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Abstract 

At evaluation of TM-DSC (temperature-modulated differential scanning calorimetry) curves using linear response theory 
we obtain a complex heat capacity, which consists of a real and an imaginary part. It can be shown that C” is connected to the 
time-dependent processes. It includes information about the intemal entropy change. In the case of phase transitions and 
chemical reactions, this intemal entropy change is related to the change in structure. 

For a description of time-dependent processes, a new intemal parameter < (order parameter) is necessary. < is a function of 
time and describes the kinetics of the system. If the thennodynamic behaviour is known, C(t) can be detertnined. 
Phenomenological or molecular models for the order parameter C(r) can be used for a description of measured TM-DSC 
curves. 0 1997 Elsevier Science B.V. 
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1. Introduction signal) and a periodic component: 

In 1992, a temperature-modulated DSC (TM-DSC) 
method was introduced by Reading et al. [ 1-31. In this 
type of DSC, the conventional temperature program 
(linear heating, cooling or isothermal conditions) is 
superposed by a periodic temperature change: 

T(t) = Ta + Pat + T,sinwat (1) 

where Ta is the initial temperature, ,&, the underlying 
heating rate, Ta the temperature amplitude and wo the 
angular frequency (wa = 2r/tp; tp is the period). The 
measured heat-flow data are separated into an under- 
lying component (related to the conventional DSC 

*Corresponding author. 

where the linear part of Eq. (1) yields the underlying 
component @,, and the sinusoidal term the periodic 
component Qp. In practice, different types of periodic 
signal forms are used [4]. 

Different methods of separation in underlying and 
periodic components are possible [5,6]. Prerequisites 
for the separation are the linear superposition of both 
components, a linear sample response to the periodic 
component as wel1 as a linear measuring instrument. 
The influence of the underlying component on the 
periodic component is dependent on the experimental 
conditions. A suitable choice of the underlying heating 
rate po is important. If the underlying heating rate is 
too large, crossover effects occur [4,7]. The linearity 
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of the sample response is dependent on the type of the 
thermal event and the amplitude of the periodic tem- 
perature change [4]. The temperature amplitude T, 
should be as low as possible. 

If the DSC is a linear instrument, there is a linear 
relationship between the measured signal X, and the 
heat-flow rate Qs: 

&(t) = A o X,,,(t) (3) 

where A is a linear operator. (In the simplest case A is 
a constant calibration factor.) 

The linearity of conventional DSC has been demon- 
strated already [8-111. The linearity is independent of 
the type of temperature programme (e.g. isothermal, 
scanning or modulated). In the case of a first-order 
phase transition of a pure substance, deviations from 
linearity occur [ 121. However, during a first-order 
transition, the true temperature amplitude is less than 
that indicated [ 131. 

If al1 conditions are optimum, the first harmonie of 
the periodic heat-blow component reads as follows: 

$1 (f) = @P,(w4~0~ - ‘PI (4) 

where Qa is the amplitude of the heat-low rate and cp 
the phase shift between the heating rate p = dT/dt 
and the heat-flow rate Gs. Both the phase shift and Qa 
are influenced by the heat transfer [5,14]. After cali- 
bration of amplitude and phase [ 15,161, the complex 
frequency-dependent heat capacity 

C(w) = C’(w) - iC”(W) (5) 

can be calculated from the measured curve. The real 
part C’ describes the component in phase with the 
heating rate and the imaginary part 6 the component 
out of phase. 

It can be shown that when the imaginary part of the 
heat capacity (and the phase shift) vanishes, the 
thermal event can be described in terms of reversible 
thermodynamics. In this case, the event is time-inde- 
pendent and the system is in equilibrium [ 171. 

If a time-dependent process occurs in the sample 
then, in general, this causes a non-zero imaginary 
component of the heat capacity. The fundamental 
theory for description of such processes is irreversible 
thermodynamics. 

At sufficiently smal1 perturbations, the linear 
response theory is the tool for a description of the 
time-dependent sample response [ 181. In this case, the 

behaviour of the sample is described by a generalised 
compliance. For a frequency-dependent experiment, 
the generalised compliance is a complex characteris- 
tic, as in Eq. (5). The use of the complex heat capacity 
C(w) for a description of thermal processes is com- 
mon. One of the first application of C(w) is the 
description of the dispersion of ultrasonic waves 
[ 191. The complex heat capacity can be measured 
by the so-called 3w-method in a wide frequency range 
[20-221. It is shown that the linear response theory is a 
useful approach for time-dependent thermal processes 
[23,24]. As an application of this idea, we discuss the 
thermodynamics of different time-dependent pro- 
cesses measured by TM-DSC in this paper. 

Attention is directed to the complex specific heat 
capacity. In the discussion of the TM-DSC curves, we 
have to distinguish between different cases which 
differ relative to their closeness to equilibrium. Here, 
we wil1 focus on processes close to equilibrium. 
Nevertheless, an outlook to non-linear effects is given. 

The fundamental extension of the thermodynamics 
for time-dependent processes is done with the intro- 
duction of an additional time-dependent intemal vari- 
able <. The influence of this variable on the measured 
properties is shown elsewhere [25]. 

2. Thermodynamic basis for description of 
TM-DSC results 

2.1. The complex heat capacity 

If the system is not in equilibrium, an additional 
variable C must be introduced to quantify the respec- 
tive intemal degrees of freedom. < is a time-dependent 
function. In this case, the total differential of the 
entropy for isobaric conditions reads 

In other words, al1 other variables are assumed to be 
constant. Then the generalised isobaric heat capacity 
can be defined as [17] 

C(T,[(t)) = TrT) = T(& 

dS 

0 
$&l 

+ T q p,T dT 
(7) 
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The first term represents the static part Cst, and the 
second the dynamic (time-dependent) part C+(t) of 
the heat capacity, respectively: 

C(t) = Cs, + Cdj&) (8) 

C,, is determined by the fast modes of the mole- 
cular motions (which are always in equilibrium), 
and Cdyn is due to al1 intemal degrees of freedom 
with a distinct time dependence during the experi- 
ment. 

However, if the heat capacity is time dependent, so 
is the entropy of the sample. The reason for this is 
an intemal ‘structural change’ of the sample. The 
sample needs time to absorb the heat needed by 
al1 internal degrees of freedom. The characteristic 
time is dependent on the molecular processes in 
question. If the time-dependent process is not far from 
equilibrium, the entropy relaxation can be written in 
terms of the linear response theory as a convolution 
product: 

As(t) = + AT(r) + J $(t - t’)AZ-(t’)dt’ 

-02 

(9) 

where AT(t) is a small, time-dependent, temperature 
change and G(t) the retardation function. Fourier 
transform yields an equation for a frequency-depen- 
dent experiment 

As(w) = + AT(w) + $(w)AT(w) (10) 

where 

G(w) = i $(t)exp(-iwt)dt (11) 
J 
0 

A comparison of Eq. (10) with Eqs. (6) and (7) shows 
that Q(w) contains the heat capacity: 

qw) = cdyn(w) 
T 

Eq. (9) yields the correspondence between the time- 
dependent retardation and the dynamic part of the heat 
capacity: 

(12b) 

Therefore, the entropy change reads as follows: 

as(t) = + AT(~) + ' Cd& - i) J T 
AT(t’)dt’ 

-00 

(13) 

In the sense of this equation C/T is the ‘entropy 
compliance’ [26], similar to the permittivity E in a 
dielectric experiment. Eq. (13) is only valid if AT is 
not larger than the order of magnitude of the char- 
acteristic temperature fluctuation ST of the related 
modes. 

If AT(t) is a smal1 temperature step at the moment 
t() = 0 

AT(t) = AT@(t - tc) (14) 

(where 0 is the step function) and Eq. (13) reads 

AS(t) = (Cs, + C&)) “tT (15) 

Comparing Eqs. (7) and (15) yields: 

AC(t) = Cdyn(t) 
AT 

7-X 
0 aC p,T 

(16) 

The connection between the dynamic part of the 
heat capacity and < is given by 

t(t) cx Cdj&) (17) 

In case of TM-DSC measurements, the frequency- 
dependent heat capacity C(w) is measured. Eqs. (12a) 
and (12b) leads to the connection between C(w) and 
the time-dependent heat capacity C(t): 

C(+Cs,tm &yn(t)ëiufdt=C’(w) - iC”(W) J 
0 

= Cs, + Cd,“(W) - iC&J.d) (18) 

In analogy, the frequency dependence of < is: 

M 

c(w) = Jcj(t)e-dtdt (19) 
0 

From Eqs. (6),(8) and (13), and subsequent differen- 
tiation. it follows: 
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(20) 
The Fourier transfonn of Eq. (20) is given by 

( 1. g p $W) = Cdyn(W) iwA;(wJ (21) 

If we, for instance, choose AT(t) as a step function 
(Eq. (14)), we get the same relationship between < and 
C, as in Eq. (16): 

<(“J) = cdynb’) + 

0 aC p,T 

(22) 

As a result, the time-dependent function C is pro- 
portional to the dynamic part of the heat capacity in 
this linear case. 

2.2. Processes close to equilibrium (e.g. relaxation) 

In analogy to Eq. (6), the total differential of the 
Gibbs free enthalpy G reads: 

dG= ($;,,, (g)T,4’+ (g)p;,dC(t) 
(23) 

By using of the definition of G 

G=H-TS 

Eq. (23) yields [27]: 

(24) 

dG = SdT + Vdp - Ad< 

where A is the affinity, hence 

(25) 

dG (-1 a< p>T= -A 
(26) 

The connection between the generalised flow 
rates and forces is given by dynamic relationships. 
In this case, the generalised force is A/T and the 
generalised flow rates dC/dt. The phenomenological 
kinetic equation reads, in linear approximation [27], 
as follows: 

dl -= LA 
dt T 

where L is a phenomenological coefficient. 

(27) 

In general, the affinity depends on the distance from 
equilibrium, which may be expressed by a Taylor 
series around the equilibrium value & = 0: 

A= ($-)(+;($)>2+-. 
=_(!E),C-fi?&o... (28) 

At equilibrium, the values of A and C are zero. When 
sufficiently close to equilibrium, we can restrict our- 
selves to the first non-zero term in Eq. (28) only. 
Inserting Eq. (28) into Eq. (26) yields: 

(29) 

The solution of this differential equation is: 

C(t) = W ti7 (30) 

with the relaxation time r given by: 

T 
,/-=p (31) 

The response of the heat capacity on a temperature 
step, in this case, is given by: 

C(t) = AC(1 - eëti7) + CS, (32) 

The frequency-dependent complex heat capacity for 
such simple relaxation is 

AC 
C’(w) = Cs, + 1 

and 

C”(w) = AC 1 +w;2r2 

Within the relaxation region, the real part C’ shows 
a step and the imaginary part C” a peak as function of 
frequency. The peak maximum of C” corresponds to 
the inflection point of C’. The temperature dependence 
of C(w) is given by temperature dependence of the 
relaxation time 7. 

One example for such a relaxation process is the 
glass transition. However, for a correct description 
of a real glass transition, one single relaxation time 
is not sufficient because the real relaxation process 
is broader, as follows from Eqs. (33) and (34). 
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Therefore, a distribution of relaxation times should be 
used for description. For a detailed description of 
measured curves in the glass-transition region, see 
Ref. [28]. 

2.3. Ajjìnity and linearity 

From the second law of thermodynamics, we get 
information about the reversibility or irreversibility of 
processes: 

ds > 3 
-T (35) 

The right-hand side of this relation is determined by 
the heat exchanged. The equality sign is true for 
reversible processes only. In the case of irreversibility, 
the entropy change is larger than the exchanged heat 
SQ suggests. The differente is defined as the intemal 
entropy change dSi of the system. For irreversible 
processes Eq. (35) may be written as: 

dS = dSi + ds, (36) 

Thus, ds, denotes the entropy exchanged with heat, 
and dSi the additional entropy change inside the 
system. 

The connection between the intemal time depen- 
dent variable < and the entropy production is [27]: 

dSi A dC 

dt T dt (37) 

The affinity may be expressed as a Taylor series 
around the starting value Ao at t = 0: 

dA 

A=Ao+ zq tEo ( 1 cc - Co) +; ($g _ 
t-0 

x (( ~ co)* + . (38) 

Close to equilibrium, only the constant term A. is 
relevant. A constant affinity is, however, a prerequisite 
for the validity of the principle of superposition of 
linear response theory. This is a fundamental condition 
for al1 commercially applied evaluation methods of 
TM-DSC data. 

Increasing the distance from equilibrium changes 
Eq. (37) to: 

-- (39) 

The second term on the right-hand side of Eq. (39) 
produces higher harmonics in the measured curves. 
Eq. (35) shows that dSi and d< are proportional in the 
linear case. If the distance to equilibrium increases, 
higher harmonics occur and this simple linear relation 
between dSi and C(t) is not valid. In such cases we lose 
information about the process if we use linear evalua- 
tion procedures. For the practice of TM-DSC, the 
conditions of linearity are dependent on the thermal 
process in question. 

3. Heat capacity and internal entropy change 

The exchanged entropy is connected to the mea- 
sured heat 

ds x9 e T (40) 

From Eqs. (36),(37) and (40) for the entropy change it 
follows: 

dS=g+$dC (41) 

The time derivative yields the rate of entropy change 
as the sum of the entropy tlow and the entropy 
production: 

dS p> Ad< 

dt- -T+Wt (42) 

Let US look at a step experiment (Fig. 1). At the time 
t = to, the temperature changes by a smal1 temperature 
step (Eq. (14)). As response on the AT-step the 
entropy also changes stepwise by AS. But only a part 
of AS is entropy exchange AS,. The other is an 
internal entropy change ASi. The entropy exchange 
AS,,, at t. is determined by Cs,: 

ns,(to) - AS,,~, = +T (43) 

The intemal entropy change is maximised at this 
moment. Because the slow intemal processes cannot 
absorb al1 energy at this moment, AS, increases and 
AS, decreases in time. After all, as t 4 m, AS, is zero 
and al1 entropy is exchanged. The sample is in equili- 
brium then. During the experiment AS is constant. 
From Eq. (36), it follows that the connection between 
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AS 

4!S(4 > 

Fig. 1. Scheme of relaxation of the entropy after a temperature step at tO. 

entropy flow and entropy production is given by: 

dS, dSi -=_- 
dt dt 

(441 

For this quasi-isothermal case, the measured heat- 
tlow rate is 

Q(t) = C,“(t)AT (45) 

Inserting in Eq. (40), and comparing with Eq. (42) 
yields 

Cd&) = - &i(‘) (46) 

or 

(47) 

Both Eqs. (46) and (47) show the connection of the 
dynamic part of heat capacity with the intemal vari- 
able < and the internal entropy change, respectively. 
C’+ describes the change of AS, in time, which is due 
to a temperature step AT (i.e. A&(ta) - AS,(t)) but 
not the absolute amount of it. 

In case of TM-DSC periodic signals are used. Let US 
first discuss the entropy change during one period of 
modulation of TM-DSC. In order to simplify, we 
discuss the quasi-isothermal case (underlying heating 
rate /3a = 0). During one period of temperature 

modulation the sample follows a cyclic process. If 
the system is in the steady state we come to the same 
state after each period. The entropy exchange for one 
period, ASperiodr reads: 

t+r,/2 t+t,/2 

ASperiod = 
s 

1 dQ(t') dt, = 
T(t')dt' 

f-$12 lp /2 

(48) 

where tp is the period and Q(t) the heat-flow rate, 
respectively. 

In the linear case, at a certain wo, the heat-flow rate 
into the sample is [17]: 

G(t) = woTaICIcos(wot - p) 

= woT,C’coswot + wcT,C”sinwet (491 

Thus, from Eq. (48), we obtain 

tit, 12 

A&m-,od = 
J 

wOT,C’cos(wot’) dt, 
To + T,sin(wot’) 

t-$12 

*+t. 12 

+ J ?’ weT,C”sin(wet’) dt, 
To + T,sin(wat’) 

t+/2 

= 0 + 27rC” - uOTOC” 



J.E.K. Schawe/Thermochimica Acts 304/305 (1997) III-119 117 

t+t,/2 

s 

dtl 
X 

T0 + T,sin(wat’) 
t-$12 

=,.,,,(l- d&) (50) 

The term in brackets may be expressed as a series 
(because Te » Ta): 

&!L_= 1 +;(g)2+$!)2+... 

(51) 
The first term in Eq. (50) (which always is zero) 

contains the real part of heat capacity and, thus, that 
part of exchanged heat which is in phase with the 
tem 

& 
erature change. 
e second term in Eq. (50) is connected to the 

imaginary part 6’ 

(52) 
The entropy of the surroundings increases by 

this smal1 value during each period. The sample 
remains in the same state after one cycle. Therefore, 
the sample and surroundings exchange the entropy 

ASperiod. 
From this it follows that the measured properties 

C&(r) and C(o) describe the linear intemal entropy 
change in the sample during the time-dependent 
processes. To get the complete information of the 
linear time-dependent process, a large frequency or 
time range must be measured. In case of TM-DSC, 
this frequency range is limited to two decades. This 
restriction can be expanded particularly by a 
changing To. 

4. A simple model for the entropy change 
during relaxation processes 

For relaxation processes, a step change of C’ is 
connected to a smal1 peak in 6’ (see Eqs. (33) and 
(34)). In this section we wil1 present a simple model 
for interpretation of this 6’. 

The dynamic response in a sample is determined by 
the different types of modes of the molecular motions. 
To every type of mode a characteristic time r can be 
assigned. For instance, a simple liquid is characterised 
by two different classes of molecular motions 
whose characteristic relaxation times differ by several 
orders of magnitude. The elemental motions (i.e. 
vibrations, rotations, etc.) are very fast. In contrast, 
the cooperative motions (typical for a liquid) are 
relativeiy slow. 

Within the framework of this model, the sample 
may be considered to be divided into different sub- 
systems. The energy exchange between the subsys- 
tems is smal1 compared to the total content of energy 
of these subsystems. The cooperative movements 
should be characterised by only one characteristic 
time (or frequencyfi). In other words, one subsystem 
represents the cooperative movement and the rest is 
considered to be the thermal bath (the surroundings) 
with respect to this subsystem. This model is shown in 
Fig. 2. The energy transfer between the subsystem and 
the thermal bath may be expressed by the time depen- 
dence of the intemal parameter <. The thermal bath 
represents the static part of the heat capacity C,,. The 
energy transfer between the surroundings and the 
thermal bath is more rapid compared with the experi- 
mental time. 

Fig. 2. Illustration of the behaviour of cooperative modes of the 
molecular motions in a liquid for different extemal perturbations (f, 
- frequency of the extemal temperature change; h - characteristic 
frequency of the cooperative mode: T - extemal temperature; Ta - 
temperature of the thermal bath; T, - temperature of the subsystem 
of the cooperative movements; HB - enthalpy of the thermal bath; 
and H, - enthalpy of the subsystem). 
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If we have an extemal temperature change with a 
frequency fa which is much lower than fi, the energy 
transfer between the thermal bath and the related 
subsystem takes place immediately and this subsystem 
contributes an ‘additional’ heat capacity AC 
(C = C,, + AC) to the system in equilibrium 
(dSi = 0). 

At the relatively high frequency of the extemal 
temperature change (f, »fi), an energy exchange 
between the thermal bath and the corresponding sub- 
system is impossible, because the time of change in < 
is too large compared with the intemal relaxation time. 
In this case, the system has the same behaviour as a 
system without this subsystem. For the experimenter, 
this subsystem seems not to exist in the experiment. 
The measured heat capacity is lower accordingly 
(C = C,,). 

If fi = fa, an energy transfer from the thermal bath 
into the subsystem is possible, but the time is not large 
enough for the subsystem to obtain the same tempera- 
ture as the thermal bath. In this case the temperatures 
of the subsystems differ, and the temperature distribu- 
tion is not homogeneous within the total system. In 
this case, the effective heat capacity depends on the 
energy that this subsystem can absorb, and the intemal 
entropy change dSi is connected to the intemal tem- 
perature differences. 

This simple model describes the heat capacity 
curves for a glass transition measured by TM-DSC. 
The relationship between the intemal frequenties 
(determined by the relaxation time of the cooperative 
modes) and the extemal frequenties is caused by the 
temperature dependence of the characteristic time of 
the subsystem that characterises the cooperative 
movements. The corresponding intemal frequency 
decreases with decreasing temperature. At relatively 
high temperatures, the intemal frequency decreases 
with decreasing temperature. At relatively high tem- 
peratures, the intemal frequency is high and al1 sub- 
systems contribute to the heat capacity C’. The sample 
is in equilibrium and C” disappears. With decreasing 
temperature the frequenties approach one another. 
Intemal gradients arise and C’ decreases. In this range 
6’ is greater that zero. If the temperature decreases 
stil1 further, the corresponding subsystem has hardly 
any influence on the dynamic behaviour of the sample. 
The cooperativity is frozen, C’ characterises only the 
thermal bath of fast motions, and C” disappears again. 

5. Conclusions 

One of the problems of the TM-DSC experiments 
and its interpretation is the information deduced from 
the frequency-dependent complex heat capacity C(w). 
It is shown that C(w) can be described using a time- 
dependent variable C. C(w) corresponds to the intemal 
entropy change of the sample and includes informa- 
tion about the irreversibility of a process. 

Since the evaluation method of the measured data is 
based on a linear theory, non-linear effects cannot be 
described exactly. This could be the reason that the 
imaginary component of the heat capacity is smaller 
than expected, especially in case of a reaction far from 
equilibrium. 

The knowledge of the time-dependent intemal vari- 
able < allows the description of the measured curves. 
This is shown for polymer melting in Ref. [25]. 
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