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Abstract 

The heat capacity of LaMnOs was measured by differential scanning calorimetry (DSC) in the (150-760) K range and by 
altemative current calorimetry (ACC) in the (77-250) K range. The heat capacity curve showed two thermal anomalies due to 
a structural phase transition at 735 K and a magnetic transition at 140 K. The enthalpy and entropy changes accompanying the 
magnetic transition are 220 J mol-’ and 1.70 J K-‘.mol-‘, whereas those for the higher temperature phase transition were 
estimated to be 3.36 kJ mol-’ and 4.2 J K-’ mol-‘. The non-transitional heat capacity of LaMtrOs was calculated by multiple 
regression analysis and is given by the following expressions. 

C 
p,m 

= 2.82 f 0.8747 - 
6.93 x 104 

T2 
+ 398 x IO-‘T3 - 3.31 x lO-‘T3’* (77 < T 5 298) 

c 96.73 + 5.36 x lO-*T - 
8.82 x 105 

P,m 
= 

71 
(298 5 T 5 760) 
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1. Introduction 

LaMnOs has an orthorhombically distorted perovs- 
kite-type structure at room temperature and undergoes 
a structural phase transition from the ortborhombic to 
the rhombohedral structure at high temperatures. The 
transition temperature depends on the oxygen non- 
stoichiometry [ll. A magnetic transition from anti- 
ferromagnetism to paramagnetism is observed near 
140 K [2]. Also this transition temperature depend on 
the oxygen non-stoichiometry. The Gibbs free energy 
of decomposition or formation of LaMnOs has been 
reported by several authors [3-121. The heat capacity 
and the derived therrnodynamic properties above 
room temperature have been estimated by Yokokawa 
et al. [ 13,141. NO experimental heat-capacity data has 
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however been published. We report the results of an 
experimental study of the heat capacity of LaMnOs in 
the (77-760) K range. 

2. Experimental 

LaMn03 was synthesized by a solid-state reaction 
method. Starting materials of LazO (Rare Metallic, 
Japan, of 99.99% purity) and MnzOa (Kojundo Chem. 
Lab., Japan, of 99.9% purity) were mixed in an 
equimolar ratio and pressed into a thin plate-shaped 
sample. The plate was sintered at 1523 K for 3 days 
under Ar flow. A single phase was identified by 
powder X-ray diffractometry and the lattice para- 
meters were a = 05739(l) nm, b = 0.7698(l) nm 
c = 0.5538( 1) nm, respectively. These values were 
in good agreement with that reported by Norby 
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et al. [15], i.e. a = 0.57046(2), b = 0.77029(4) and perature magnetic transition, the transition tempera- 
c = 0.55353(3) nm. The degree of oxygen non-stoi- ture of the present result is 140 K. The present work is 
chiometry n in LaMn03+x is below 0.01 in this pre- in good agreement with the result by Matsumoto [2], 
paration method [ 161. which gave Ttrans = 141 K. 

Two types of calorimeter were used for the mea- 
surement of the heat capacity of LaMnOs.; the DSC- 
220C and DSC- models of Seiko Electronic, 
Japan, were used for the (14&480) and (300-780) 
K temperature regions, respectively. ULVAC-2000 
model ACC of Ulvac, Japan, was used in the (77- 
250) K temperature range. The accuracy of measure- 
ment with DSC was within f 1.5% at high tempera- 
tures, which was determined from the results of 
standard Al*Os. Since data yielded by ACC are rela- 
tive values of the heat capacity, it is necessary to 
convert these relative values to the absolute values 
of heat capacity. A temperature-dependent calibration 
factor, X, was calculated from the temperature region 
which overlapped with the regions studied by the DSC 
method. The detailed procedures of the heat-capacity 
measurement with DSC and ACC are described in a 
previous paper [ 17-191. 

The present work is in good agreement with that of 
Yokokawa et al. [14] at near room temperature. The 
agreement is not that good at higher temperatures. 
Differences between the values of Yokokawa et al. 
[ 141 and those of the present work are 3.5 J K-’ mol-’ 
at 600 K and 12.3 J K-’ mol-’ at 750 K, respectively. 
This is due to the fact that the heat capacity reported by 
Yokokawa et al. [ 131 was estimated by a modified 
Neumann-Kopp law. Furthermore, the transition tem- 
perature is 735 K in the present work, whereas 675 K 
is reported by Yokokawa et al. [ 131. This differente is 
considered to be due to differences in oxygen non- 
stoichiometry of the specimens, as the transition tem- 
perature decreases with an increase of oxygen non- 
stoichiometry. 

For the lower temperature transition, a base line 
shown as a solid line in Fig. 2 is obtained by multiple 
regression analysis. From the area between peak and 
the base line, the enthalpy and entropy changes 
accompanying the magnetic transition at 140 K are 
220 J mol-’ and 1.70 J mol-’ K-‘, respectively. Cor- 
responding enthalpy and entropy changes accompany- 
ing the structural transition at 735 K were calculated 
at 3.36 kJ mol-’ and 4.62 J mol-’ KP1, respectively. 
Two non-transitional heat-capacity curves of LaMtrOs 
were estimated by multiple regression analysis as 

3. Results and discussion 

The heat capacity of LaMnOs is shown in Fig. 1 
together with the values estimated by Yokokawa et al. 
[ 131. In the heat capacity curve, two thermal anoma- 
lies corresponding to phase transitions were observed 
at 140 and 735 K, respectively. For the lower-tem- 
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Fig. 1. The heat capacity of LaMn03. Solid and dashed lines 
indicate the present work and that of Yokokawa et al. [ 131, 
respectively. 

I . I m I 

100 150 200 

TIK 

Fig. 2. The lower peak region of heat capacity of LaMn03. Circle 
and solid line indicate the observed value and the base line, 
respectively. 
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shown in the following, and the smoothed molar heat 
capacity is tabulated in Table 1: 

Cr,, = 2.82 + 0.874T - 
6.93 x 104 

T2 

+ 398 x 10-7T3 - 3.31 x 10-2T3/2 

(77 < T 5 298) 

CP,, = 96.73 + 5.36 x 10-2T 

8.82 x 105 - 
Tz 

(298 < T 5 760) 

The higher approximation of the Debye function is 
expressed by an equation such as 

C” =,,,(l-5;) 

On the other hand, the temperature-dependence equa- 
tion of the heat capacity is generally written as follow. 

Cps+bT-z=a 
rz 

Combining the coefficients of 7a term from the two 
foregoing equations, the calculated Debye tempera- 
ture 427 K was derived, in comparison with 460 K 
obtained from the heat capacity of Lac,sCae2Mn03 
from 110 to 300 K by Tamura and Kuriyama [20]. 
Comparing these two results, the estimated Debye 
temperature of LaMtrOs (430 K) is a reasonably good 
derivation. 
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