulations with lnA ---- 9. In imum evolution methods (Kissinger and Ozawa), no 
this case, the temperature interval at 1, 2, 4, 5 K m i n - l  specific difference was observed for the dependence of  
is between 150 ° and 500°C, which corresponds to the relative errors vs. the number of  points, in com- 
12 < x < 22. parison with the results already reported for the single 

In a second part, a simple case of  complex mechan- peak methods (cf. [ 1 ] or Table 1, MLR(n)).  The 
ism of  two parallel  reactions, governed by a reaction- analysis of  the relative errors of  the isoconversional 
order model, was simulated. I f  only the rate of  product methods (for c~ ---- 50%), clearly shows that a limit is 

reached for sr = 3s, above this value, relative errors formation is measured, the mechanism may corre- 
spond to the two following kinetic schemes: are greatly increased: 3.5-6% for sr = 4 s, 19-22% for 

s r = 5 s ,  and finally 115-125% for s r - - 1 0 s .  The 
kl k2 kl 

A ~ C +--- B orA ~ B ~ C (kl >> k2) same conclusion can be drawn for the isoconversional 
methods applied on a conversion interval of  10-90%. 

The kinetic parameters were: heat of  the exothermic In the following section, the acquisition time of  1 s 
effects Q1 = - 3 7 . 8  and Q2 -- -16 .2J ;  kinetic orders was used in the simulation of  the single-step mechan- 
nl = 1.2, n2 ---- 1; activation energies E1 = 143 and ism. 
E2=74 kJmol q,  logarithms of  the pre-exponential  
factor lnA1 = 29.4, lnA2 = 11.7; acquisit ion time 3.1.1. Peak maximum evolution methods 
sr = 2s, scanning rates V = 0.1 - 10 K min - I  ; initial Applicat ion of  the peak maximum evolution meth- 
temperature To ---- 313.15 K. The comparison of  the ods of  Kissinger and Ozawa requires a good constancy 
single-step process (Fig. 1) with this complex process of  the conversion degree at the top of  the peak (c~p) [3]. 
(Fig. 2 )c lea r ly  shows the great dissymmetry of  these In this respect, the simulation with noiseless data 
thermoanalytical  curves depending on the contribu- provides evidence of  that quasi-constancy (Table 2), 
tion of each reaction, depending on the number of  points used (acquisition 
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Table 1 
Relative errors on the activation energy for a single-step mechanism: Peak maximum evolution methods of Kissinger and Ozawa, and 
isoconversional methods at c~----50%: Kissinger-Akahira-Sunose (KAS), Ozawa 50% (uncorrected), Ozawa 50% corrected (Oc) and 
Friedman methods, for simulations without noise, with various acquisition times (sr(s)) 

Peak maximum evolution methods Isoconversional methods Single-scan method 

sr Kissinger Ozawa Friedman 50% KAS Ozawa 50% Oc MLR(n) a 

1 2.50×10 3 2.93x10 2 1.03x10 6 2.80x10 3 2.42×10 2 8.24x10 4 4.91x10-'* 
2 1.30x10 3 2.81x10-.2 3.06x10 6 2.79x10 3 2.42x10 2 8.29x10 4 9.65x10-4 
3 7.12x10 3 3.37x10 2 4.96x10 5 2 .73x10  3 2.43x10 2 9.05x10 4 1.44x10 3 
4 4.62x10 4 2.65x10 2 3.45x10 2 3.48x10 2 5.98x10 2 3.81x10 2 1.91x10 3 
5 1.03x10 3 2.79x10 2 1.92x10 I 2.06x10 1 2.22x 10 1 2.08x10 l 2.39x10-3 

10 1.03x10 2 3.67x10 2 1.15x10 ° 1.25x 10 ° 1.17x10 ° - -  4.77x10 3 

a Multiple linear regression method MLR(n) at heating rate of 5 K min 1. 

Table 2 w h e n  s t a r t i n g  a t  2 3 3 . 1 5  K o r  b e l o w ,  e x c e p t  fo r  t he  
Top of peak temperatures (Tp) and degrees of conversion (~p) for Friedman 50% method. In this case, the relative error 
simulations (kinetic parameters: E=77kJmol  1; In A=19; n=2) in the activation energy is greatly decreased (from 
without, or with gaussian noise l 0  ~ to  10 4%,  as  t h e  in i t i a l  t e m p e r a t u r e  d e c r e a s e d  

v (K min -1) No noise Noise a on power from 273.15 K to 2 3 3 . 1 5  K). This evidently suggests 

Tp (°C) OZp(%) Tp (°c) ,~p(%) t h a t  t h e  c h o i c e  o f  t h e  in i t i a l  t e m p e r a t u r e  i s  i m p o r t a n t .  

1 85.88 46.53 86.95 48.73 F o r  t h e  o t h e r  m e t h o d s ,  t h e  l i m i t e d  p r e c i s i o n  d u e  to 

2 95.03 46.44 94.80 46.76 a p p r o x i m a t i o n s  d o e s  n o t  a l l o w  t h i s  t y p e  o f  o b s e r v a -  

4 104.67 46.40 105.07 47.56 t ion .  T h e  r e s u l t s  o f  t h e  p r e d i c t i o n  o n  u s i n g  t h e  O z a w a  

5 107.83 46.31 108.33 46.88 a n d  O z a w a  5 0 %  m e t h o d s  a r e  t h e  l e a s t  s a t i s f a c t o r y ,  

a Gaussian noise: mean=0,  standard deviation=0.2, w h e r e a s  t h e  u s e  o f  t h e  c o r r e c t e d  O z a w a  5 0 %  a n d  t h e  

F r i e d m a n  5 0 %  m e t h o d s  l e a d  to  t h e  s m a l l e s t  r e l a t i v e  

e r ro r s .  T h u s ,  t h e  c o r r e c t e d  O z a w a  m e t h o d  g i v e s  s i m i -  

t i m e  v a l u e ) .  N e v e r t h e l e s s ,  in  e x p e r i m e n t a l  da t a ,  s u c h  a la r  e r r o r s  c o m p a r e d  to  t h e  m u l t i p l e  l i n e a r  r e g r e s s i o n  

c o n s t a n c y  is  n e v e r  o b s e r v e d .  R e s u l t s  o f  p e a k  m a x -  m e t h o d ,  w h i l e  t he  F r i e d m a n  m e t h o d  g i v e s  l o w e r  

i m u m  e v o l u t i o n  a n d  i s o c o n v e r s i o n a l  m e t h o d s  at  e r ro r s .  T h e  s l i g h t  v a r i a t i o n  o f  t h e  c o n v e r s i o n  d e g r e e  

c~ = 5 0 %  ( K i s s i n g e r - A k a h i r a - S u n o s e ,  F r i e d m a n ,  a t  t he  t op  o f  t h e  p e a k  (C~p) a f f e c t s  t h e  a c t i v a t i o n  e n e r g y  

O z a w a  a n d  c o r r e c t e d  O z a w a  m e t h o d s )  a re  s u m m a r -  v a l u e  o f  t h e  K i s s i n g e r  m e t h o d  l e s s  t h a n  d o e s  t he  u s e  o f  

i z e d  in  T a b l e  3. T h e  d e p e n d e n c e  o f  t h e  a c t i v a t i o n  t h e  a p p r o x i m a t i o n  o f  t h e  K i s s i n g e r - A k a h i r a - S u n o s e  

e n e r g y  v a l u e  vs .  t h e  in i t i a l  t e m p e r a t u r e  h a s  b e e n  m e t h o d  (a t  c~ = 5 0 % ) .  U s i n g  t h e  c o r r e c t i o n  o f  t h e  

e x a m i n e d .  E x t r e m e l y  l o w  c h a n g e s  w e r e  o b s e r v e d  D o y l e  a p p r o x i m a t i o n ,  p r o p o s e d  b y  F l y n n  [11] ,  

Table 3 
Relative errors on the activation energy for a single-step mechanism: Peak maximum evolution methods of Kissinger and Ozawa, and 
isoconversional methods at c~ = 50%: Kissinger-Akahira-Sunose (KAS), Ozawa 50% (uncorrected), Ozawa 50% corrected (Oc) and 
Friedman methods 

Noise" To a (K) Peak maximum evolution methods Isoconversional methods 

Kissinger Ozawa KAS Ozawa Oc Friedman 

without b 273.15 1.69 x 10 -3 2.85 x 10 -2 4.11 x 10 3 2.30 x 10 -2 4.80 x 10 -4 9.58 x 10 -4 
without ¢ 233.15 2.50 × 10 -3 2.93 x 10 2 2.80 x 10 -3 2.42 × 10 -2 8.24 x 10 -4 1.03 x 10 -6 
with a 233.15 4.45 × 10 2 5.28 × 10 -2 1.83 x 10 -2 1.81 x 10 2 1.60 x 10 2 1.55 × 10 -2 

a Characteristics of the noise: mean = 0, standard deviation = 0.2; To: initial temperature. 
For multiple linear regression method MLR(n) at 5 K min i : b RE = 2.20 x 10-3; c RE = 4.91 x 10 -4 [1,2]; a RE = 2.52 x 10 -2 
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decreases the error from 2.42 to 0.5% for the Ozawa with noiseless data). In the same way, a rapid calcula- 
50% method. Recent advances in the computer routine tion shows that the constancy of g(c0 required by 
render attractive the use of the proposed numerical application of Eqs. (6) and (8) is not verified for noisy 
procedure that gives a relative error of only 0.08%, data. As for the simulations without noise, the Ozawa 
without requiring the use of a table for corrections, method leads to the highest relative errors. On the 

Results for a reduced activation energy (x), out of other hand, all the isoconversional methods with 
range of validity of the Doyle linear approximation c~ = 50% give very similar results and improve those 
(12 < x < 22, with In A=9), have shown that the obtained with the multiple linear regression method 
isoconversional Ozawa methods for c~ = 50% and (cf. Table 3 or [1,2]). The lower errors are obtained 
for the conversion interval of 10-90% (RE ~ 6.5%) with the Friedman, then the Ozawa corrected, the 
are also accounted for by the Flynn correction Ozawa and the Kissinger-Akahira-Sunose method. 
(RE ------- 1.16%) and the numerical procedure As the variation of the conversion degree is generally 
(RE ~ 0.5%). In this case, the Friedman 50% method of same order, or higher for experimental data, iso- 
has led to a relative error (RE) of 5.1 10  - 7  ( F r i e d m a n  conversional methods should be preferred to peak 
10-90% RE = 1.5 10 -6) in the activation energy, and maximum evolution methods. 
the Kissinger methods (c~ = 50% and 10-90%) have 
led to a relative error of ~0.66% in the activation 3.1.2. The Malek method 
energy. In the usual Malek method, the activation energy is 

An example of conversion degrees and top of peak calculated using the Kissinger method. Applied to 
temperatures obtained for one set with Gaussian ran- pure signal and in a kinetic interval of conversion 
dom noise is given in Table 2. The relative errors of 10-90% (Table 4), the lowest relative error is 
obtained are presented in Table 3. Eq. (7) shows that observed with the Sestak-Berggren model for the 
Kissinger's equation can be exactly demonstrated and determination of the reaction order, whereas the rela- 
that the plot of In V/T 2 vs. 1/Tp will be linear if Qp is tive errors observed for the pre-exponential factor are 
constant, that is to say f(~p) is a constant or varies of the same order, whatever the model used. How does 
linearly with C~p. On the other hand, Eqs. (6) and (8) the accuracy of the activation energy used in the 
indicate that g(c0 should be constant. A plot of Malek method influence the error in evaluating the 
(1 - C~p) n vs. the heating rate shows that the condition two other kinetic parameters n and In A ? This brings 
of linearity is not verified for noisy data, leading to to the fore the problem of minimizing errors in 
higher average relative errors using the Kissinger computing the activation energy, the activation energy 
method, as compared to the isoconversional methods and the pre-exponential factor being mutually corre- 
(although the Kissinger method was more accurate lated [24,25]. Processing with the activation energy of 

Table 4 

Single-step mechanism: Relative errors (RE) on the kinetic exponent (n) and on the logarithm of the pre-exponential factor (In A), for the 

Malek method with the reaction-order models ROI and RO2 and the Sestak-Berggren (SB) model  

Noise a Model E from Kissinger b E from Friedman ~ 

RE(n) b RE(In A) b RE(n) b RE(In A) b 

without c RO1 5.15 x 10 -3 3.28 x l0 3 5.57 × 10 3 5.95 × l0 -5 

RO2 4.98 × 10 3 3.41 x 10 -3 4.59 × 10 -3 7.11 x 10 5 

SB 2.13 × l0 3 3.37 x 10 -3 1.50 x 10 -5 l . l l  × l0  5 

with d RO1 3.15 × l0  -2 5.87 × 10 -2 2.93 × 10 2 8.41 x 10 -4 

RO2 3.78 × 10 -2 5.87 × l0 -2 3.59 × 10 -2 8.74 x l0 4 

SB 4.33 × 10 -2 5.93 × 10 z 2.49 × l0  2 5.89 × 10  - 4  

a Characteristics of the Gaussian noise on power: m e a n = 0 ,  standard deviat ion=0.2 
b n, Kinetic exponent; In A, logarithm of pre-exponential factor; E, activation energy (kJ m o l i  ); RE(E) = 1.69 × 10 -3 and9.58 × 10 -4 
respectively for the Kissinger and Friedman methods for the theorical values E = 77 kJ mol I; In A =  19; n = 2  
for multiple linear regression method MLR(n) at 5 K min ~: 
c RE = 6.50 × 10 -5 and 3.53 × 10 -4, respectively, for n and In A, d RE = 4.56 × 10 -2 and 3.44 × 10 -2 for n and In A. 
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Friedman, computed at c~ = 50%, as starting data which always indicates a reaction-order model. As for 
(improvement of  a factor 2000, Table 3), shows that the simulations without noise, the use of the activation 
the relative errors in n and In A are much lower than energy calculated by the Friedman 50% method and of  
those obtained with the activation energy of Kissinger the Sestak-Berggren model, has led to the best results. 
(Table 4). The use of  the Friedman 50% activation The reaction order n and the pre-exponential factor In 
energy and of  the Sestak-Berggren model improves A are obtained with an even higher accuracy compared 
the results by a factor 100 for n and 300 for In A. to those obtained by the multiple linear regression 
Extremely low errors (10 5 ) in the In A determination method (improvement by a factor 60 for In A). 
were obtained (improvement by a factor 30 compared 
to the multiple linear regression method). Using the 3.1.3. Analysis of the entire information of the peak 
activation energy of  Kissinger, the relative errors in n Because of  their validity for any conversion degree, 
and In A are of  the same order as the relative error in the above-mentioned methods, such as the isoconver- 
activation energy (i.e. 10 3). Using the activation sionalmethods, are not restricted to the analysis of the 
energy of  Friedman computed at c~ = 50%, the rela- peak evolution at c~ = 50%, but can also be used for 
tive errors on n and In A are also nearly of the same extracting the entire information present in the ther- 
order (i.e. 10 -5) as the relative error in activation moanalytical curve. In the present case, activation 
energy (10-6). energies have been computed for a conversion degree 

Relative errors in the reaction order n are not varying in steps of  2%, from 10 to 90%. Then, 
affected by the accuracy of  the activation energy using evaluation of  the methods was performed by comput- 
the reaction-order models RO1 and RO2 (because of  ing absolute relative errors for each conversion value, 
the approximations introduced), and the mean value over all the interval of  conversion 

Calculations have also been performed for a retained. Results are presented in Table 5 and Fig. 3. 
reduced activation energy (x), out of  range of  validity It is interesting to note that the Friedman method 
of  the Doyle linear approximation (12 < x < 22, with (with interpolation of  the data) gives slightly more 
In A=9),  using the activation energy of  Friedman. accurate results for the activation energy than does the 
Results have shown an increase in the relative errors in multiple linear regression method. On the other hand, 
the reaction order and in the logarithm of the pre- if no interpolation is performed, the relative errors 
exponential factor, respectively, of  a factor 2 and 3, for observed become much greater even for noiseless data 
the reaction-order models RO1 and RO2. The Sestak- (0.17, 0.14 and 7.9% respectively for the Friedman, 
Berggren model has led to a decrease in the relative the Kissinger-Akahira-Sunose and the Ozawa meth- 
error on the reaction order by a factor of  two and an ods, with To = 233.15 K). 
increase in the relative error in the logarithm of the For noisy data, the errors obtained are similar to 
pre-exponential factor by a factor of  six. The Sestak- those obtained at c~ = 50%, with a higher value for the 
Berggren model is still the more accurate, with a Friedman method. The lower errors are obtained with 
relative error in the reaction order of  8.09 x 10 6, while the Ozawa method, then with the Ozawa corrected, the 
we found ,-~1% for the two reaction-order models. Kissinger-Akahira-Sunose and the Friedman meth- 

Additional Gaussian noise added to the power ods. It is interesting to compare the Friedman method 
signal did not modify the shape of  the y(ct) function, (the only one with no need of  approximation and 

Table 5 

Relative errors on the activation energy for the isoconversional methods (single-step mechanism):  Kis s inger -Akah i ra -Sunose  (KAS),  Ozawa 

50% (uncorrected), Ozawa  50% corrected (Oc) and Fr iedman methods,  for the conversion interval 10-90% 

Noise To a (K) KAS Ozawa  Oc Fr iedman 

without b 273.15 4.77 × 10 -3 2.26 x 10 -2 2.34 x 10 3 3.42 x 10 -3 

without c 233.15 2.81 x 10 _3 2.43 x 10 2 8.48 x 10 -4 1.02 x 10 -5 

with d 233.15 2.56 x 10 -2 1.89 × 10 2 2.32 x 10 -2 3.28 x 10 -2 

a To - initial temperature. 
b . . . . .  d dcf .  Table 3. 
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80 for various heating rates. The great variation of  the 
conversion degree is obvious in such a case (>13%), 

~795  when a wide range of  heating rates was used. A plot of  
B 

= ( 1  - c~e) n vs. the heating rate shows that the condition 
2, --  o z a w a ~  of  applicabil i ty of  Eq. (7) is not valid in the range of  - 79 

.__i--------~ heating rates used; nevertheless, if  a lower range is 
78.5 chosen (0.1-0.5 or ,~1-10 K min-1),  as is generally 

the case for real experiments,  this plot should appear 
78  ..... O z a w a  cor rected 

- -  F r i e d m a n  as linear. In fact, the plot of  In V/T2p) vs. 1/Tp is also 
linear and does not show the complexi ty of  the reac- < 77.5 ooo Kissinger-Akahira-Sunose 
tion studied, so that a straight line is not necessary a 

77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  proof of the existence of a single-step process. The 
application of  the Kissinger or Ozawa methods shows 
that the correlation coefficients obtained ( -0 .99988  

i i i 

7650 7o 40 6o 80 lo~ and -0 .99990 ,  respectively) are always close to one, 
conversion deg,~ (~) ~, % leading nevertheless to a mean value of  the activation 

Fig. 3. Activation energies vs. conversion degree for the iso- energy. 
conversional methods (Friedman, Ozawa, Ozawa corrected and 
Kissinger-Akahira-Sunose), for a single-step process (theorical 4.2. Information obtained with single-scan methods 
value E = 77kJmol J; V = 1,2,4 and 5 K min-]), applied at various scanning rates 

The use of  a single-scan method and several scan- 
involving the power values) with the other isoconver- ning rates gives more information on the kinetics of  
sional methods which use approximations but do not the process, in the case of  a complex mechanism, than 
involve the power values. As the ampli tude of  the the peak maximum evolution methods or the isocon- 
simulated power noise used is constant, the peak-to- versional methods applied for c~ = 50%. The multiple 
maximum ratio is obviously much greater at the linear regression method that leads to a high increase 
beginning and end of  the signal, leading, with the in the kinetic parameters,  while increasing the heating 
Friedman method, to greater errors for the edges of  the rate (Table 7), shows the existence of  several phenom- 
thermoanalytical  curve, ena. Furthermore, the computation of  kinetic para- 

meters for the beginning and end of  the 
transformation, in such a case, leads to different 

4. Complex  process  of  two pa ra l l e l  r e a c t i o n - o r d e r  values. The Arrhenius plots, presented in Fig. 4 (a) 
models  and (b), were obtained with the single-peak method of  

Achar -Br ind ley-Sharp  [3] (or Borchardt-Daniels)  at 
4.1. Peak maximum evolution methods 5 K m i n -  1, for various values of  the kinetic exponent 

(n). This method gives very similar results with the 
Table 6 gives peak temperatures and degrees of  multiple linear-regression method [1,2], but the 

conversion of  the complex process shown in Fig. 2, kinetic exponent n retained is the one that gives the 

Table 6 
Peak temperatures (Tp) and degrees of conversion (ap) obtained with various heating rates used in the simulation of a complex process of two 
parallel reactions a, without noise 

I//(K rain 1) 0.1 0.3 0.5 1.0 2.0 5.0 10.0 

Tp (°C) 174.75 187.08 193.52 202.70 212.20 225.00 235.00 
c~p (%) 66.37 63.17 62.04 60.43 58.49 55.35 53.05 

a Theoretical parameters: nl = 1.2 and n2 = 1; E1 = 143 and E2 = 74kJmol-t; In AI =29.4 and In A2 =11.7 
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Table 7 -1 / 

I 
Kinetic parameters for simulated noiseless data for a complex 
process of two parallel reactions, using the multiple linear -2 23 
regression method, for the conversion interval 10-90% 

19 
V (K min 1) na.b In A a' b E a, b LSM c -3 

0.1 0.69692 10 .80384 75.57976 3.04x 10 3 .4L 15 
0.3 0.90703 17 .58950 98.60711 9.93x10 3 -~ [1 1 
0.5 0.97695 20.03868 107.29275 1.74x 10 2 "5 | 
1.0 1.07752 22.79768 117.36907 3.89x 10 2 r 
2.0 1.21548 25.26098 126.67011 1.29x 10 ' /07 
5.0 1.51536 29.02782 141.41117 1.87x 10 ° -6 

10.0 1.92027 33.53551 159.57993 2.31 x 101 . 10 3 

a n - Kinetic exponent; In A - logarithm of pre-exponential factor; 7 
and E - activation energy (kJ mol z). 

I bTheoretical parameters: nl : 1.2 and n2 = 1; E, 143 and "~.9 195 ½ 2.05 211 2.16 xlO" 
E 2  = 74kJmol 1; lnAi = 29.4 and l n A 2  = 11.7. 
c L S M  - fit of the calculated curve with the simulated one (cf. [1 ] 1/'1" in K" 
or [2]). 

2 22 

best  l inear izat ion o f  the Arrhenius  plot  (correlat ion 0 1 8 ~  
coeff ic ient  nearest  to one). 

For  the interval  10-90%,  the best  l inear izat ion o f  2 ~ X ~ X  
the Arrhenius  plot  is obta ined  for n = 1.5 (using a step 

o f  0.1 for n), with a corre la t ion coeff ic ient  c lose to one 4 1 4 
(r  = - 0 . 9 9 9 7 9 3 8 ) ,  but  Fig. 4a does not  show the 

exis tence  o f  two phenomena .  On the o ther  hand, i f  1 ' i ~  

the kinet ic  interval  is ex tended  to 1 -99%,  Fig. 4b -6[ 

c lear ly  shows the exis tence  of  several  mechanisms ,  l0 
but  an unexpec ted  high correlat ion coeff ic ient  value 0 

(r  = - 0 . 9 9 9 1 9 3 6 )  is also observed  for the best l ine- |0 2 

ar izat ion (for n = 1.4). W h e n  a lower  heat ing rate is 10 / 
used (0.1 K min-~) ,  the computa t ion  for the beginning  18 1.9 2 2.1 2.2 23 2.4 xl0 ~ 

and end of  the peak, gives  parameters  nearest  to the lrr ~n K" 

parameters  o f  each  phenomenon  ( 1 - 3 0 % :  Fig. 4. (a) Arrhenius plots obtained with the Achar-Brindley- 
E = 71 .58kJmo1-1 ,  l nA  = 9.71, n = 1; 7 0 - 9 9 % :  Sharp method on the kinetic interval 10-90%, best linearization for 
E = 141.27kJmo1-1,  l nA  = 29.03, n = 1.2). n -  1.5 (using a step of 0.1 for n), heating rate 5 K min-l.(b) 

Arrhenius plots obtained with the Achar-Brindley--Sharp method 
on the kinetic interval 1-99%, best linearization for n = 1.4 (using 

4.3. The M a l e k  me thod  a step of 0.1 for n), heating rate 5 K min ~. 

The  Ma lek  me thod  indicates  a react ion order  mode l  

(plot  o f  f(c0 vs. c0. It is interest ing to note that the 

reac t ion-order  and the Ses t ak -Bergg ren  models  (with reac t ion-order  and the Ses tak-Berggren  models ,  sup- 
m = 0) lead here  to very  different  values  (Table 8), por ted  by different  hypotheses ,  should indicate that a 

whi le  this was not  the case with a real s ingle react ion-  more  complex  phenomenon  is involved.  The  Ses t ak -  

order  mechan ism.  The  complex i ty  o f  the m e c h a n i s m  Berggren  mode l  (with m ~ 0), also led to approxi-  
can only be  deduced  f rom the var ia t ion o f  the kinet ic  mate ly  constant  values  for the pre-exponent ia l  factor 

order  n, in the reac t ion-order  models ,  but  no addit ional  and var ious values  o f  the kinetic exponents  m and n. In 
informat ion  on the mechan i sm can be obtained.  Only  such a case, the Ses t ak -Be rgg ren  mode l  can be used 
the di f ferences  be tween  the results obta ined with the only for mode l l ing  purposes.  
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Table 8 can observe a difference between the Friedman and 
Kinetic parameters for simulated noiseless data for a complex other isoconversional methods. This could be 
process of two parallel reactions, using the reaction order (ROI) 
and (RO2) and the Sestak-Berggren (SB) models of the Malek explained for the Ozawa and Kissinger-Akahira-  
method(10-90%) Sunose methods, because the reduced activation 

energy (x) is between 18 and 27, at 0.1 K min ~. 
V/(K/min) Malek RO1 Malek RO2 Malek SB Nevertheless, the application of Flynn 's  correction 

n a In A a n a In A ~ n a In A a led to similar results (E = 121.44 kJmol-1, at 

0.1 0.76 27.51 0.76 27.51 1.65 27.70 
0.3 0.90 27.57 0.91 27.57 1.41 27.63 
0.5 0.96 27.56 0.96 27.56 1.34 27.60 
1.0 1.04 27.54 1.04 27.54 1.30 27.55 2 a 
2.0 1.14 27.51 1.15 27.51 1.32 27.53 
5.0 1.33 27.50 1.34 27.50 1.45 27.51 

10.0 1.49 27.50 1.50 27.51 1.65 27.52 

a See footnotes of Table 7, E (Kissinger) =135.57 kJmol. - I  ~E 1.5 

c 

4.4. Analysis of the entire information of the peak ~o 1 
D. 

The complexity of the process can only be under- 
stood when using the isoconversional methods pre- o5 
viously presented, or the approach developed by 
Vyazovkin [26,27]. Fig. 5 shows the dependence of 
the activation energy upon conversion, obtained using 0 . . . . . . .  
these methods, for the lowest heating rates studied. It 60 8o lOO 120 140 160 180 2oo 220 240 
is interesting to note that even for ideal simulated data Temperature in VJmin 

and also with the simulated single-step process, we 
1001 , , , 

90i 

1 riO 80 I 

. -  so 

• -= 120 ~o 40 
n 

110 30 
/ . . ~  ~ Kissinger-Akah,ra-Su nose 

® 100 / /  , ~ "  +++ Ozawa 20 
/ , ; ~  ooo Ozawa corrected 

= 10 
90 Y 0 

'~ I J I 
80 100 150 200 2fi0 300 

Temperature in K/rain 

i i 

700 20 40 60 80 iO0 Fig. 6. (a) Thermoanalytical curves of a multiple step process at 

Conversion degree (ct) in*/. 0.1 K m i n  -I  (a - whole phenomenon b+c,  b: Q2 = - 1 6 . 2 J ,  
n2 = 1, E2 =74 kJ tool i, lnA2 = 11.7; c: Q1 = -37 .8J ,  nl = 1.2, 

Fig. 5. Activation energies vs. conversion degree for the El ~143 kJmol i , In A1 = 29.4).(b) Thermoanalytical curves of a 
isoconversional methods (Friedman, Ozawa, Ozawa corrected and multiple step process at 5 K min i (a: whole phenomenon b+c,  b: 
Kissinger-Akahira-Sunose),  for a multiple step process, for 0.1, Q2 = -16 .2J ,  n2 = 1, E~ = 7 4 k J m o l - 1  , In A2 = 11.7; c: 
0.3 and 0.5 K min- l .  Qi = -37 .8J ,  nl -- 1.2, E1 =143 kJmol 1, In AI = 29.4). 
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c~ ---- 50%), to those found with the proposed correc- for a reaction-order model,  if  m is set to zero, so that no 
tion (Ozawa corrected, Fig. 5), although these last approximations are needed. Furthermore, a reliable 
corrections depend on the value of  the reduced activa- value of  the activation energy is essential for the 
tion energy, accuracy of the other kinetic parameters. 

Furthermore, the extreme values obtained for the To show the interest of  isoconversional methods, a 
activation energy are a good estimate of  the values of  simple complex mechanism was studied over the 
each phenomenon itself (79.29 and 140.05 kJmol -  1, entire interval of  the reaction. Other complex mechan- 
respectively, at c~ = 2 and 98%, with the Friedman isms will be studied later. The analysis of  the Arrhe- 
method). The separation of  the two parallel reactions, nius plots of the Achar -Br ind ley-Sharp  method can 
evident at the beginning and end of the peak, is only be used to indicate the existence of several phenom- 
possible if low heating rates are used (Fig. 6(a) and ena, and clearly shows the necessity of  studying the 
(b)). In such a case, the choice of  the heating rate reaction over the entire interval of  temperature (except 
should be make in regard to the degree of  overlapping in the quasi-hypothetic case of  a single-step mechan- 
of  the two phenomena. In the same way, the concen- ism). This study confirms the value of  isoconversional 
tration ratio of  each reactant should be changed for a methods for the analysis of the dependence of  the 
better separation of  the two peaks. As an example,  if activation energy upon conversion for the study of 
the concentration of  the first reactant is decreased, the complex mechanisms. Indeed, the peak maximum 
corresponding surface of  the peak (Fig. 6a, curve b) evolution methods have given only a mean value of  
will be decreased, the activation energy, while the Malek method has 

indicated a simple reaction-order model. 
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