

Thermochimica Acta 303 (1997) 41-46

Thermal and spectroscopic studies of Ag(I) complexes with trimethylphosphine and perfluorinated carboxylates

I. Łakomska^{*}, A. Grodzicki, E. Szłyk

Nicolaus Copernicus University, Department of Chemistry, 87 100 Toruń, Poland

Received 11 February 1997; received in revised form 3 June 1997; accepted 4 June 1997

Abstract

Silver(I) complexes with trimethylphosphine and perfluorinated carboxylates of the general formula [Me₃PAgOOCR]₂, where $R = C_2F_5$, C_3F_7 , C_6F_{13} , C_7F_{15} , C_8F_{17} , C_9F_{19} , C_6F_5 and Me₃PAgOOC(CF₂)₃ have been prepared and their thermal decomposition studied. Thermal decomposition proceeded in multistages, starting with the detachment of carboxylates and followed by trimethylphosphine dissociation. The final product was metallic silver. The temperatures of silver formation were in the 473–633 K range. Complexes were characterised by ¹³C, ¹⁹F, ³¹P NMR and vibrational spectra. Spectral analysis favoured Ag(I) trigonal coordination with unidentate trimethylphosphine and bidentate carboxylates forming bridges between silver(I) ions. © 1997 Elsevier Science B.V.

Keywords: Ag(I) complexes; IR and NMR; Perfluorinated carboxylic acids; Thermal analysis; Trimethylphosphine

1. Introduction

Coordination compounds of noble metals are extensively studied for their possible applications as precursors for chemical vapour deposition (CVD) of metals (Ag, Au) or oxides (Cu) [1–5]. Volatility of Ag^I, Au^I and Au^{III} complexes with oxygen bonded ligands [6–15] prompted us to study analogous silver(I) complexes. As the oxygen donor ligands which were chosen carboxylates, that are able to bind in unior bidentate (chelating or bridging) mode, hence one may expect multinuclear complexes. Many crystal structures of Ag(I) complexes confirmed the presence of the bridging carboxylates [16–19], but in (Ph₃P)₂A- g(OOCH) the formate appeared to be unidentate bonded [20] and a chelating carboxylate was rarely found in a Ag(I) complex [21]. It is also of interest to study the influence of the chain length and the effect of electronegative fluorine atoms on the thermal stability of the Ag-O bond. As found earlier [10], volatility of Ag(I) complexes with Ph₃P and perfluorinated carboxylates was insufficient for CVD purposes, hence trimethylphosphine (Me₃P) was chosen to improve the volatility. In addition, trimethylphosphine enhances the stability of Ag-O bond, because Ag(I) is a soft acid which forms unstable bonds with hard O atoms. The main purpose of our studies was analysis of the thermal decomposition processes and spectral characteristics of [Me₃PAgOOCR]₂ complexes, where $R = C_2F_5$, C_3F_7 , C_6F_{13} , C_7F_{15} , C_8F_{17} , C_9F_{19} , C_6F_5 and $Me_3PAgOOC(CF_2)_3$. The mechanism of thermal

^{*}Corresponding author.

^{0040-6031/97/\$17.00 © 1997} Elsevier Science B.V. All rights reserved *P11* S0040-6031(97)00233-5

decomposition is proposed and temperatures of the final product formation is discussed in relation to future CVD applications.

2. Experimental

Perfluorinated carboxylic acids (98-99%) and Me_3P (99%, 1 M solution in tetrahydrofuran) were purchased from Aldrich, whereas analytical grade AgNO₃ was obtained from POCh Gliwice (Poland).

All reactions were carried out under argon. Solvents were purified and dried by standard methods. Complexes were obtained by the reaction of $[Ag(OOCR)]_2$, where $R = C_2F_5$, C_3F_7 , C_6F_{13} , C_7F_{15} , C_8F_{17} , C_9F_{19} , C_6F_5 and $OOC(CF_2)_3$ [22], with Me₃P. Me₃P (0.004 mol) in tetrahydrofuran was mixed with a suspension of $[Ag(OOCR)]_2$ (0.002 mol) in ethanol and stirred in the dark until the reaction mixture became clear, which gave colourless crystals after evaporation under vacuum. The complexes Ag(I) thus obtained were recrystallised from dichloromethane. Silver was determined by the argentometric method, after acidification with sulphuric acid. Carbon and hydrogen were determined by elemental semi-microanalysis.

The results of elemental analyses were (% calculated/found):

- 1. $C_{12}H_{18}F_{10}O_4P_2Ag_2 Ag(31.1/31.0)$, C(20.8/20.6), H(2.6/2.4);
- 2. $C_{14}H_{18}F_{34}O_4P_2Ag_2 Ag(27.2/27.0)$, C(21.2/20.9) H(2.3/2.1);
- 3. $C_{20}H_{18}F_{26}O_4P_2Ag_2 Ag(19.7/19.5)$, C(22.0/21.7), H(1.7/1.9);
- 4. $C_{22}H_{18}F_{30}O_4P_2Ag_2 Ag(18.1/18.0)$, C(22.1/22.2), H(1.5/1.3);
- 5. $C_{24}H_{18}F_{34}O_4P_2Ag_2 Ag(16.7/16.5)$, C922.3/ 22.0), H(1.4/1.2);
- 6. $C_{26}H_{18}F_{38}O_4P_2Ag_2 Ag(15.5/15.3)$, C(22.4/22.0), H(1.3/1.1),
- 7. $C_{20}H_{18}F_{10}O_4P_2Ag_2 Ag(27.3/27.0)$, C(30.4/30.1), H(2.3/2.2),
- 8. $C_{11}H_{18}F_6O_4P_2Ag_2 Ag(35.6/35.3)$, C(21.8/21.5), H(3.0/2.8).

IR spectra were obtained with a Bruker JFS 113v FTIR spectrometer using KBr discs, whereas polyethylene discs were used for the range below 400 cm⁻¹. Spectra obtained in KBr were compared with the that obtained in Nujol mull with the same data acquisition parameters and they appeared to be identical in the 1700–1000 cm⁻¹ range. NMR spectra were recorded on a Varian Gem 200 MHz spectrometer. Samples were dissolved in CDCl₃ and DMSO. ¹³C spectra were recorded at 50 MHz, ¹⁹F at 188 MHz and ³¹P at 81 MHz in 300 K. References used were: tetramethylsilane for ¹³C; CCl₃F for ¹⁹F; and 85% H₃PO₄ for ³¹P. Solvent for ³¹P NMR was CDCl₃, at a temperature of 300 K and concentration of 1×10^{-3} M.

Thermal studies were performed on a MOM OD-102 Derivatograph (Paulik and Paulik, Hungary). Samples (50 mg) were run under nitrogen, heated up to 773 K, at a rate of 3.5 K min⁻¹, TG sensitivity – 50 mg, the reference material – Al_2O_3 .

Powder X-ray diffraction data were obtained with a Dron 1 (USSR) diffractometer using CuK_{α} radiation.

3. Results and discussion

3.1. Thermal analysis

Results of the thermal analysis performed in nitrogen are listed in Table 1. Decomposition processes started in the 323-428 K range and exhibit one exothermic transition in the DTA, except complex $[Me_3PAgOOCC_6F_5]_2$ (7) for which the first stage was endothermic and the second exothermic (Fig. 1). The endothermic transition found for complex (7) can be related to electron acceptor properties of the pentafluorobenzoic residue. The exotherms correspond to the mass loss in the TG curves which can be correlated with quantitative detachment of carboxylate and trimethylphosphine (Table 1). However, the DTG curve analysis revealed that both molecules dissociate in two successive processes. Because the onset of the second reaction overlaps with the completion of the first, these processes were not resolved in the DTA curves; only the DTG curves indicate it. A similar decomposition mechanism was observed for Au(I) and Ag(I) complexes with the identical carboxylates and triphenylphosphine [23,24] or triethylphosphine (Et₃P) [25,26]. The observed onset temperatures of the first exotherm can be taken as the measured Ag-O bond strength

Complex	Heat effect	Temperature [K]			Weight loss (%)		Detached	
		$\overline{T_i^{a}}$	T _m ^b	T _f ^c	found	calculated	groups	
(1) $[Me_3PAgOOCC_2F_5]_2$	exo	428	473	513	68.5	68.9	$C_3F_5O_2 + Me_3P$	
(2) $[Me_3PAgOOCC_3F_7]_2$	exo	383	473	493	72.5	72.8	$C_4F_7O_2 + Me_3P$	
(3) $[Me_3PAgOOCC_6F_{13}]_2$	exo	413	463	503	83.0	83.3	$C_7F_{13}O_2 + Me_3P$	
(4) $[Me_3PAgOOCC_7F_{15}]_2$	exo	403	463	483	81.5	81.9	$C_8F_{15}O_2 + Me_3P$	
(5) $[Me_3PAgOOCC_8F_{17}]_2$	exo	403	453	473	83.0	83.3	$C_9F_{17}O_2 + Me_3P$	
(6) $[Me_3PAgOOCC_9F_{19}]_2$	exo	393	463	508	86.0	86.3	$C_{10}F_{19}O_2 + Me_3P$	
(7) $[Me_3PAgOOCC_6F_5]_2$	endo	323	343	348	15.5			
	exo	353	451	463	52.0	67.9		
	—	468		593	5.0	4.8	$C_6F_5O_2 + Me_3P$	
(8) Me ₃ PAgOOC(CF ₂) ₃ COOAgPMe ₃	exo	408	433					
	exo		453	633	64.0	64.4	$C_5F_6O_4 + 2Me_3P$	

Table 1Results of thermal analysis

^a Initial temperature.

^b Maximum temperature.

^c Final temperature.

[23]. The lowest onset temperature in the examined series of complexes was found for [Me₃PA $gOOCC_6F_5]_2$. The observed changes in the stability of Ag–O bond can be related to the stronger π -electron acceptor character of the pentafluorophenyl ring than to the perfluorinated aliphatic chains. As a result, Ag(I) becomes a harder acid than in the other complexes and the thermal stability of Ag-O bond has decreased. The Ag-O bond strength is also affected by Me₃P, as the onset temperatures are significantly lower in comparison to Ph₃P and Et₃P complexes (ca. 60 K and 45 K, respectively) [23,25]. This can be explained by the weaker σ -donor properties of Me₃P, in relation to Et₃P and Ph₃P. The highest onset temperature of the decarboxylation process was found for [Me₃PA $gOOCC_2F_5]_2$ (428 K), which is ca. 5 K lower than for the analogous complex with Et₃P. The slight increase can be caused by the short perfluorinated chain which diminishes the polarization of Ag-O bond and enhances its stability. The Ag-O bond thermal stability for the complexes having the general formula $[R_3PAgOOCR]_2$ (where R' – perfluorinated chain or ring, and $R' - CH_3$, C_2H_5 , C_6H_5) changes in the following sequence $Me_3P < Et_3P < Ph_3P$, which is typical for the copper triad metal complexes [23,26].

The second step of the decomposition corresponds to the detachment of Me_3P . The dissociation of Me_3P coincides with decarboxylation which prevents determination of the onset temperatures of the second stage. The final product of the decomposition reaction

is metallic silver, which is evident from the analysis of powder X-ray diffraction and the TG curve calculations. The yield of silver is quantitative, and suggests the lack of complex sublimation under experimental conditions. The silver(I) salts with the same perfluorinated carboxylates also decomposed to silver [22]. Nonfluorinated Ag(I) carboxylates decompose to silver in exothermic processes [27-29], but for perfluorinated the two-stage process (endo- followed by exotherm) without clearly separated decarboxylation from dealkylation was found. The lowest temperature of silver formation was in the case of $[C_6F_5COOAg]_2$ (553 K). For the complexes, this feature was found for $[Me_3PAgOOCC_6F_5]_2$ (348 K), which makes this complex a promising precursor for CVD purposes. A surprisingly high temperature of silver formation was found for $[Me_3PAgOOCC_2F_5]_2$ (513 K), but it is still below the limit for CVD purposes (max. 620 K) and the lowest temperature for [RCOOAg]₂. Temperatures of silver formation for the complexes are ca. 150 K lower than for the respective Ag(I) complexes with Ph₃P and 15 K lower in relation to Et₃P complexes [23,25]. The same trend was observed for Au(I) complexes with the similar ligands [24,26].

3.2. NMR spectra analysis

The chemical shifts for ${}^{13}C$, ${}^{19}F$, ${}^{31}P$ resonances of the complexes are listed in Table 2. ${}^{31}P$ resonance appeared in the -35.4-to-36.8 ppm range, which is

Fig. 1. Thermal decomposition of Ag(I) complexes. (A) – $[Me_3PAgOOCC_6F_5]_2$. (B) – $[Me_3PAgOOCC_3F_7]_2$: (a) TG-; (b) DTG-; (c) DTA- and (d) T-curves.

23.5–24.9 ppm downfield in relation to Me_3P (Table 2), thus suggesting coordination of the Me_3P molecule. ¹³C resonance of the COO carbon upon coordination revealed the most significant changes. Spectra of the complexes exhibit COO resonances shifted downfield (except complex 1) 1.0–2.7 ppm in relation to the free acids. Downfield coordination shift can be explained by the lower negative charge on the carbon in the COO group caused by Ag–O bond formation. There is no significant relation between the

COO chemical shift and the number of CF_2 groups in the aliphatic chain. The fluorine resonances are also affected by the Ag–O bond formation and the most noticeable changes were observed for the $C(2)F_2$ signals (Table 2). The resonance lines of the CF_2 groups are shifted upfield upon coordination (0.1– 3.3 ppm) in comparison to the free acids. This effect demonstrates the induction shift of the electron charge from the Ag–O bond to the electronegative fluorine.

3.3. IR spectra analysis

Carboxylates can coordinate to metal ions in a number of ways, such as unidentate, chelating or bridging [30,31]. The reported correlations between the mode of carboxylate linkage and C-O bond stretching frequencies were used in the presented studies for determination of the Ag(I) coordination number and symmetry of the coordination sphere [32]. An analysis of COO group frequencies gives a $\Delta_{\rm COO} = \nu_{\rm as} - \nu_{\rm s}$ (as – asymmetric, s – symmetric) value, which is then compared with that for the sodium salts. The calculated Δ_{COO} values for the studied complexes are in the range characteristic for carboxvlates bridging two Ag(I) ions (Table 3). Nakamoto [31] suggested this type of linkage in the case when the Δ values for the sodium salts and the complexes are similar. This can be explained by comparable C-O distances in ionic and bridging carboxylates which results in almost identical ν_{as} and ν_{s} frequencies. Bridging carboxylates were found in Ag(I) complexes with carboxylates and Ph₃P [23,33], and in silver(I) carboxylates [16,17].

The absorption bands of trimethylphosphine confirm the coordination, however P–C stretching vibration bands are shifted only ca. 10 cm^{-1} to higher frequencies, in comparison to the spectrum of free Me₃P [34,35]. The Ag–P stretching vibration bands appeared in the 223–239 cm⁻¹ range, which is consistent with the reported frequencies [36]. The Ag–O asymmetric stretching vibrations bands emerged in the 328–339 cm⁻¹ range, whereas the symmetric band was found at 190–198 cm⁻¹ (in the spectra of 1, 3, 4, 7, 8) [37]. Two absorption bands of Ag–O (asymmetric and symmetric) are in favour of C_{2v} microsymmetry of the coordination sphere. The IR spectra analysis and the results of NMR spectra suggest

Table	e 2					
¹³ C,	¹⁹ F,	³¹ P	NMR	spectral	analysis	[ppm]

Complex	¹³ C		¹⁹ F		³¹ P	
	δ COO	Δ_1^{c}	δ C(2)F ₂	Δ_2^{d}	δ	Δ_3^{e}
$(1) [Me_3PAgOOCC_2F_5]_2$	162.5	-0.8	-41.8	3.1	-36.3	24.0
(2) $[Me_3PAgOOCC_3F_7]_2$	163.2	1.0	-49.6	0.1	-35.4	24.9
(3) $[Me_3PAgOOCC_6F_{13}]_2^a$	163.0	2.3	-38.4	3.3	-35.7	24.6
(4) $[Me_3PAgOOCC_7F_{15}]_2^a$	163.1	2.6	-38.5	3.0	-36.3	24.0
(5) $[Me_3PAgOOCC_8F_{17}]_2^{a}$	162.5	2.3	-38.6	3.0	-36.3	24.0
(6) $[Me_3PAgOOCC_9F_{19}]_2^a$	162.8	2.7	-38.6	2.9	-36.2	24.1
(7) $[Me_3PAgOOCC_6F_5]_2^{b}$	161.8	2.5	—		-36.8	23.5
(8) $Me_3PAgOOC(CF_2)_3COOAgPMe_3$	163.0		-38.4		-36.3	24.0

^{a 13}C spectra recorded in DMSO.

^b δ CF (complex): m - 84.5 ($\Delta m = 2.0$); o - 63.8 ($\Delta o = -5.0$); p - 77.2 ($\Delta p = -8.5$). $\Delta m = \delta m$ CF(complex) - mCF(acid); $\Delta o = \delta o$ CF(complex) - oCF(acid); $\Delta p = \delta p$ CF(complex) - CF(acid); m = meta, o = orto, p = para.

 $^{c}\Delta_{1} = \delta \text{COO}(\text{complex}) - \delta \text{COO}(\text{acid})$

 ${}^{d}\overline{\Delta}_{2} = \delta C(2)F_{2}(\text{complex}) - \delta C(2)F_{2}(\text{acid}).$

^e $\Delta_3 = \delta(\text{complex}) - \delta(\text{Me}_3\text{P}); \ \delta(\text{Me}_3\text{P}) = -60.3 \text{ ppm}.$

Table 3 Characteristic abcomption hands in IP speed

Characteristic absorption bands in IR spectra (cm^{-1})

Complex	$\nu_{\rm as} {\rm COO}$	ν _s COO	Δ_1^{a}	Δ_2^{b}	νAg–P	νAg–O
(1) $[Me_3PAgOOCC_2F_5]_2$	1670	1405	265	268	226	339
						196
(2) $[Me_3PAgOOCC_3F_7]_2$	1686	1405	281	272	223	338
(3) $[Me_3PAgOOCC_6F_{13}]_2$	1684	1397	287	272	235	330
						190
(4) $[Me_3PAgOOCC_7F_{15}]_2$	1680	1412	268	272	226	336
						198
(5) $[Me_3PAgOOCC_8F_{17}]_2$	1662	1405	257	272	231	334
(6) $[Me_3PAgOOCC_9F_{19}]_2$	1662	1408	254	276	226	328
(7) $[Me_3PAgOOCC_6F_5]_2$	1663	1416	247	201	239	338
						198
(8) Me ₃ PAgOOC(CF ₂) ₃ COOAgPMe ₃	1668	1410	258	_	235	329
						193

^a ν_{as} COO- ν_{s} COO (in complex).

^b ν_{as} COO- ν_{s} COO (in sodium salt).

trigonal Ag(I) coordination with bridging perfluorinated carboxylates and unidentate Me_3P . The length of the aliphatic chain and the number of fluorine atoms have no influence on the carboxylate coordination mode.

Acknowledgements

Financial support from Polish State Committee for Scientific Research (KBN) Grant No. 3 TO9 A 024 is gratefully acknowledged.

References

- [1] T.T. Kodas and M.J. Hampden-Smith, The Chemistry of Metal CVD, Weinheim, 1994.
- [2] M.J. Hampden-Smith and T.T. Kodas, Adv. Mater., 7 (1995) 8.
- [3] C. Oehr and H. Suhr, Appl. Phys. A., 49 (1989) 691.
- [4] N.H. Dryden, J.J. Vittal and R.J. Pudderphatt, Chem. Mater., 5 (1993) 765.
- [5] P.M. Jeffries, S.R. Wilson and G.S. Girolami, J. Organomet. Chem., 449 (1993) 203.
- [6] C.Y. Xu, M.J. Hampden-Smith and T.T. Kodas, Adv. Mater., 6 (1994) 775.

- [7] R. Kumar and A.W. Maverick, Chem. Mater., 5 (1993) 251.
- [8] T.H. Baum and C.E. Larson, Chem. Mater., 4 (1992) 365.
- [9] W. Lin, T.H. Warren, R.G. Nuzzo and G.S. Girolami, J. Amer. Chem. Soc., 115 (1993) 11644.
- [10] Z. Yuan, N.H. Dryden, J.J. Vittal and R.J. Pudderphatt, Chem. Mater., 7 (1995) 1696.
- [11] S. Serghini-Monim, Z. Yuan, K. Griffiths, P.R. Norton and R.J. Pudderphatt, J. Am. Chem. Soc., 117 (1995) 4030.
- [12] G. Doyle, K.A. Eriksen and D. van Engen, Organomet., 4 (1985) 830.
- [13] A. Bailey, T.S. Corbitt, M.J. Hampden-Smith, E.N. Duesler and T.T. Kodas, Polyhedron, 12 (1993) 1785.
- [14] W. Partenheimer and E.H. Johnson, Inorg. Chem., 12 (1973) 1274.
- [15] Y.F. Lu, M. Takai, T. Shiokawa and Y. Aoyagi, Jpn. J. Appl. Phys., 33 (1994) 1313.
- [16] R.G. Griffin, J.D. Ellett, M. Mehrng, J.G. Bullitt and J.S. Waugh, J. Chem. Phys., 57 (1972) 2147.
- [17] A.E. Blakeslee and J.L. Hoard, J. Am. Chem. Soc., 78 (1956) 302.
- [18] A. Michaelides, S. Skoulika, V. Kiritsis and A. Aubry, J. Chem. Soc., Chem. Commun., (1995) 1415.
- [19] S.P. Neo, Z.Y. Zhou, T.C. Mak and S.A. Hor, Inorg. Chem., 34 (1995) 20.
- [20] L.S. Zheng, H.H. Yang and Q.E. Zhang, J. Struct. Chem., 10 (1991) 97.
- [21] D.R. Whitcomb and R.D. Rogers, J. Chem. Cryst., 25 (1995) 137.
- [22] E. Szłyk, I. Łakomska and A. Grodzicki, Thermochim. Acta, 223 (1993) 207.

- [23] E. Szłyk, I. Łakomska and A. Grodzicki, Polish J. Chem., 68 (1994) 1529.
- [24] E. Szłyk, I. Łakomska and A. Grodzicki, Polish J. Chem., 69 (1995) 1103.
- [25] E. Szłyk, I. Łakomska and A. Grodzicki, Current Trends in Coordination Chemistry, Slovak Technical University Press Bratislava, 1995, p. 151.
- [26] I. Łakomska, E. Szłyk and A. Grodzicki, in press.
- [27] M.D. Judd, B.A. Plunkett and M.I. Pope, J. Therm. Anal., 6 (1974) 555.
- [28] L.P. Bureleva, V.M. Andreev and V.V. Boldyrev, J. Therm. Anal., 33 (1988) 735.
- [29] M.A. Mohamed, J. Therm. Anal., 42 (1994) 1081.
- [30] G. Wilkinson, R.D. Gillard and J.A. McCleverty, Comprehensive Coordination Chemistry, Vol 2, Pergamon Press, New York, 1987, p. 437.
- [31] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, New York, 1978, p. 230.
- [32] G.B. Deacon and R.J. Phillips, Coord. Chem. Rev., 33 (1980) 227.
- [33] E.T. Blues, M.G.B. Drew and B. Femi-Onadeko, Acta Cryst., B 33 (1977) 3965.
- [34] M. Halmann, Spectrochim. Acta, 16 (1960) 407.
- [35] G.A. Bowmaker, R.D. Hart, B.E. Jones, B.W. Skeleton and A.H. White, J. Chem. Soc. Dalton Trans., 1995, p. 3063.
- [36] K. Shobatake and K. Nakamoto, J. Amer. Chem. Soc., 92 (1970) 3332.
- [37] S.K. Adams, D.A. Edwards and R. Richards, Inorg. Chimica Acta, 12 (1975) 163.