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Abstract 

To avoid thermostatting effort in a calorimeter the influence of ambient temperature perturbations on the output signal can 
be reduced by predicting and correcting the perturbation part of the output signal of the calorimeter. The prediction can be 
verified by measuring the temperature perturbations and simulating the corresponding output signal. Using a dynamical model 
of the calorimeter, simple methods for the solution of this problem are shown and tested experimentally. © 1997 Elsevier 
Science B.V. 
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1. Introduct ion 

For actual applications it is necessary to perform 
dynamic calorimetric measurements of  heat power 
dissipation with improved resolution and accuracy. 
Recently, new microsystems based on conduction 
calorimetry have been developed allowing the use 
of  small quantities of  the substance for the measure- 
ment. Such calorimeters have been applied as thermo- 
chemical  sensors [1]. To improve the resolution it 
implies to solve two fundamental problems in calori- 
metric measurements:  (a) the appropriate calibration 
avoiding the perturbation effects due to the localiza- 
tion of  the thermic sources and (b) the reduction of  
perturbations on the base line. 

Conduction calorimeters can be viewed as multi 
input-s ingle  output systems. The inputs correspond to 
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different points of  dissipation, the external room 
temperature and the temperature control actions. 
The output is the measured signal. Deconvolution is 
indeterminate and only approximations can be used in 
order to obtain satisfactory results. Ideal differential 
systems allow 'hardware suppression'  of the perturba- 
tion effects from temperature control and thermostat- 
ting. However, in practice, such systems are far from 
being perfect. The identity between the measured 
system and the differential element is only approx- 
imate at least because the contents of  the calorimetric 
vessels are different. In fact, thermostat fluctuations 
induce an independent input signal on the calorimetric 
system. In other words, the experimental system has 
two independent inputs and only one output with a 
mixture of  signals. 

Recent studies have shown that with good thermo- 
statting it is possible to use non-differential systems at 
constant temperature (see Ref. [2] and related refer- 
ences). The design of  systems operating under hard 
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conditions requires a high capacity to reduce the effect 
of  external perturbations. In temperature-controlled 
systems, partial causal perturbation reduction can be 
achieved via software using the theory of systems and 
an appropriate identification. In Ref. [3], the control 
effect on the measured signal is divided by five. In this 
paper, we will show how appropriate modelling and 
identification can be used to reduce external causal 
perturbations in the measurement in a micro-sized 
non-differential calorimeter without thermostatting. 
The developed procedure needs an independent mea- 
surement of  the external temperature and is useful to 
avoid thermostatting effort; this is meaningful for 
strong miniaturized calorimeters. 

2. Perturbation reduction 

The goal is to reduce perturbations in the measured 
signal produced by external variables as ambient 
temperature fluctuations and effects of  thermostatting. 
In all the cases, we will study the causal connection 
between the perturbation and the measured signal. 

In order to reduce the effect of  perturbation signals 
in the measured signal, two things are necessary: (a) to 
have an independent way for measuring perturbation 
and (b) to know the connection between the perturba- 
tions and the system's response. We add to the classi- 
cal calorimeter a new input measurement (the 
perturbation) and a new identification (the causal 
connection between perturbation and measured sig- 
nal). In that situation we can estimate which part of the 
measured signal is due to perturbation signals and, 
then, we will be able to reduce this effect. 

In general, perturbations can be interpreted as 
changes in the boundary conditions of our system. 
With a good modelling of the system, temperature 
fluctuations in the system which are due to external 
sources can be calculated if we know the boundary 
conditions. That means, we must know the tempera- 
ture in a surface which is not possible in practice. In 
fact, we can only measure a finite number of  points 
that represent the temperature in the external surface. 

Usually, in order to model a calorimetric system, we 
use the RC analogy [2,4]: the calorimetric system is 
decomposed into N elements, characterized by a 
thermal capacity (C/) and connected among them- 
selves by Newton coupling, characterized by the 
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Fig. I. Fraction of an RC model with non-homogeneous ambient 
temperature. 

coefficient (Pik). This kind of  model gives a system 
of N differential equations. Each equation describes 
the connection between one element and its neigh- 
bours. For the element i, we will have the following 
equation: 

dTi 
qi(t) = Ci ~ t -+ ~._a Pik(Ti - Tk)+ Z P°it(Ti- T~t); 

k#l t 

( k =  1 , 2 , . . . , N ;  1 =  1 , 2 , . . . , M ) .  (1) 

The function qi(t) is the dissipation in element i and 
M the number of  external temperatures. External 
temperatures have a pattern that is independent of 
the system behaviour. In Fig. 1, the fraction of  an RC 
network is shown in which the considered element 
i = 3 is connected to three elements in the neighbour- 
hood and three different ambient temperatures 
( N = 3 ,  M = 3 ) .  

Perturbations can be of  two types: heat power 
sources as those used for temperature control like 
Peltier and/or  Joule effect (denoted as terms qi), 
and one or more temperature fluctuations like thermo- 
stat/external temperatures T~t. In our case, only one 
thermostat temperature is considered (To). 

This linear model allows us to use the techniques of 
the theory of linear systems. Eventually with slowly 



J. Lerchner et al./Thermochimica Acta 302 (1997) 201-210 203 

. . . . .  

-:~ hq(t) 
q ( t )  

T ( t )  

F 
hr(t) I 

I 

vT(t) ! 
÷ '~+ 

vq(t) "~ '  v(t) 

Fig. 2. General model of the system using linear system theory. 

(ad hoc) time dependent coefficients. Whatever the 
case, we can characterize the connection using a 
transfer function (or impulse response). Fig. 2 shows 
the transfer function approach. Then, the measured 
signal (system's output) can be determined from the 
inputs as 

v(t) = vT(t) d- Vq(t) = hT(t)*T(t) q- hq(t)*q(t) 

(2) 

where T(t) is the vector of perturbations, hr(t) the 
vector of impulse responses connecting output and 
per tu rba t ions ,  hq (t) the impulsive response connecting 
the power dissipation of the measurement and the 
output, q(t) the heat power of reaction, vT(t) the part 
of the output due to the perturbations, Vq(t) the part of 
the output due to the signal that is being measured and 
v(t) the measured signal. 

The goal of measurements is to extract the signal 
q(t). Two problems are presented: (a) reduction of the 
perturbating term Vr(t) and (b) deconvolution in order 
to obtain the heat power dissipation q(t) from the 
measured signal v(t). Here, we focus on the problem 
of reduction of the term Vr(t). That can be done by 
calculating 

v'(t) -~ v(t) - vlr(t) = v(t) - h~(t)*T(t). (3) 

v'r(t ) being the estimation of the perturbating term 
and h~(t) the estimation of the connection between 
perturbations and measured signal. Then, the problem 
reduces to making a good measurement of T(t) and in 
estimating hr(t). The problems discussed above are 
present in all the calorimeters but the kind of solution 
adopted here will be highly influenced by the system 
analyzed. 

In this paper, we will show an approach to the 
problem of reduction of external temperature fluctua- 
tions and we apply it to a specific system. 

2.1. Perturbation measurement 

In practice, the border conditions are measured as a 
finite set of temperatures. Measuring several points 
will complicate the experimental arrangement and the 
identification of the vector hr(t) can be highly com- 
plicated. In our simplified system, only one external 
temperature 7 ° is considered (in a general formalism 
their action appears in one or more heat transfer 
equations). 

As an approach it should be possible to use the 
measurement at only one point, if it represents the 
perturbation signal. This point must be located so that 
the connection between the temperature and the output 
of the system is independent of the origin of perturba- 
tion. This is correct in the following cases: 

• The part of the system which is in contact with the 
ambient has a high thermal conductivity. Thus, one 
can consider that there is no gradient of temperature 
and the temperature of any single point is sufficient 
for describing the border conditions. 

• The system can be considered as composed of two 
parts: an outer part in contact with the ambient and 
an inner part where the experiment will be carried 
out. If the inner part is in contact with the outer part 
at one point, then, this point can be considered as 
the border conditions for the inner part. 

In these two cases, one can consider that the per- 
turbation source is outside the calorimetric system. 

2.2. Parametric model for  a continuous system 

The output (measured signal) of the system can be 
calculated for the simplified case of a homogeneous 
ambient temperature from Eq. (2) and using the 
Laplace transformation: 

V(s) : VT(s)+ VQ(S) =HT(s)T(s )  + Ha(s )a ( s )  

(4) 

The aim of the correction is to eliminate the term 
VT(S) corresponding to the perturbations. Therefore, 
we must estimate the function Hr(s).  This function 
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describes the causal connection between the measured 
signal and the perturbations. The calorimetric system 
can be modelled using R C  analogy with an appropriate 
number of  heat capacities (m). With this experimen- 
tally derived model, we can write the transfer function 
HT(s)  as a Pade form (quotient of  two polynomials): 

an sn -t- " • " -F ao 
H(s) = b~-m %- ' . : ~  ~- (5) 

Using this representation, the coefficient ao repre- 
sents the sensitivity. The experimental conditions, 
mainly the signal-to-noise ratio, will determine the 
model 's complexity, which is possible to analyze [5]. 
We can build an R C  model which takes account of  the 
entire system but depending on the signal-to-noise 
ratio only a few elements will represent the system's 
connection between input and output. Once we have 
chosen the order of  the function, we must estimate the 
coefficients. 

The output due to the perturbation signal T(s)  is: 

Vr(s)  = H r ( s ) T ( s ) .  (6) 

Using, for HT(s),  the same general form given 
above and applying the inverse Laplace transform, 
the connection between perturbations and measured 
signal can be written as 

dmVT dnT 
bm ~ + " " + vr = an dr--- Z + " " " + aoT. 

Defining the vectors 

0 = [an, . . .  ,ao, b in , . . .  ,bl] t 

and 

[ d n T  dmVT dVT] t 

~(t) = [dt" ' ' ' " T ' -  d t W , . . .  , dt J ' 

the differential equation can be written as 

vT(t) : qJ(t)O. 

(7) 

(8) 

(9) 

(lO) 

2.3. Parameter  estimation methods 

For performing the identification of  the model, one 
must work in conditions in which the output of  the 
system is given from the perturbation signals only. 

Then: 

v(t) = vT(t). (11) 

The input for the identification algorithm are the 
signals T(t)  and v(t). The signal T(t)  can be generated 
by noisy artificial perturbation (see Section 3). In 
practice, signals T(t)  and v(t) are discrete ones. 
The task is now to solve the system equation for 0 in 

vT(t) = ~t(t)O (12) 

within the sampling interval to < t < t~. Because the 
system is over determinated, no solution exists in 
general. Therefore, the search of a parameter vector 
is necessary to minimize the quadratic criterion 

t=h 
1 Z ( v r ( t )  - ~t(t)O) 2. (13) 

Fro,t, (0) -- tl - t~o t=t0 

This is a standard engineering problem and a lot of  
methods for solving it are known [6]. The basic 
equations of the instrumental-variable method which 
we have applied in this work are given in Appendix A. 
Also comfortably usable computer programs are avail- 
able for quite some time (e.g. MATLAB [8] includes 
an enormous number of powerful toolboxes for these 
purposes). To demonstrate the ease of  use of  such 
computer programs, a short sequence of  MATLAB 
instructions including identification and prediction is 
also given in the Appendix A. After the successful 
approximation of  0, the prediction of  v~(t) is a simple 
system simulation procedure. 

3. Experimental 

The heat-flow calorimeter which we have used for 
testing the perturbation reduction procedure is shown 
in Fig. 3. For more details see Ref. [1 ]. The equipment 
consists of  two axial connected cylindrical aluminium 
blocks. In the centre of  the arrangement a silicon 
thermopile chip is located, embedded in a ceramic 
carrier. On the 'hot zone'  of  the thermopile, drops of  
glycerol are placed. The ceramic carrier is thermally 
connected with the lower aluminium cylinder via 
metallic pins. At the lower face of  this block a heater 
is attached due to generate temperature fluctuations 
within the block. The temperature fluctuations are 
measured using a platinum resistance thermometer 



J. Lerchner et al./Thermochimica Acta 302 (1997) 201-210 205 

.... Capillary 

upper Block 

Drop 
Ceramic Carrier 

\ I_ Pt Resistance 

\, ___ Si-Chip 

lower Block 

"~ '~ - .  Heater 

Thermopile 

Fig. 3. Scheme of the calorimeter used for testing the perturbation 
reduction procedure. 

(Pt 1000) placed at the edge of the ceramic carrier. 
Because the thermal conductivity of the ceramic 
material is rather high, the measured temperature at 
this point is a satisfactory approach for the tempera- 
ture fluctuations in the surroundings of the thermopile. 
The aim of the investigation is to analyze the influence 
of the temperature fluctuations on the output voltage 
of the thermopile. The resistance of the platinum 
thermometer and the generated heat-flow signals are 
monitored with the help of a commercial data acquisi- 
tion system (DaisyLab/DAP-Interface [7]). Stochastic 
heat power is produced by numerical generation of 
gaussian white noise and output via a digital-analogue 
converter and amplifier. For each experiment data, 
files are collected after disappearance of the transient 
effects caused by switching on of the heating source. 

4. Results and discussion 

4.1.  M o d e l  s e l e c t i o n  

In order to perform the identification of the system, 
we have to select the model on which the identification 

a Rcs 

_ f To ? . / > . . [  T,c, 

-_i/ 

Signal 
Fig. 4. Simplified mode] of the calorimeter. 

and correction algorithms are based. The physical 
characteristics of the system should be taken into 
account. We can start with a second-order model as 
shown in Fig. 4. In this model the chip carrier is 
modelled by two elements (two heat capacities of 
the R C  model), first (T) wherein the perturbation 
measurement is done and second (Tc) coupled with 
the sample (Ts). This system is described by 

(14) 

with 

Tc = R C c ,  time constant of the chip carrier; 
7s = RcsCs,  time constant of the reaction zone ('hot 
zone') and/9 = R / R c s ,  ratio of the heat transfer resis- 
tances. 

For the output in the Laplace region, we obtain: 

V ' ( s )  = K ( T c ( s )  - Ts(s)) 

= K TsS T ( s )  (15) 
O-cs + 1)O-ss + 1) + 

with the scaling factor Kwhich depends on the units of 
measurement. V'(s) represents the estimated output to 
the perturbation and T ( s )  represents the perturbation 
measurement. This expression can be simplified 
assuming p << 1: 

H ( s )  --  V ( s )  _ . TsS (16) 
T(s) K  -cS + 1)0-sS+ 1) 

In practice % < rc. Because perturbations have a 
low-frequency variation, we can consider that only the 
biggest time constant is affecting the measurement. 
Therefore, we can approximate Eq. (16) by a first 
order one: 

H ( s )  - -  V ( s )  _ K rss  (17) 
T(s) O-cS + 1) 
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This is a high pass filter for the perturbation signal. 
The model is described by two parameters. We can 
write this function in a more general way as: 

a s  
n(s )  = 1 + bs" (18) 

The parameter vector is 

0 = [a, b]. 

Therefore, the differential equation can be written 
as: 

v(t) = ~pt(t)O (19) 

with 

rdrc dv] '  
qo(t) = L at ' ~ " (20) 

4.2. Identification and perturbation reduction 

Examples for input (temperature) and output (heat 
flow) signals which are used for the identification are 
shown in Fig. 5. The sampling period was 1 s. For the 
identification both signals were filtered in the same 
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Fig. 5. Input (temperature, a) and output (measured signal, b) 
signals used for the identification. 

Table 1 

No. of experiment Reduction a b 

1 5.8% 3.26 16.27 
2 6.0% 3.13 15.27 
3 5.0% 3.07 15.45 
4 5.2% 3.05 15.28 
5 7.7% 6.15 18.63 

way by a butterworth band-pass filter. The parameters 
in the model have been identified using the instru- 
mental-variable method (Section 2.3). Calculations 
were carried out by the help of  programs written in 
a MATLAB programming environment [8]. The coef- 
ficients obtained for different measurements are pre- 
sented in Table 1. For the perturbation reduction, it is 
necessary to perform a prediction of  the output by 
simulating the system with the measured temperature 
as input. The corrected output was obtained by sub- 
tracting the measured and the predicted outputs. As a 
measure of  perturbation reduction, the following para- 
meter can be defined: 

reduction = E [ l v -  Vsimulated]] X 100 (21) 
E[Ivt] 

Fig. 6 shows the filtered heat flow, the predicted 
signal and the predicting error (difference between 
experimental output and predicted outputs). The iden- 
tification has been done using data in the interval (500, 
1500 s). As it is seen from this figure, the prediction is 
also good outside the identification interval. This 
means that the parametric model used for the identi- 
fication gives a good description of the real system. In 
Fig. 7, the model was tested by a pulse perturbation. 
The upper part of  the figure shows the temperature 
response of the heating pulse. In the lower part, the 
measured and predicted heat-flow signals can be seen. 
The prediction was made with the help of  averaged 
parameters from Table 1. The low influence of  the 
perturbation on the error signals confirms the quality 
of  the identification and the stability of the system, 
respectively. 

In order to test the dependence of  the parameters of 
the sample mass, the mass used in the Experiment 5 
was doubled. As seen from Table 1, parameter a was 
also doubled as expected from the model. But para- 
meter b was also affected by the sample mass. That 
means, the approximations made are too coarse. It can 
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Fig. 6. Results of the identification and prediction: The curves of 
the measured output and predicted measured signal are almost the 
same. The error curve is the difference of both curves. 
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Fig. 7. Pertubation reduction: The temperature curve (a) is caused 
by a heat power impulse. With earlier obtained parameters of the 
system the measured signal is predicted (b). Subtracting the 
predicted signal from the measured signal provides the corrected 
c u r v e .  

be shown [9] that Eq. (16) can be approximated more 
accurately by 

V(s) us  
H(s) -- T(s~ -- K (~-css + 1) (22) 

where 

7c2s = 7- 2 + 7~. (23) 

The time constant rcs in Eq. (22) now depends on 
the thermal properties of  the chip carrier as well as on 
the sample mass. Tbis is in good agreement with the 
experimental  results. A second-order model has been 
tested but no improvement has been observed in the 
results. 

5. Conclusion 

To avoid thermostatting effort in a calorimeter, the 
influence of  ambient temperature perturbation on the 
output signal can be reduced by predicting and cor- 
recting the perturbation part of  the signal. In the same 
way, perturbations produced by temperature control 
with Peltier and /o r  Joule effect can be reduced. The 
perturbation can be reduced by measuring the tem- 
perature perturbations and simulating the correspond- 
ing output signal. This procedure is useful for 
measurements of  temperature at any one point that 
must be representative of  the perturbations. If  that is 
the case, it is easy to analyze the calorimeter in order 
to obtain a dynamic model  which is necessary for the 
prediction by standard system identification methods 
like the instrument-variable method. Stochastic exci- 
tations seems preferable for the identification proce- 
dure. If  the signal-to-noise ratio of  the temperature 
measurements is high enough, natural fluctuations of  
the ambient temperature could be used during the 
identification runs. Under such conditions, an adaptive 
system identification should be possible. Furthermore, 
the method seems appropriate in differential as in non- 
differential systems. 

6. List of symbols 

a,b,  a i , ~  
Cc 
Ci 

coefficients of  a transfer function 
heat capacity of  the chip carrier 
heat capacity of  the ith element 
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Cs  

E l l  
F(O) 
hq(t) 

hr(t)  

h~(t) 
n(s) 
no(s) 
HT(S) 
i 
k , l  
K 
m, gl 

n(t) 
Pik 

eo 

q(t) 
qi(t) 
R 

Rcs 

S 

t 
to, tl 
r ( t ) ,  T O 
Ti 

r(s) 
Ts 
Tc 
v(t) 
v(t)' 

v (t) 

V(s) 
Vo(s) 

¢(t) 

heat capacity of the sample including 
inertia 
expectation 
quadratic criterion 
impulse response due to power dissipa- 
tion 
vector of impulse response due to 
perturbations 
estimation of hr  
transfer function of the system 
Laplace transform of hq 
Laplace transform of hr 
number of the considered element 
counting index 
scaling factor 
orders of  the polynomials in the 
transfer function 
noise 
coupling coefficient (heat conductivity) 
between the connected elements i and k 
coupling coefficient between the ele- 
ment i and the ambient temperature 1 
power dissipation 
power dissipation in the ith Element 
thermal resistance between chip carrier 
and the surroundings 
thermal resistance between chip carrier 
and sample 
Laplace variable 
time 
time interval 
ambient temperature 
temperature of the ith element 
lth ambient temperature 
Laplace transform of T(t) 
temperature of the sample 
temperature of the chip carrier 
measured signal 
predicted signal due to power dissipa- 
tion 
measured signal due to power dissipa- 
tion 
measured signal due to perturbation 
estimation of vr(t) 
Laplace transform of v(t) 
Laplace transform of Vq(t) 
Laplace transform of vr(t) 
vector of instruments 

0 
Oo 
oLS 

tl ~t2 

oI, ,2 

P 
Tc 

Ts 

7-cs 

go(t) 
[1' 
A*B 

parameter vector 
true parameter vector 
parameter vector estimated by least- 
square method 
parameter vector estimated by instru- 
mental-variable method 
relation of thermal resistances 
time constant of the chip carrier 
time constant of the sample 
mixed time constant 
vector of measured data 
transposed vector 
convolution sum of vector A and vector 
B 
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Appendix A 

A. 1 The instrumental-variable method (IVM) 

The aim of the parameter estimation is to solve 
Eq. (12) by minimizing Eq. (13). The solution of this 
problem using the least-square method (LSM) is [6]: 

^LS t=tl 

In the presence of noise, 

vT(t) = got(t)O0 + n(t), 

-1  

(A.I) 

(A.2) 

where 0o is the true parameter vector and n(t) is a zero- 
mean noise, we obtain 

^LS t=h 
Oto,t, = 0 0 +  [tZ=togo(t)got(t) 

(A.3) 

If the noise is not white noise, some correlation will 
exist between the noise and the vector go(t) and the 
estimation will not converge to the true parameters. 
Therefore, the instrumental-variable method should 
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be applied. This method gives a solution for the noise 
problem in the LSM. The LSM corresponds to the 
solution of the equation 

I l~tl 
^LS 1 E ~(t)[Vr(t ) 

Oto,h = solution ~ t=to 

- ~t(t)0] = 0 }  (A.4) 

That means, the method tries to decorrelate the 
vector ~t(t) with the prediction error. When the noise 
is not white, the vector ~t(t) will be correlated with the 
noise and then the solution will be incorrect. In the last 
equation we can try to decorrelate the prediction error 
with another vector if(t) not influenced by the noise 
n(t). This method is called instrumental-variable 
method and the elements of ((t) are called instru- 
ments. The solution is similar to that of the LS method: 

Oto,t ' = ¢(t)~t(t  ¢(t)Vr(t . 
It=t0 Lt=t0 

(A.5) 

The question is how to generate the instrument 
vector so that it will be uncorrelated with the noise 
and correlated with the output of the system. One 
possibility is to first use the LS method and then the 
parameter obtained to generate the instruments. That 
is: 

fdnT amy dY] t 
~(t) = [dtn , . . . , T , - d t ~ , . . .  , ~ (1.6) 

where y(t) is the simulated output for the system using 
the parameters obtained from the LS method. Then, 
the vector ~(t) will not be influenced by the noise n(t). 

A.2 MATLAB examples 

The following sequence of MATLAB instructions 
can be applied to perform the identification and the 
correction procedures. 

Identification: 

% Output data: 
% n u m -  numerator polynom o f  the transfer 
% function 
% den - denominator polynom o f  the transfer 
% function 
% err - error information 
% vs - simulated heat f low signal 
% 

vf  = idfilt(vl,3,[O.O04 0.04]); 
% filtering of  vl  and T1 using a third order 
Tf  = idfilt(T1,3,[O.O04 0.04]); 
% band-pass butterworth filter, the pass 

% band is from 0.004 Hz to 0.04 Hz 
% 

[num, den, vs, err] = idvar([time vf  Tf],O,O,2); 
% identification procedure for  

% 2nd order model 

Correction: 

% Input data: 
% v2 - vector o f  measured heat f low signal 
% T2 - vector o f  measured temperature 
% perturbation 
% num - numerator polynom o f  the transfer 
% function 
% den - denominator polynom o f  the transfer 
% function 
% Output data: 
% vc - corrected heat f low signal 
% 

vf 
% 

= idfilt(v2,3,[O.O04 0.04]); 
filtering o f  v2 and T2 using a third order 

Tf  = idfilt(T2,3,[O.O04 0.04]); 
% band-pass butterworth filter, the pass 
% band is from O. 004 Hz to O. 04 Hz 
v r  = lsim(num, den, Tf, time); % simulation o f  the 
% system with Tf  

% vT is the predicted signal due to Tf  
vc = v - vT; % correction 

The instructions idfilt, idvar and lsim are build-in 
procedures of the MATLAB toolboxes IDENTIFICA- 
TION, IDCON and CONTROL [8]. 

% Input data: 
% v l - vector o f  measured heat f low signal 
% T1 - vector o f  measured temperature 
% perturbation 
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