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Abstract 

This paper first reviews the history of the temperature dependence of reaction rate in reaction kinetics. The various 
equations which are in use today for expressing this dependence were delineated by van't Hoff almost one hundred years ago. 
Since an exponential form best describes this dependence for most thermal analysis reactions and, due to the fact that the 
simple Arrhenius equation (with a temperature-independent preexponenfial factor) has traditionally been used for this purpose, 
the mathematically intractable temperature integral often has become a necessary evil in the analysis of thermal analysis 
kinetics. Methods which avoid the temperature integral in kinetics analysis are discussed. The merits of various evaluations 
and approximations for the temperature integral are described and assessed in this paper. © 1997 Elsevier Science B.V. 
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1. Introduction 

The temperature integral has played a somewhat 
enigmatic role in the development of  thermal analysis 
reaction kinetics. That is, it has appeared to be a 
necessary evil to be dealt with whenever the 
Arrhenius equation was integrated over time as a 
function of temperature. Many of  the problems con- 
nected with its application have resulted from the 
inability to accurately approximate the temperature 
integral by a simple closed-form expression which is 
suitable for use in graphical form to determine the 
'Arrhenius Parameters, '  i.e. the energy of activation, 
E, and the preexponential factor, A0, in Eq. (1) 
below. 
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This integral is obtained in thermal analysis when 
the Arrhenius equation [1], 

k(T) = aoexp(-E/RT), (1) 

where T is the absolute temperature, k(T) is the 'rate 
constant,' and R, the 'gas constant,' is the one used to 
express the temperature dependence of the reaction 
rate. 

When Eq. (1) is integrated over a t ime dependent 
temperature range, one obtains the ' temperature 
integral,' p(E/RT)=p(x),  which is defined here 
as" 

OO 

p(x) = [(-expx)/x] - / ( e x p  - x)dx/x 2 (2) 

X 

If  a reaction starts at a temperature where its rate is 
immeasurably slow, the lower limit of  the integral in 
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temperature may be taken as zero and Eq. (2) is 
calculated between x and infinity. 

However, before discussing the temperature inte- 
gral, we review briefly the history of how the Arrhe- 
nius equation came into being and its 'theoretical' and 
its 'practical' implications with respect to condensed 
phase kinetics. Equations with various forms of 'expo- 
nential and other temperature dependences' were 
developed by Arrhenius, van't Hoff and others over 
a hundred years ago and are discussed below. Some 
were, at first, purely empirical proposals, but various 
rationales and theories for an exponential relationship 
between the rate and temperature have been devel- 
oped. These have been based on collision probabil- 
ities, energetics, thermodynamics, and/or statistical 
mechanics. Since these theoretical developments are 
rigorously applied mainly to homogeneous gas or 
liquid phase single step processes, they need not be 
belabored in this discussion which applies to the 
kinetics of complex condensed phase systems of 
thermal analysis. 

It is surprising to find that almost all the equations 
used today to express the dependence of the rate on 
temperature were first proposed by scientists of the 
19th century. An interesting discussion of many of the 
early equations was given in 1899 in van't Hoff's 
'Lectures on Theoretical and Physical Chemistry' [2]. 

Van't Hoff suggested various forms that the tem- 
perature dependence of the rate constant, k, might 
assume. These, along with several others, are listed in 
Table 1. The first column gives the differential form 
and the second column, the integral form of the rate 
constant, k. 

In Table 1, A, B, C, a and b are empirical constants. 
These equations give us a good starting point for the 
discussion of the problems in developing parameters 

for the temperature dependence of the rate. Therefore, 
we discuss them each in turn. 

Eq. (a), d(lnk)/dT = C: This equation was first 
used by Berthelot in 1862 [3] and Hood in 1885 [4] 
and has been used at times for many years for con- 
densed phase kinetics, especially for 'first order 
kinetics' where A0 and C are calculated from In In 
a vs. In Tplots. (a is the extent of reaction.) Vallet [9] 
published many such plots and justified their use from 
the near linearity between T and l IT  over the usual 
reaction range and from the easy integration of this 
equation. He showed that this expression is equivalent 
to a two-term Taylor's expansion of the Arrhenius 
Eq. (1) about a reference temperature [ 10]. Van Kre- 
veland et al. [11] used this reference temperature 
technique as did Horowitz and Metzger [12] (see 
Flynn and Wall [13]), and, most recently, Eq. (a) 
has been applied to many other forms of f la )  by 
Dollimore [14]. Its practical use is belied by the 
necessity of transforming its parameters into the 
common Arrhenius parameters so as to compare them 
with those obtained from the vast bulk of kinetics 
analyses. Also, the validity of this transformation 
depends upon the subjective selection of the correct 
form off(a) .  

Eq. (b), d(lnk)/dT = B/T: This simple depen- 
dence of the rate constant on a power of the tempera- 
ture was suggested by Harecourt and Esson in 1895 
[5]. It has never become popular so it need not be 
discussed further. However, expressing the rate in 
terms of a power series of the temperature was first 
suggested by Urech in 1883 [ 15], and more recently by 
others [16,17]. 

Eq. (c), d(lnk)/dt = A/T2: If A = E/R, then this 
equation becomes the standard 'Arrhenius Equation' 
(1) above, developed by Arrhenius in 1889 [1]. It is 

Table 1 
Equations for the temperature dependence of the rate of reaction 

d(ln k ) / dT = k - Reference 

(a) C 
(b) B /T  
(c) A/T 2 
(d) (A + BT)/T 2 
(e) (A + CT2)/T 2 
(f) (BT + CT2)/T 2 
(g) (A + BT + CT2)/T 2 
(h) a/(T + b) 2 

A0exp(CT) 
AoT B 
Aoexp(-A/T) 
AoTBexp(-A/T) 
A0exp(CT)exp(-A/T) 
AoTBexp(CT) 
AoTBexp(CT)exp( A/T) 
Aoexp[-a/(T + b)] 

Berthelot [3]; Hood [41 
Harecourt and Esson [5] 
Arrhenius [ 1 ] 
Kooij [6] 
van't Hoff [21 
(added for completeness) 
van't Hoff [2] 
VVI" [7] or WLF [8] 
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ironic that it has become the 'equation of choice' for 
chemical kineticists as it is the one whose integration 
at constant heating rate leads to intractable solutions 
(the temperature integral). Much of this paper is 
devoted to the discussion of these resultant problems. 
The temperature-independent prexponential factor, 
Ao, used in this equation has no theoretical justifica- 
tion! The unfortunate selection of this form by classi- 
cal scientists working with isothermal systems where 
it is the most suitable for calculations has led to its 
application to nonisothermal kinetics data where it is 
most unsuitable. 

Eq. (d), d(lnk)/dT = (A + BT)/T2: This equation 
is the most interesting one of the above set. It appears 
to have been first used by Kooij (Kooy) in 1893 [6]. If 
B is set equal to 2, then the equation is easily inte- 
grated at constant heating rate in a closed form. Such a 
T 2 term may be introduced into the preexponential 
term of Equation (c) by employing a heating rate 
proportional to 1 / T  [ 18,19,13,20-22]. This technique 
allows one to retain the traditional definition of the 
Arrhenius parameters, E/R and In A0, as given in Eq. 
~c) so that these parameters can be directly compared 
with those ordinarily obtained from constant heating 
rate and isothermal experiments. 

Eq. (d) with a T 2 term (B = 2) also can be posited to 
be the correct form of the temperature dependence at 
constant heating rate. In the kinetically complex con- 
densed phase systems encountered in thermal analysis 
studies, some temperature dependence of the preex- 
ponential factor, In A0, is undoubtedly often present, 
although its exact form probably will vary from case to 
case [23]. There is, of course, considerable theoretical 
justification for a temperature dependence of the pre- 
exponential factor. Simple collision theory of gases 
suggests a one-half power dependence for bimolecular 
gas phase reactions. In transition state theory, the 
power of the temperature is one or greater depending 
upon the number of reacting species involved in the 
geometry of the activated complex [24]. In this 
case, for a gas phase bimolecular reaction complex, 
the rate constant contains a T 2 in the preexponential 
term [24]! 

Equations obtained from 'modified' temperature 
integrals containing temperature-dependent preexpo- 
nential terms have been used occasionally to calculate 
kinetics parameters for constant heating rate methods 
125-29]. However, in all these cases, redefining the 

Arrhenius equation with a temperature-dependent 
preexponential factor makes the new calculated para- 
meters, E/R and In A0, strictly not comparable with 
those obtained in practically all other isothermal and 
nonisothermal calculations in literature where the 
'classic' Eq. (c), with a temperature independent 
A0, is used in the calculations. Therefore, if the 
thermal analysis community were to adopt one of 
these equations with a temperature-dependent preex- 
ponential term as the basic equation for temperature 
dependence of the rate, it would be an incredibly 
tedious and, in many cases, an impossible task to 
go back and try to recalculate all activation energies 
and preexponential factors found in the literature so 
that valid quantitative comparisons could be made 
with the new E/R and In A0 values and those obtained 
from the diverse experimental kinetics results of the 
last century. (Although a preexponential temperature 
dependence only slightly affects the shape of a 'the- 
oretical' rate curve at constant heating rate [13,25], it 
does noticeably affect the values of its calculated 
kinetics parameters.) 

There are, of course, several other ways by which 
the temperature integral may be avoided completely. 
These are discussed in the next section. 

Eqs. (e), (f) and (g), d(lnk/dT = (A + CT2)/T 2, 
(BT + CT2)/T 2, (A + BT + CT2)/T2: These equa- 
tions, with their additional parameters, most certainly 
would result in better fits to experimental data but 
they have little, if any, theoretical justifications. They 
have rarely, if ever, appeared in scientific literature and 
this is probably just as well. There are enough com- 
plications already. Of course, in cases of more com- 
plex kinetics systems, such as consecutive, 
competitive, independent, chain, etc, reactions, more 
complex formulations, which are summations and/or 
products of Arrhenius equations with differing para- 
meters, are necessary to describe the temperature 
dependence of the reaction kinetics (unless they can 
be reduced to a single Arrhenius expression by 
applying the concept of the 'rate controlling step' 
[30]). 

Eq. (h), d(lnk)/dT = a/(T + b)2: This is the form 
of the Vogel-Fulcher-Tammann (VFT) Equation [7] 
and the Williams-Landel-Ferry (WLF) Equation [8]. 
This equation is successfully applied to kinetics data 
for viscoelastic processes occurring in the glass tran- 
sition temperature region. 
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2. Avoidance of the temperature integral 

Besides keeping to isothermal investigations and 
using nonlinear heating rates, another way to avoid 
involvement with the temperature integral in the ana- 
lysis of constant heating rate kinetics is to perform the 
analysis directly upon the differential form of the rate 
equation. Such methods have been available for many 
years [13] and Friedman's isoconversional technique 
[31] has been generalized recently [32,33]. Many of 
the past disadvantages of these 'differential' techni- 
ques are no longer as relevant now that data handling 
and computation are done by computer [33]. 

Both the temperature integral and a knowledge of 
the form of the conversion function, f (a)  are unne- 
cessary for the determination of Arrhenius parameters 
at low degree of conversion for 'nonautocatalytic' 
reactions [34]. If the rate of conversion, da/dt, at 
constant heating rate,/3, is a product of functions of 
conversion only and of temperature only, f (a)  and 
k(T), respectively, then, 

(/3) da/dT = f(a)k(T). (3) 

The substitution of the Arrbenius Eq. (1) into 
Eq. (3) followed by differentiation with respect to a 
gives 

[d/da] [da/dT] =E/RT2 + ~f'(a)/f(a)] [da/dT) 
(4) 

One obtains, for a << 1, from application of the 
mean value theorem [34], 

E/R = [i"2/6~][A(a)/AT] - 2T[a << 1], (5) 

where T and a are values averaged over the intervals 
AT and A (a). Eq. (5) holds for all values of a for zero 
order reactions, and deviations from it are inverse to 
the sign of the reaction order. In practice, when 
0 < a < 0.05, the value of E/R is accurately deter- 
mined for most nonautocatalytic cases whether they 
follow a reaction order or not. 

Flynn [10] in 1969 developed a technique in which 
'instantaneous' E/R values, from a single specimen 
and therefore unbiased by thermal history, are 
obtained from thermal analysis experiments in wdhich 
the temperature is either jumped between plateaus or 
cycled harmonically. In either case, E/R is calculated 
from temperatures and the rates at each temperature 

from 

E/R = ln[(rate)l/(rate)2]/[1/T 2 - l/T1] (6) 

where the values of the rates are extrapolated to the 
midpoints of the jumps or obtained from the upper and 
lower envelopes in the cyclic case. This method has 
been refined and fully automated by Dickens [35]. 
Rouquerol [36] in 1973, applied a similar jump tech- 
nique between constant rates to his controlled rate 
thermal analysis (CRTA) method. 

Modulated DSC instruments offer a yet untapped 
potential for the determination of these instantaneous 
kinetics parameters. Flynn, in 1976 [37-39], pointed 
out that "Relaxation phenomena may be studied either 
by measuring the time constant for a single (tempera- 
ture) jump directly, or by measuring the phase lag or 
amplitude change for system which is oscillating 
between two limiting values . . . .  " Study of the relaxa- 
tion of these oscillating modes comprise many of the 
present applications of MDSC. However, as indicated 
in Eq. (6), the envelope for the rate for large ampli- 
tude, low frequency oscillations in the temperature can 
be used to calculate E/R. Thus it should not be too 
difficult to determine E/R applying Eq. (6) to rate data 
obtained from the envelope of the nonreversible signal 
of an MDSC for a nonreversible chemical reaction. 
Flynn, in 1985, performed such an experiment by 
manually jumping the temperature back and forth 
between plateaus to calculate E/R in a DSC study 
of the oxygen-catalyzed cure of drying oils [40,41]. 
However, for this diffusion-limited reaction, a period 
of over 10 min was needed to reach a steady cure rate 
after each temperature jump! 

3. An analysis of solutions to the temperature 
integral 

If the rate of a reaction can be described by the 
equation 

da/dt =f(a)k(T)  (7) 

then upon separation and rearrangement, one obtains 
at constant heating rate,/3, upon integration, 

da/ f (a)  = g(a) = k(T)dT//3 = P(T). 

o To 
(8) 
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If k(T) is defined by the Arrhenius Eq. (1) and the 
lower limit of integration is assumed to be 0, that is, no 
reaction has occurred at the initial temperature, 
T = To, then, upon substituting x = E/RT, we obtain 
[42] 

OG 

P(z) = [AoE/~R] / [exp(-x)/x2]dx (9) 

X 

which upon the variable change x = zy becomes 

P(z) = [AoE/~Rz] / [exp(-zy)]y-2dy (10) 
d 

1 

P(Z) = [AoE/~Rz]E2(z) (11) 

E2(z) is a well-known integral [43]. In fact, it is 
probably the best one to use for calculating the 
temperature integral as its solutions are quickly con- 
verging and easily adaptable to computer routines. It is 
given accurately for values ofx greater than two by the 
continued fraction, 

E2(x)/x = (e-X)/x[1/x + 2/1 + 1/x + 3/1 

+ 2/x+4/1  + 3/x + 3/x+ 5/1 

+ 4 / x + 6 / . . . ]  ( x > 2 )  (12) 

Truncating the number of terms in the above con- 
tinued fraction reduces it to the one, two, three and 
four degree 'rational approximations' [44] for the 
exponential integral given in Table 2. These are by 
far the best closed form approximations for the tem- 
perature integral. 

For values of z less than 2, the following series 
expansion for E2 converges rapidly. 

Table 2 
One, two, three and four degree rational approximations for the 
exponential integral (see Ref. [44]) a: 

Degree p(x) 

1 ~xl'(-x) ~ ( 1 3 )  x (x+2) 

2 exp-x) 
x (x2+6x+6)  (14) 

exp(-x) (~+lO~+ls) (15) 
3 x " (x3+ 12xZ+36x+24) 

4 exp(-x). (x~+lSx2+86x+96) 
~+20~ +12ox2+240~+J20 (16) 

a Reference [44] has an error in the first power of x term of the 
numerator of the 4th degree approximation equation. That is, it 
should read 86x, rather than 88x. 

E2(x)/x = (1/x)[xlnx + 1 

+ (1 - 0.5772156649)x - X2/2! 

+ x3/2(3!) - x4/3(4!) 

+x5/4(5!)  . . . .  ] (x < 2) (17) 

where 0.5772156649 is Euler's constant. 
From Eqs. (2) and (9), we see that p(x) 

= [exp(-x)/x] -[/3/AoxT]P(x). Therefore Eq. (17) 
may be used in conjunction with Eq. (12) to calculate 
values of whatever degree of accuracy we wish for the 
temperature integral, p(x), over the whole range of 
E/RT 

There must be at least several hundred papers in the 
literature on the temperature integral and its evalua- 
tion by series solution and various approximations. 
These solutions of the temperature integral are classi- 
fied into three categories - viz. A. Series Solutions; B. 
Complex Approximations; C. Simple Approxima- 
tions. Only a few of these have scientific relevancy 
today. Some others are of historical interest. These are 
discussed below. (For a more detailed discussion of 
many of the solutions of the temperature integral, the 
reader is referred to Section 4.4 B. Some Useful Rate 
Equations and Their Integrals in Charles D. Doyle's 
massive and excellent review article published in 1966 
[45], and 9.2 Integration of the Rate Constant under 
Nonisothermal Conditions: Use of Function p(x) (pp. 
218-222) in Jaroslav Sest~ik's book, (Ref. [46]). 

3.1. Series Solutions 

The tables of values for the temperature integral and 
many of the Complex and Simple Approximations, 
which are discussed later, are based upon series solu- 
tions and truncations of them. Beside the series solu- 
tions to the temperature integral given in Eqs. (12) and 
(17), there are three that have been used frequently 
over the years: 

3.1.1. Schl6milch Expansion [47] 

p(y) = [(exp - y)/y(y + 2)][1 - 1/(y + 2) 

+ 2/(y + 2)(y + 3) + 4/(y + 2) 

• .. (y + 4) + 14/(y + 2) - . .  (y + 5) 

+ . . . ] ( y  = - x  > 15). (18) 

This series has been used occasionally to calculate 
p(x) tables. 
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3.1.2. Expansion in Series of Bernouli Numbers [48] 

p(x) = [(expx)/x] [-0.0000035 + 0.998710/x 

+ 1.98487646/x 2 + 4.9482092/x 3 

+ 11.7850792/x4+ .--] (x <_ - 2 )  

(19) 

This series is useful for values ofx as small as 2 and 
has been used frequently to calculate tables for p(x). 

3.1.3. The Asymptotic Expansion (obtained by 
multiple integration by parts) 

p(x) = [(expx)/x2][1 + 2!/x + 3!/x 2 

+ 4!/X 3 + . . - ] ( -x  _> 10, diverges for 

number of terms > Ixl) (20) 

This series diverges and is useful only for large values 
of x; so it is of interest mainly for historical reasons as 
two and three-term approximations of it were used in 
some of the classical kinetics methods, most notably 
that of Coats and Redfern [48]. These methods are 
now obsolete and probably should not be used in 
kinetics analyses. They are discussed in the section 
on Simple Approximations. 

As far as tables ofp(x) are concerned, only one need 
be mentioned. It is the 'Tables Numeriques Permettant 
L' integration des Constantes de Vittesse par Rapport a 
la Temperature' by Pierre Vallet which was published 
in French, English and Spanish in 1961 [26]. These 
tables givep(x) values for 0.1 increments ofx from 1.0 
to 50.0 and at 1.0 increments from 50.0 to 200.0. The 
values in the table are correct to eight significant 
figures. Many other tables for p(x) appear in the 
literature but none of them are so complete or accu- 
rate. 

3.2. Complex Approximations 

These are too complex to be used to calculate E/R 
graphically but are easily calculatable using a pocket 
calculator (for those who are without computational 
facilities). They may be defined as algebraic ratios 
containing x(= E/RT) as a quadratic or higher degree. 
These approximations are to be found throughout 
thermal analysis literature (and are still appearing). 
However, the frequency of their use should be dwind- 
ling as they are no longer relevant compared to the 

Table 3 
Percentage deviation in [xp(x)/(exp- x)] for Complex Approx- 
imations of p(x) 

(x2+10x+18) (x3 + lSx2+S6x+96)  
x 3 + 12x 2 +36x+  24) (x 4 +20x 3 + 120x 2 +240x+  120) 

1 4.717 
2 1.661 
4 -0.403 
7 -0.097 

10 -0 .048 
15 -0 .010 
20 -0 .004 
25 -0 .002 
30 -0.001 
35 0.000 

- 1.584 -0 .609 
-0.368 -0.095 
-0.051 -0.008 
-0.007 0.000 

0.002 
0.000 

more exact series described in Section A above. They 
are now mainly of historical significance. (N.B.: The 
quality of various approximations for the temperature 
integral at a particular argument, x = E/RT, is 
assessed in terms of deviations or percentage 
deviations from the correct value. The terms 'error' 
and 'percentage error' are not used since they 
imply that the Arrhenius Equation, Eq. (1), has 
some sort of theoretical or special physical signifi- 
cance.) 

The percentage deviation for the second, third and 
fourth degree 'rational approximation' equations are 
given in Table 3. They are more accurate than any of 
the others of similar complexity (for values of 
x = E/RT greater than 2). The accuracy of many 
other of these complex apflroximations have been 
reviewed by Doyle [45], Sestfik [46], Zsako [49], 
and many others. 

3.3. Simple Approximations 

These simple approximate equations for the tem- 
perature integral were used extensively during the 
early days of thermal analysis kinetics and still appear 
in the literature. Some of these are quite inaccurate but 
are still preferred by some investigators who are 
apparently not perturbed by the fact that, when they 
use two or more of these 'approximate' methods for 
the same experimental data, they are publishing 
incorrect and often conflicting values for E/R and 
In A0. 

The percentage deviation in J ( x ) =  [xp(x)/ 
( e x p - x ) ]  for several simple approximations of 
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Table 4 
Percentage deviation in [xp(x)/(exp -x)] for Simple Approximations of p(x) [xp(x)/(exp -x)] = J(x) 

89 

(j) (k) (1) (m) (n) 
l 1 - ( 2 / x )  1 - ( 1 . 7 / x )  ' 1 (x ,~ 2) (x+ 1.87681 

(o) (p) 
Doyle I Doyle II 

1 17.42 -13.88 
2. 80.3 - 100.0 -73.0 -9.86 -6.99 
4 43.2 -28.4 17.7 -4.55 -2.55 
7 25.9 -9.68 -4.71 2.12 -0.76 

1 (1 18.5 -5.18 - 1.62 - 1.23 -0.20 
15 12.62 2.40 -0.14 -0.62 -0.10 
20 9.79 - 1.38 +0.27 -0.38 o. 18 
25 7.72 -0.90 0.40 -0.26 -0.20 
30 6.47 -0.63 0.40 -0.19 -0.20 
35 5.57 -0.47 0.44 -0.14 -0.20 
40 4.68 -0.39 0.43 0.11 -0.19 
45 4.35 0.28 0.41 -0.09 -0.18 
5(} 3.93 -0.23 0.39 -0.07 -0.17 
60 3.28 -0.16 0.36 -0.05 -0.15 
80 2.47 -0.09 0.29 -0.03 -0.12 

100 1.98 -0.07 0.25 -0.02 -0.10 
20(I 1.00 -0.06 0.22 -0.01 -0.06 

-95.22 
-43.41 -17.26 
-24.42 - 1.45 
- 10.22 +4.24 
-1.30 +2.17 
+2.91 -5.05 
+3.19 -15.16 
+2.37 -26.43 
-4.64 

-18.53 
-48.79 

p(x) are given in Table 4. These approximations merit  
further discussion because of  either their historical 

interest or their continued usage. 
(j) (in Table 4): One-Term approximation of the 

Asymptot ic  Expansion [50], J(x)= 1: Effectively 
' ignoring the integration over T'  results in a simple 
equation which can fit the temperature dependence of  
the rate probably as well as those involving the 
temperature integral. However, as was discussed with 
Eq. (d) above, it is not practical to set up a new 
equation for the temperature dependence of  the rate 
at this t ime if  any continuity with the kinetics works of  
the last century is desired. Its large deviations from the 
correct value forp(x)  between 1 < x < 200 are appar- 

ent in Table 4. 
(k) Two-Term Approximation of the Asymptotic 

Expansion [48], J(x) = 1 - (2/x):  This approxima- 
tion was used extensively in the early days of thermal 
analysis kinetics, most notably by Coats and Redfern 
[48]. However it is one of  the least accurate approx- 
imations, particularly at low values ofx.  For example,  
the percentage deviation in J(x) = [xp(x)/(exp - x)] 
increases to more than 0.5% below x -- 35 and greater 
than 5.0% below x = 11. As seen in (1) below, these 
deviations can be reduced by adjustment of  the factor 
2 to 1.7. Therefore it should always be used in this 
latter form. 

( l) Adjusted Two-Term approximation of the Asymp- 
totic Expansion [51], J(x) ---- 1 - (1.7/x):  This minor 
adjustment in the constant of  the 'Coats-Redfern  
Equation'  approximation improves the percentage 
deviation in J(X) so that it is less than 5.0% at 
x > 7, and less than 0.5% for all values of  x greater 
than 13. 

(m) Two-Term Approximation of the Continued 
Fraction ('Rational') Expansion [42,441, J(x) 
= 1/(x + 2): This approximation was first suggested 
by Doyle [45] in 1966 and later developed by Gor- 
bachev [52] in 1978. It is very much superior to Eq. 
(k), the 'Coats-Redfern '  approximation, for all values 
ofx.  The percentage deviation in J(x) is less than 5.0% 
for all x values, 4 or greater and less than 0.5% for x 
greater than 17. 

(n) Two-Term Approximation of the Continued 
Fraction Expansion (Reduced by Application of 
Tschebychev Approximation) [53], J(x) = 1/ 
(x + 1.87681: This minor adjustment in the ' D o y l e -  
Gorbachev'  approximation, suggested by Jones [53] 
in 1965, improves the percentage deviation in J(x) so 
that it is less than 5.0% for all values of  x 
greater than 2.5 and less than 0.5% for x greater than 
8. It is obvious that it should always be used in place of  
Eq. (m), the standard 'Doyle -Gorbachev '  approxima- 
tion. 
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Since the Doyle--Gorbachev approximation is 
superior to the Coats-Redfern approximation for all 
values of x, Eq. (n) should be the natural choice when a 
simple approximation for p(x) is desired. 

(o) An Empirical Interpolation Equation by Doyle 
(I0 [541, lOgl0P(X ) --- -2.315 - 0.4567x: This empiri- 
cal relationship is based on the fact that lOgl0p(x ) is 
virtually linear with x over a short range. For this 
equation, the useful range (under 5% correction) is 
28 < x < 50. 

(p) Another Empirical Interpolation Equation 
suggested by Doyle (I1) [541, logl0p(x ) = 
-2 .000 - 0.4667x: For this equation, the useful range 
(under 5% correction) is 18 < x < 35. 

Equations like (o) and (p) are noteworthy because 
Eq. (o) is the basis for the Ozawa [55]-Flynn [56] 
Isoconversional Method. Obviously, Eq. (o) which is 
universally used in this method is not sacrosanct. Eq. 
(p) or any similar empirical equation of this logarith- 
mic form could be used to fit a particular range of 
values of x. However Eq. (o) has always been the 
equation of choice for this method and, as all the 
'correction procedures' are based on it, it will prob- 
ably continue to be the equation of choice for this 
method. 

When one observes the large percentage deviations 
in Eq. (o) from the correct value of x, even in the range 
of its applicability, it would appear that the Ozawa- 
Flynn isoconversional method for calculating E/R is, 
indeed, an imprecise technique. However, fortunately, 
E/R is determined from x = E/RT, which is the slope 
of In p(x) vs. x curve (whose deviation will be zero at 
one x value and increase in either direction from it). 
The error involved in this calculation was recognized 
in 1966 and an iterative method using a mean tem- 
perature to correct for this error was suggested by 
Flynn [56] and elaborated upon in 1983 [57]. A useful 
algorithm for making this correction has been devel- 
oped [58]. 

It is possible to make similar iterative corrections 
for the adjusted Coats-Redfern Eq. (1) and the adjusted 
Doyle-Gorbachev Eq. (n) although the corrections are 
smaller than those needed in the Doyle Interpolation 
equations. However the great problem with the Coats- 
Redfern and the Doyle-Gorbachev Eqs. (k), (1), (m), 
and (n) is not so much their deviations from the correct 
p(x), but that it is difficult to separate the effects of 
these deviations on the kinetics parameters from those 

resulting from the use of incorrect form fo r f (a ) .  The 
disastrous results obtained from assuming first or nth 
order for cases for which they are not applicable were 
pointed out many years ago [13,59]. When the Coats- 
Redfern or Doyle-Gorbachev equations are used, a 
wide range of model conversion functions, f(a), 
should be tested or, better yet, the correct form of 
f(a) established from isothermal experiments. 

4. Conclusions 

This is an opportune time to reappraise the accuracy 
and utility of the equations used to evaluate the 
temperature integral in thermal analysis kinetics. 
The sophistication of thermal analysis kinetics meth- 
ods has advanced considerably in the past several 
decades and the use of computers has permitted the 
development of methods for the rapid testing of the fit 
of experimental data to wide selections of complex 
kinetics models. 

It is distressing to see publications, even at the 
present time, in which the authors give three or four 
values for E/R and In A0, calculated by applying 
different approximate formulas for the temperature 
integral to the same sets of experimental data, and 
appear either satisfied with or apparently unconscious 
of the inconsistencies as they give no explanation for 
the differing values. That is, whether the differences 
are due to the approximate nature of the equations 
used for the temperature integral or due to incorrect 
assumptions as to the form of the conversion function 
f(a) or even of k(T) itself. If  such papers do not even 
make an effort to explain these contradictions, they 
should be rejected out of hand by editors and reviewers 
of journal articles [16]. 

In any event, as scientists, we should strive to 
calculate kinetics parameters as precisely as we are 
able to. Therefore there is no excuse for using poor 
approximations for the temperature integral when we 
are able to determine values for it which are as precise 
as we wish to make them. 

Since there is great variation in the literature in the 
values for E/R and In A0, calculated for a 'single 
reaction,' it has been suggested that an error below 
10% in p(x) may be sufficient for many calculations 
[46]. This author does not agree. If  one wishes to apply 
the above parameters for a useful scientific purpose, 



J.H. Flynn /Thermochimica Acta 300 (1997) 83-92 91 

viz. to help distinguish between and define reaction 
mechanisms, more accurate values for them are 
required. The great variations found in E/R and In 
A0 in the literature are not usually the result of poor 
measurement of the experimental data but due to not 
properly controlling and duplicating the procedural 
factors of the experiment (sample subdivision and 
geometry, purge gas rate and composition, etc.) 
and/or due to using incorrect formulas for the f(c~) 
function assumed in the calculations [23,42]. The use 
of correct values for the temperature integral allows 
one to better define these experimental and analytical 
defects. As a result, one may amend the experimental 
procedures and kinetics formulations to correct for 
them. 

Indeed, in this age of vast computational capabil- 
ities, there is no valid reason not to use precise values 
for the temperature integral when calculating kinetics 
parameters. 

References 

[1] S. Arrhenius, Z. Physik Chem., 4 (1889) 226. 
[2] J.H. van't  Hoff, Influence of temperature on velocity in dilute 

homogeneous systems, in: Lectures on Theoretical and 
Physical Chemistry, Trans R.A. Lechfeldt, Pub Edward 
Arnold, Oxford, London, Part 1, Chemical Dynamics, pp. 
230-235 (1899). 

[3] M. Berthelot, Ann. de Chim. et de Phys., (1862) 110. 
[4] JJ.  Hood, Phil Mag [5], 20 (1885) 323. 
[5] A. V Harecourt and W. Esson, Proc. Roy. Soc., 58 (1895) 112. 
[6] D. M Kooij, Z. Fur. Phys. Chem., 12 (1893) 155. 
[7] H. Vogel, Phys. Z., 22 (1921) 645; V.G. Tammann and W. 

Hesse, Z. Anorg. Alig Chem 156 (1926) 245; G.S. Fulcher, J. 
Amer Ceram Soc., 77 (1925) 1164. 

[8] M.L. Williams, R.F Landel and J.D Ferry, J. Am. Chem. Soc., 
(1955) 339. 

[9] It Vallet, Comptes Rendus Acad. Sci., 200 (1936) pp. 298- 
423. 

[10] J.H. Flynn, Thermal Analysis (2nd ICTA), Vol. 2, Schwenker 
and Garn (Eds.), Academic Press, New York, 1969, p.l l14. 

I 11] D.W. van Krevelen, C. van Heerden and F.J. Huntjens, Fuel, 
30 (1951) 253. 

112] H.H. Horowitz and G. Metzger, Analytical Chemistry, 35 
(1963) 1464. 

113] J.H. Flynn and L.A. Wall, J. Res. Nat. Bur. Standards, 70A 
(1966) 285. 

[14] D. Dollimore et al., Thermochim. Acta, 282/283 (1996) 13. 
[15] F, Urech, Berichte der Deutschen Chemischen Gesellschaft, 

xvi (1883) 762. 
[16] J.H. Flynn, Thermochim. Acta, 203 (1992) 519. 

[17] E Budrugeac, A.L. Petre and E. Segal, Thermochim. Acta, 
275 (1996) 193. 

[18] T.W. Hickmott and G. Edich, J. Phys. Chem. Solids, 5 (1958) 
47. 

[19] G. Erlich, Adv. in Catalysis, 2 (1963) 255-428, (see page 
274). 

[20] J. Zasko, Thermochim. Acta, 2 (1970) 145. 
[21] J. Simon and E. Debrecseny, J. Thermal. Anal., 3 (1971) 301. 
[22] D. Fateu and E. Segal, Thermochim. Acta, 16 (1971) 343. 
[23] J.H. Flynn, J. Therm. Anal., 36 (1990) 1597. 
[24] S. Glasstone, K.J Laidler and H. Eyring, The Theory of Rate 

Processes, McGraw-Hill, New York and London, 1941, 
pp.198-199. 

[25] D.A. Frank-Kamerinski, Diffusion and Heat Exchange in 
Chemical Kinetics, translated by N. Thon, Princeton 
University Press, Princeton NJ, 1955, p. 238, 260. 

[26] E Vallet, Tables Numeriques Permettant L' intergration des 
Constantes de Vitesse par Rapport a la Temperature, Gauther- 
Villars, Paris 1961. 

[27] T.R. Ingraham and P. Marier, Canadian J. Chem. Eng., 42 
(1964) 274. 

[28] G. Varhegyi, Thermochim. Acta, 25 (1987) 201. 
[29] J.E Elder, Analytical Calorimetry, Vol 5, ES Gill and J.F 

Johnson (Eds.), p. 269, Plenum Press, New York, 1984. 
[30] K.J. Laidler, J. Chem. Education, 65 (1988) 250. 
[31] H. Friedman, J. Polym. Sci., C6 (1964) 183. 
[32] T. Ozawa, J. Therm. Anal., 31 (1986) 547. 
[33] J.H. Flynn, J. Thermal. Anal., 37 (1991) 293. 
[34] J.H. Flynn and L.A. Wall, Polym. Lett., 5 (1967) 191. 
[35] B. Dickens, Polym. Deg. and Stab., 2 (1980) 249; J. Polymer 

Sci. (Polymer Chem.) 20 (1982) 1065, 1069; J. Therm. Anal. 
27 (1983) 379. 

[36] J. Rouquerol, J. Therm. Anal., 5 (1973) 203. 
[37] J.H. Flynn, Centennial Meeting of the American Chemical 

Society, New York, (April 4-9, 1976) (Abstracts of Papers) 
Paper 20, Port City Press, Baltimore MD, (1976). 

[38] J.H. Flynn and B. Dickens, Thermochim. Acta, 15 (1976) 1. 
[39] J.H. Flynn and B. Dickens, Proceedings of the 1st European 

Syrup on Thermal Analysis, pp. 15-18, D. Dollimore (Ed.), 
Heyden, London (1976). 

[40] J.H. Flynn, Amer. Chem. Soc. Polym. Preprints, 26(1) (1985) 
67. 

[41] J.H. Flynn, Cure Kinetics of Inks and Varnishes by DSC, 
Proceedings of the 14th North American Thermal Analysis 
Society Conference, San Francisco, CA, Sep. 15-18 (1985) 
pp.418-423. 

[42] J.H. Flynn, J. Thermal. Anal., 34 (1988) 357. 
[43] Handbook of Mathematical Functions with Formulas, Graphs, 

and Mathematical Tables, M. Abramowitz and I. Stegun 
(Eds.), National Bureau of Standards Applied Mathematics 
Series 55, (1964) Chapter 5, Exponential Integral and Related 
Functions. 

[44] G.I. Senum and R.T. Yang, J. Therm. Anal., 11 (1977) 446. 
[45] C.D Doyle, Quantitative Calculations in Thermogravimetric 

Analysis, Chapter 4 in: Techniques and Methods of Polymer 
Evaluation, EE Slade and L.T. Jenkins (Eds.), Marcel Dekker, 
New York 1966, pp.113-216. 



92 J.H. Flynn/Thermochimica Acta 300 (1997) 83-92 

[46] J. Sest~ik, Thermophysical Properties of Solids - Their 
Measurements and Theoretical Thermal Analysis, in: Wilson 
and Wilson's Comprehensive Analytical Chemistry, G. 
Svehla (Ed.), Elsevier, Amsterdam (1984). 

[47] O. Schl/Semilch, Vorlesungen fiber H6herey Analysis, 
Braunschweig, 1874, p.266. 

[48] A.W. Coats and J.P. Redfem, Nature, 201 (1964) 68; Polymer 
Letters, 3 (1965) 917. 

[49] J. Zsako, J. Thermal. Anal., 34 (1988) 1489. 
[50] C.D. Doyle, J. Appl. Polym. Sci., 5 (1961) 285. 

[51] J.H. Flynn, unpublished.. 
[52] V.M. Gorbachev, J. Therm. Anal., 13 (1978) 183. 
[53] E.L. Jones, Nature, 208 (1965) 1306. 
[54] C.D. Doyle, J. Appl. Polym. Sci., 5 (1961) 285; 6 (1962) 639.. 
[55] T. Ozawa, Bull Chem. Soc. Japan, 38 (1965) 1881. 
[56] J.H. Flynn and L.A. Wall, Polym. Lett., 4 (1966) 323. 
[57] J.H. Flynn, J. Therm. Anal., 27 (1983) 95. 
[58] J. Opfermann and E. Kaisersberger, Thermochim. Acta, 203 

(1992) 167. 
[59] T. Ozawa, J. Thermal. Anal., 7 (1975) 601. 


