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Abstract 

It has been demonstrated that points of inflection of a differential thermal analysis (DTA) peak can indicate its order of 
kinetics. A new set of expressions involving peak temperature Tm and temperature T,~ and T~2 corresponding to the points of 
inflection have been obtained for the evaluation of activation energy. The validity of these expressions is discussed by applying 
them to a number of DTA curves. © 1997 Elsevier Science B.V. 
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1. In t roduct ion  kinetic parameters of  a DTA curve by using some 
characteristic temperatures which also include the 

Differential thermal analysis (DTA) is an temperature at one of the points of  inflection. He 
indispensable tool for the study of  complex has, however, not evaluated the temperature integral 
chemical reactions. Moreover, DTA curves are often accurately. Although the method of  Luo [5] eliminates 
used for the quantitative identification of  organic the difficulties encountered in earlier works [6,7], his 
and inorganic compounds. In the literature there expressions for the evaluation of  activation energy and 
are various methods for the determination of  the order of kinetics still have some restrictions. In the 
kinetic parameters. These methods have been present paper we report a number of  expressions for 
reviewed by Chen and Kirsh [1], Chen [2], the determination of  the activation energy of  DTA 
Mendlandt [3] and Blazek [4]. Recently, Luo [5] curve with arbitrary order of  kinetics (0.5 < n < 3). 
has proposed a method of  calculation of  the These expressions involve the peak temperature Tm 

and/or  temperature Tn and T/2 corresponding to the 
two points of  inflection. We have also shown that the *Corresponding author. Present address: Center for Theoretical 

Studies of Physical Systems, Clark Atlanta University, Atlanta, points of  inflection of  a DTA curve can indicate its 
GA-30314, USA order of kinetics. 
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2. Theo ry  Similarly for n ~ 1 one gets 

T,, 
Following Luo [5] the expression for the solid state A f 

decomposition reaction of the nth order can be written 1 + (n - 1 ) ~e d e x p ( - E / R T ) d T  
as To 

nA RT2m e x p ( - E / R T m ) .  (7) 
dx = A ( 1  - x)nexp(-E/RT) (1) -- ~ E  
dt 

The evaluation of the integral, 
where x is the fraction of the reaction completed 
in time t, A is the pre-exponential factor, R is r t "  
the universal gas constant and E is the activation [ e x p ( - E / R T ' )  
energy. In a DTA curve the temperature deviation r0 d 

A T  from the horizontal base line can be expressed 
as popularly known as temperature integral, is not 

straightforward to evaluate. It is shown by Chen 
dx and Kirsh [2] that for a given value of the activation 

A T  =/3~- 7 (2) energy E, the temperature integral is a strongly 

where/3 is the proportionality constant. From Eqs. (1) increasing function of T so that 

and (2) we get after some algebraic simplification r r 

r / exp(-E/Rr')dT'  .~ f exp(-E/RT')dT'. [ a/ A T = A f t  l + ( n -  1 ) ~  T0 0 

ro (8) 

exp(-E/RT')dT' ] -n/(~-l) Now following Gartia et al. [8] we get 
× 

J EE2(u) (9) 
× e x p ( - E / R T )  for n ¢ 1 (3) exp(-E/RT')dT' - R u 

o 

and where u = E/RT and Ez(u) is the second exponential 
A T  = a/3 e x p ( - E / R T )  integral [9]. Using Eqs. (3),(4) and (7) one can arrive 

at 

x exp - exp(-E/RT')dT' A T  _ exp[um - u + F(u, Um)] for n = 1 
To ( A Z ) m  

for n = 1 (4) (10) 
and 

where • is the linear heating rate, To is the starting 
AT 

temperature and T is the temperature at time t. At the - -  - exp(um - u) 
peak temperature T = Tm the deflection of  DTA curve (AT)m 
is maximum so that × [1 - (n - 1)/nF(u, Um)] -n/("-l) 

[ d d ~  ] f o r n ~  1 (11) 
= 0. (5) 

T=Tm with 

2 exp(um)[E2(um)/Um E2(u)/u], From Eqs. (4) and (5) at T = Tm one can write for F(u, urn) = u m - 

n = 1 (12) 

~ E  --Aexp(-E/RTm).  (6) (AT)m is the maximum value of A T  and 
RT2 Um = E/RTm. 
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The points of inflection of a DTA peak curve at Table 1 
temperature Til and Ti2 such  that Coefficients alk and blk occurring in Eqs. 24 and 25 for the 

determination of activation energy 

d2AT] = 0 (13) k aok alk a~ bok blk b2k 

d - ~ _  T=Tij (j= 1,2) | 1 0.8430 -1.5165 0.1184 0.4749 0.5461 -0.0620 
2 0.9828 -1.8137 0.1381 0.4738 0.5476 -0.0626 For n ---- 1 Eq. (13) can be expressed as 
3 0.9123 -1.6646 0.1287 0.9487 1.0937 -0.1246 

u d F - 1  ~ - u  + /  t d  u 1 )+u-~-u2JAT=0  

for u = uij (uij = E / R T i j  (14) (0.5 < n < 3.0) as 

whereas for n ~ 1 we can write Ak = aOk + alkn + a2kn 2 (22) 

2u d A T  Bk = bok + blkn + b2kn 2 (23) 

+ (u + 2)AT The coefficients alk and bl~ (1 = 0 - 2) are presented 
[2dG d2G] in Table 1. 

- exp(um - u) [ -~u + u~-u2 J -- 0 (15) 

for u = uij,  G = D -n/(n-l) and D = 1 - (n - 1 )F /n .  
The points of inflection for first order (n = 1) and 3. Results and discussions 

non-first order (n ~ 1) DTA peaks can be found out by 
solving Eqs. (14) and (15) numerically. Using the The temperature Til and Ti2 corresponding to the 
standard technique of linear regression [10] it is found points of inflection of numerically computed DTA 
that a good linear correlation exists between the peaks have been found out by solving Eqs. (14)and 
following pairs of variables:[um,Uil / (u i l -Um)] ,  (15) numerically by the Newton-Raphson method 
[Um, U i 2 / ( U  m - -  Ui2)] and [Um, U i l U i 2 / U m ( U i  1 _ Ui2) ] [12]. This method is very sensitive to the initial guess 
with uij = E / R T i j ,  so that one can write values of Til and Ti2. In some cases we encounter 

difficulties of convergence and to overcome this pro- 
Uil 

Um= A1 + Bl (16) blem we have used the bisection method following 
(uil - urn) Press et al. [13]. For experimental DTA peaks Til and 

ui2 Ti2 have been determined by using the cubic spline 
Um = A2 (ui2 Um) -]- B2 (17) 

- method [14,15]. 
UilUi2 In Figs. 1 and 2 we show the variation of 

um=a3um(Uil__Ui2)-~-B3 (18) (AT) i l / (AT)rn  and (AT) i2 / (AT)m wi th  Um--- 

E/RTm for 10 < Um< 100 corresponding to different 
where the coefficients Ak and Bk (k = 1 - 3) occur- values of n, namely n = 0.7, 1.0, 1.5, 2.0, 2.5. From 
ring in Eqs. (16)-(18) depend on the order of kinetics. these figures it is evident that the dependence of these 
These three equations can be recast in the form ratios on Um is not very strong and the maximum 

A1RT2m variation is about 7% for smaller values of Urn. For 
E -- (Tm - Til ) + B1RTm (19) Um> 20 these ratios are almost independent of Um. On 

the other hand, these ratios depend strongly on the 
E - A2RT~ + B2RTm (20) order of kinetics n and hence be used to estimate the 

(T/2 - Tm) order of kinetics. In Fig. 3 we exhibit the dependence 

E A3RT2m of the ra t ios  (AT) i j / (AT)m (J ---- 1,2) on the order of 
- -  + B3RTm. (21) kinetics n for Um= 40. It is clear from this figure that 

(Ti2 - Til) the rat io  (AT) i2 / (AT)m corresponding to the falling 
By using the technique of non-linear least square side (j = 2) of the DTA peak is much more sensitive to 
regression [11] each of the coefficients of Ak and the order of kinetics than that corresponding to the 
Bk can be expressed as a quadratic function of n rising side. So we can determine the order of kinetics 
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Fig. l. Variation of (AT)il/(AT)m with U m for different order of 
kinetics (n). 
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Fig. 3. Variation of (AT)ij/(AT)m [/'=1,2] with order of kinetics 
E 0.65 ~ n 1.5 (n). 

t---- = 

<3 

~' ~ n=l.0 
,~  0 . 5 5 -  literature, namely, those of calcitic limestone [6,16], 

georgia kaolinite [6,16], eureka halloysite [6,16], <3 
Cyclotrimethylenetrinitrame (RDX) [ 17] and 

0.45 trinitrotoluene (TNT) [17]. We denote the activation 
energies as calculated by using Eqs. (19)-(21) by El, 

n = 0.7 E 2 and E 3 and E represent the average of these three 
0.35 I I I I values. These results are displayed in Table 2. The 

10 30 50 70 90 kinetic parameters calculated by the present method 
U m are in fair agreement with those reported in the 

literature. Fig. 2. Variation of (AT)i2/(AT)m with U m for different order of 
kinetics (n). 

4. Conclusion 
by using the curve connecting the ratio (A T)i2/(At)m 
and the order of kinetics n. The appropriateness In the present paper we have reported a number of 
of the order of kinetics so determined can be expressions from which one can determine the activa- 
checked by observing whether the order of kinetics tion energy of a DTA peak once its points of inflection 
calculated by using both the curves in Fig. 3 are areknown. We also show that the point of inflection of 
consistent, a DTA peak can indicate its order of kinetics. Finally 

Finally, we test the applicability of the present the validity of the present method has been demon- 
method by applying it to evaluate the kinetic para- strated by applying it to a number of experimental 
meters of a number of DTA curves selected from the DTA peaks. 
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Table 2 
Value of kinetic parameters of some experimental DTA peaks, a(b) stands for ax l0 b. 

System # n El E2 E3 E A 
(°C min- 1) (K cal) (K cal) (K cal) (K cal) (sec l) 

Georgia kaolinite [6,16] 6 1.0 36.48 36.53 36.5 l 36.51 3,33(6) 
Eureka halloysite [6,16] 6 1.0 37.82 37.64 37.83 37.76 5,05(7) 
Calcitic limestone [6,17] 6 0.55 45.72 45.77 45.74 45.74 4,45(6) 
Calcitic limestone [6,17] 15 0.56 45.72 45.51 45.73 45.65 4,14(6) 
RDX[17] 6 0.85 45.33 44.77 45.05 45.05 2,33(17) 
RDX[ 171 15 0.96 46.21 45.95 46.58 46.58 7,13(17) 
TNT[ 17 ] 6 1.65 21.94 21.96 21.96 21.95 6,78(5) 
TNT[ 17] I 0 1.75 20.99 20.99 20.99 20.99 2.87(5) 
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