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Abstract 

A new approach to the high temperature expansion of heat capacity C(T) is proposed. The lattice heat capacity is described 
by two first terms of this expansion with characteristic temperatures (0, and 0,) plus a remainder. The latter is approximated by 
some function with only parameter 0. which is attributed to the upper limit of a phonon spectrum. 

This new form of expansion extends downwards along the range of a good approximation of a lattice heat capacity in 
comparison with ordinary truncated high temperature expansion. This, in turn, allows investigation of the new phenomena in 
some substances. 

This method was tested on several model curves C(T) with the phonon spectrum known in advance. The examples of the 
determination of phonon and electron characteristics for dielectrics, metals and high temperature superconductors are shown. 

Kqvwords: Approximation of remainder; Electron heat capacity; Heat capacity of solids; High temperature expansion; 
Moments of phonon spectrum 

1. Introduction 

The investigation of the heat capacity of solids 
provides wide information about their characteristics 
and processes. To extract this inforrnation one sepa- 
rates heat capacity into contributions of different 
origins. 

Ordinarily, the harmonie part of a lattice heat 
capacity makes the main contribution into entire heat 
capacity of solids. Other contributions into heat capa- 
city have to be extracted against this large back- 
ground; thus one should have the proper method for 
its description. 

The lattice heat capacity of a crystal in hatmonic 
approximation is a sum of contributions from separate 
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norrnal vibrations, (see, for example, [l]): 

iu‘mar 

C(T) = 3Nk 
FlW JO k kT g(w)dw: 

0 

(1) 

Here Q(z) is the Einstein function, z = hw/kT, g(w) 
is the normalized photon spectrum 

4nax 

J g(w)dw = 1, 

0 

dmax is the upper bound of a photon spectrum. 
The high temperature expansion is often used 

for a description of this lattice heat capacity at 
moderate temperatures. This expansion is based 
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on the Taylor series for the Einstein function Q(z) in 
Eq. (1): 

Q(z) = CA,?” (2) 
n=O 

1 
A, = -$ A2 =&, A3 = -- 

6048 ’ 
1 

A4=- . . 
17280 ’ 

Substituting this expansion into the integral (1) we 
have 

WIlsx 

C(T) = 3Nk J g(w) F(A.l.)dw 

= 3Nk FA,, 
“1, -’ 

g(w) $ 2”dw. 
( > 

0 

The further integration over w results in the high This approximating scheme was used, for example, 

temperature expansion of the heat capacity: in papers [2-51. 

C(T) = 3NkcA, $ *‘s, 
n=O 0 

(3) 

Here ~2” are the moments of a phonon spectrum, 

P2n = J g(w)w2”dw. 

0 

At high temperatures only one (the zeroth) term of 
the series gives a good approximation for the harmonie 
part of a lattice heat capacity (the Dulong and Petit 
law). When temperature decreases, one needs to take 
into account the second, then the third and so on terms 
of the series to describe heat capacity. 

Fig. 1 shows the contributions from each of the 
successive terms on high temperature expansion for 
the Debye heat capacity. It is seen that each following 
term extends the range of good approximation, but this 
becomes less and less. 

In practice, one uses 3 or 4 first terms of the series 
and the remainder is discarded. 

When analyzing the experimental data the consid- 
ered coefficients are found as the varied parameters. 
Thus, one obtains both the moments of the photon 
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Fig. 1. The differente between the truc Debye heat capacity and 
calculated one by Eq. (3) with a different number of terms: 2 - with 
p2; 4 - with p2 and p4; 6 - with p2, p4 and p6. 

spectrum p2, p4,... and the good approximation for the 
harmonie lattice heat capacity in some temperature 
interval. 

The successive terms of the high temperature series 
(3) go into infinity when temperature goes to zero. 
Therefore the range of the discussed approximation is 
bounded in temperature from below. 

Besides, when the temperature increases, the har- 
monic lattice heat capacity rises less and less progres- 
sively. Against this background the other contributions 
to the total heat capacity become essential (anharmo- 
nicity [6], electron heat capacity in metals,...). Without 
taking them into account the range of good approx- 
imation by means of the above series (3) is also 
bounded from the above, typically, by temperatures 
T <- 0.500. In such a case the range of good approx- 
imation is rather natrow (0.3500 - OSOo), and the 
statistical accuracy of obtained results is not very high. 
The addition of a linear term yT to the left side of 
expansion (3) allows one to extend the range of good 
approximation upwards. Such an approach was used 
in Refs. [4,6,7]. 

In the present paper the method that allows one to 
extend the range of good approximation downwards is 
expounded [7]. 

The idea of this method consists of the fact that even 
a rough approximation of a remainder of the series 
extends wel1 downwards the range of good description 
of heat capacity. 
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2. Description of the method substitution 

For the description of the proposed method it is 
convenient to introduce the characteristic tempera- 
tures related to the 2nth moments of the phonon 
spectrum: 

e2n = E 26. 

In terms of characteristic temperatures the above 
high temperature expansion (3) has the form 

This equation can be presented as the sum of the 
first m + 1 terms plus remainder R,: 

C(T) = 3N&& 
n=O 

R, = 3Nk F A, 
n=m+l 

2n 

. 

This exact expression for the heat capacity is a basic 
one for the following approximations. 

For any spectrum g(w) the distribution of the char- 
acteristic temperatures OZn is of the form shown in 
Fig. 2. These characteristic temperatures tend mono- 
tonically to the upper boundary of the phonon spec- 
trum ebo,,,,,, = hwmax/k. 

Such behaviour of the values 02, leads US to the idea 
to replace them by one characteristic temperature &. It 
was convenient to replace al1 t92” in remainder R, by 

e2 e4 e bound 

Fig. 2. Schematic distribution of characteristic temperatures 02”. 

e2n j fjb-2me2m 
2n i 2rn’ 

This substitution transforms the above equation for the 
heat capacity (Eq. (5)) into its approximated form: 

“(F)‘” 

+ (~)2m~&x2n} 3 (7) 

In the particular case m = 2 we have 0;; =+ 81.“-4t$. 
Then Eq. (7) is of the form 

C(T)=3Nk l+A { 1 ($)2+($)4.@p}. 

The infinite sum in the right side of this equation 
can be expressed via the Einstein function \k(x) (1,2) 
as 

ly: 

c A,,x2” = ‘P(x) - 1 - A,x2. 
n=2 

Finally, we obtain the equation for the approximu- 
tion of the harmonie part of the lattice heat capacity in 
the proposed method: 

$1 +A,($)2+(;)4 

[Q(;) - 1 -A,n’]. (8) 

It contains three varied parameters Oz, &, and &. The 
latter is close to the upper boundary of the phonon 
spectrum et,&, as it is seen in Fig. 2. 

This form is used in our approximations. The final 
equation for case m = 3 can be obtained in a similar 
way. 

As an example we approximated the Debye heat 
capacity as an ‘experimental’ one by Eq. (7) with 
m = 2 and m = 3. The parameters e2, t$, Os, 8. were 
obtained by variation. These parameters, and those 
directly calculated from the Debye density of states 
are presented in the Table 1. Besides, the ‘more 
realistic’ density of states (Fig. 3) was treated, and 
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Table 1 
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The characteristic temperatures for the model phonon spectra 

n Debye spectrum Spectrum of Fig. 3 

&,/0o from spectrum Bh/& from heat capacity oZ, iebound &/t9bound from heat capacity 

1 0.77460 0.77460 0.56586 0.56584 
2 0.80911 0.80899 0.62118 0.62078 
* 0.87758 - 0.74013 

/ / 

Fig. 3. The model phonon spectrum 

the results are presented in the same table. In both 
cases the values of (9, obtained from the heat capacity 
and those calculated from the density of states coin- 
cide with very high accuracy. The differences in values 
of 0, are also very smal1 (less than 0.06%). 

The differences between the truc Debye heat capa- 
city and approximated ones are shown in Fig. 4. The 
curve (a) is described by the set of parameters &, 04 
and Bt. In the range from ~90 to 0.165 Bo it deviates 
from the truc Debye heat capacity by less than 0.25%. 
Moreover, it deviates from the truc Debye heat capa- 
city by less than 0.01% within the interval 
0.250o - 0,. The comparison with Fig. 1 (where 
the truncated series is presented) shows that our 
approximation of the remainder extends sharply the 
interval of a good approximation. The curve (b) is 
described by the set of parameters Ba, &, e6 and &. Its 
deviation from the truc Debye heat capacity does not 
exceed 0.025% within the same range 0.1650o - 19,. 
One can conclude that this next iteration shifts the 
lower boundary of precise description downwards 
from 0.2500, to 0.1650o (with accuracy better than 

Ac/c 1 - , 1 
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Fig. 4. The differente between the truc Debye heat capacity and 
the approximated one by Eq. (8). Curve (a): m = 2; curve (b): 
m = 3. 

0.025%). It improves the accuracy of description 
above 0.1658o from 0.25% to 0.025%. 

In many cases the contribution from the next itera- 
tion (with m = 3 and t9,) is inside experimental accu- 
racy. So, the approximation with m = 2 (with three 
parameters f&, t9, and 0,) is sufficient. 

3. Applications 

The method was successfully applied for the ana- 
lysis of the heat capacity of many substances. 

To show the results in a convenient form in a graph 
we used the special coordinates X and Y: 

C(T) Y(T,C)=-g l-=, [ 1 
T2 [l +A,x2 - ‘P(x)] 

X(&,T) =z’ et . 
Here Q(x) is the Einstein function (l), (x = Q,/T). 
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2.6 

X/ 10-4 K-* 

Fig. 5. The heat capacity of germanium tetraiodide (GeIJ in 
coordinates X and Y [8]. 

The dependence Y(X) looks as a straight line 

Y(T, C) = e; - ex@*, T) (10) 

in the temperature region where the approximated 
harmonie lattice heat capacity (8) describes wel1 the 
total heat capacity. 

The intersection of this straight line with the axis of 
ordinates shows US 13~ and its slope shows 13~. 

Eq. (10) was used to determine the parameters by 
least square method. 

In Fig. 5 we show the approximation of the heat 
capacity for dielectric germanium tetraiodide (Ge14) 
by expression (8). 

It is seen that in these coordinates the lattice heat 
capacity looks like a straight line in the temperature 
interval 37-106 K. Above 106 K experimental points 
deviate from the straight line. 

This deviation of points from the straight line 
displays the anharmonic contribution into the heat 
capacity of the compound. The temperature 106 K 
is the boundary of the range where the harmonie 
approximation for the heat capacity coincides with 
the total heat capacity within the experimental accu- 
racy. 

In Fig. 6 the dependence Y(X) for cr-boron is 
shown. It looks like a straight line in the temperature 
interval 182-3 18 K. Even at 300 K no anharmonicity 
is revealed. (This substance has very high Debye 
temperature). 

The heat capacity of metals contains the linear 
contribution from conduction electrons. It can be 
taken into account by describing the lattice heat 

0 
0 1 2 3 4 5 6 7 8 

X/ IO-' Km2 

Fig. 6. The heat capacity of cu-boron o-B in coordinates X and Y 

191. 

capacity as a differente between total heat capacity 
and electron one so that 

CM = C,,, - yT. 

Then y is the additional variable included in coor- 
dinate Y as follows: 

Y(?,T,C)=-; C(T) - yT 1 3Nk ’ 

and the above equation for Y(X) has the same form as 

Eq. (10) 

When we know the optimal parameters &., Q4 and 

Y(y, T: C) = 0; - 6X(&, T). 

&, we can calculate the harmonie lattice heat capacity 

(11) 

lt is a straight line in the range of validity of an 

by the above final Eq. (8). Then other contributions 

approximation, and its intersection with the axis of 
ordinates shows US & and its slope shows ed. 

can be obtained as a differente between the total heat 
capacity and the calculated heat capacity. Of course, it 
is necessary to do further analysis of these extracted 
contributions. 

In Fig. 7 we present the differente between the 
experimental heat capacity and calculated harmonie 
lattice heat capacity of mercury. The parameters of the 
harmonie lattice heat capacity were found in the 
temperature interval 1844 K. 

This differente can be considered as the sum of 
electron heat capacity and anharmonic one. As has 
been stated above further analysis should be done. 



106 RN. Nawtwv et al./Themwchimica Acts 299 (1997) 101-108 
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Fig. 7. The differente between the experimental heat capacity and 
the lattice one for mercury (Hg) [ 161. 

The electron heat capacity is not the only linear 
contribution into the total heat capacity of crystal. In 
the wide temperature interval the anharmonic contri- 
bution is also linear in temperature, AT Therefore, the 
final equation for the approximation, while taking into 
account both electron component and linear anhar- 

monic one, has a form 

C(T) = (y+A)T+3Nk l+A { 1(+):(;) 

. [$) - 1 -Al (;)I). (12) 

It contains four varied parameters t&, l3,, & and y + A. 
Table 2 shows the characteristic temperatures and 

coefficients of the linear component of heat capacity 
for some dielectrics. We obtained smal1 linear con- 
tributions into the heat capacity of dielectrics ZrTe5 
[lol and KY (MoO& [l 11 which may correspond to 
the anharmonic contribution. 

In Table 3 the characteristic temperatures and the 
coefficients of linear component are presented for 
some metals. The parameters 19~ and the coefficients 
of linear contribution y + A for copper and gold were 
found to be in agreement with those obtained earlier 

141. 
This method was also applied for the determination 

of phonon and electron characteristics of high tem- 
perature superconductors. The results of analysis are 
presented in Table 4. 

In Fig. 8 the harmonie lattice heat capacity of 
HoBCO is shown in above coordinates X and l! 

Table 2 
Phonon characteristic temperatores and coeffkients of linear component of heat capacity for some dielectrics. Errors are statistical. AT is the 
interval of approximation and y + A is in mJ/mol K2 

Geb 181 a-boron [9] ZrTes [ 101 KY(MoWz [ 111 

ATK 37-106 182-314 27-98 121-289 
e2 K 164 f 1.5 1016 f 2 176 rt 0.7 594 f 3 
e4 K 2OOf4 1056 f 4 194.6f 1.4 716.5 f 3.5 
8. K 235 f 8 1113f9 222 f 2.5 90459 
y+A - 0.43 f 0.15 0.4 f 0.1 

Table 3 
Phonon characteristic temperatures and coeffkients of linear component of heat capacity for some metals. Errors are statistical. AT is the 
interval of approximation and y + A is in m.J/mol K2 

Cu [12,13] Au [14,15] Hg 1161 Rh Cl71 Ir 1171 

ATK 47-129 24-81 1844 25-150 20-115 
e2 K 247.6 zt 0.6 142f 1 88.8 f 0.3 266.3 f 0.6 221.0 * 0.7 
0, K 259.5 f 2.5 15111 100.7 * 0.5 275.0 z!c 1.5 228 zt 2 
8. K 279f4 166 f 3 118.0 f 1.5 287 f 3 238 f 3 

y+A 2.4fO.l l.Of0.2 2.8 f 0.2 (4.65) (3.51) 
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Phonon charactetistic temperatures and coefftcients of linear component of heat capacity for some high temperature superconductors. Errors 
are statistical. AT is the interval of approximation and y + A is in mJ/mol K* 

HoBCO [18] HoBCO [19] TmBCO [20] DyBCO [21] 

ATK 92-236 100-232 100-260 lW290 
02 K 427 f 3 43oi9 429 f 2 436 f 1 
0, K 484f4 486 f 15 486 + 4 504f3 
4. K 569f8 570 f 30 595 i 8 610 zt 5 
Y tA 38 f 3 35 f6 38 + 1.5 39.4 zt 0.7 

1 .o 
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“c.’ \ 
>-‘0 .6 

r 7 

0.5 1 .o 1.5 2.0 2.5 
x/ 10-6 K-’ 

Fig. 8. The lattice heat capacity of HoBCO in coordinates X and k: 
The experimental are data from Refs. [18,19]. 

0 ““I”““‘,,‘<I<,I 
50 100 150 200 250 

Temperoture/ K 

Fig. 9. Electron heat capacity of HoBCO and TmBCO. 1 - curve 
for TmBCO [20]; 2 - two curves for HoBCO with data from Refs. 
[18,19]. 

The experimental data were obtained from Refs. 
[ 18,191. The points from both these experiments in 
the temperature range 100-300 K fa11 very wel1 on the 
straight line. 

iu ‘, ” I, “, I,, 2, ‘, 7 

290 K 
/ 

.+ DyBa&u@_, 
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\ ‘... 
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*... 182 K 
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5 10 15 ?G 

X/ IO-’ K2 

Fig. 10. The lattice heat capacity of DyBCO in coordinates X and 
i: The experimental data from Ref. [21]. 

100 150 200 250 300 
Temperature/ K 

Fig. 11. Electron heat capacity of DyBCO [21]. 

In Fig. 9 the electron component of heat capacity 
HoBCO is shown. It has been obtained as a differente 
between the total heat capacity and the harmonie 
lattice one. Here curve 1 is for TmBCO [20] and 
curve 2 is for HoBCO [ 18,191 (coincided). 
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In Fig. 10 the harmonie lattice heat capacity of 
DyBCO from the paper [21] is shown in the above 
coordinates X and K In Fig. 11 the electron component 
of heat capacity of DyBCO is shown. It has been 
obtained as a differente between the total heat capa- 
city and the harmonie lattice one. 

4. Conclusion 

In this work a new approach is proposed for the 
analysis of the heat capacity of solids based on the 
high temperature expansion of harmonie heat capa- 
city. It allows one to extend the range of a good 
approximation wel1 downwards in comparison with 
ordinary high temperature expansion. The harmonie 
heat capacity is described by two (or three) first terms 
of this expansion (with characteristic temperatures & 
and ~9,) plus some specific form of the remainder. The 
latter is approximated by a known function with the 
only new parameter &. 

This approach allows one to analyse the experi- 
mental data of a wide set of substances and to extract 
both the parameters of phonon spectrum and the other 
contributions into the heat capacity. The above exam- 
ples show that Eq. (8) is a good experiment for this 
goal. Of course, the other contributions are the subject 
of the additional analysis in accordance with the 
physical problem which is going to be investigated. 
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