

Thermochimica Acta 303 (1997) 145-150

thermochimica acta

A study on the phase diagram of AlF₃–CsF system

Rong Chen^{*}, Jie Cao, Qiyun Zhang

Department of Chemistry, Peking University, Beijing 100871, P.R. China Received 29 November 1996; accepted 29 May 1997

Abstract

Phase relations of the AlF₃–CsF system have been investigated by the methods of DTA and XRD with quenching technique. Four compounds were identified: Cs₃AlF₆, CsAlF₄, CsF·2AlF₃ and CsF·3AlF₃. Cs₃AlF₆ melts congruently at 790°C. The first eutectic, E_1 , between Cs₃AlF₆ and CsF is located in 10.0 mol% AlF₃ at 654°C. CsF·2AlF₃ and CsF·3AlF₃ melt incongruently at 508° and 653°C, respectively. The second eutectic, E_2 , was observed in 42.0 mol% AlF₃ at 471°C. The compound CsAlF₄ formed in the solid eutectic when cooled below 443°C. CsAlF₄ has α and β forms, transformation of which takes place reversibly at 422°C. All phase structures in the system were confirmed by X-ray powder diffraction analysis. © 1997 Published by Elsevier Science B.V.

Keywords: Aluminum fluoride; Cesium fluoride; Crystal structure; Phase diagram; System

1. Introduction

The phase relations between AlF₃ and alkali fluorides have been thoroughly investigated, except for the AlF₃-CsF system [1-4]. The ionic radius of Cs⁺ is the largest among all alkali metals. Hence, it is suggested that complex formation in the AlF₃-CsF system must have some special characteristics. On the other hand, although the molten eutectic of the AlF₃-CsF system has been applied to aluminum brazing [5], the complete phase diagram of the system has not been reported. Only some fragmentary materials could be found: Puschin [6] established the partial phase diagram of AlF₃-CsF system at an AlF₃ content < 31.5 mol%. This indicated that Cs₃AlF₆ melts congruently at 823°C. Dergunov [7] only visually determined the liquidus of this system in the region of $AlF_3 < 30.0 \text{ mol}\%$ and indicated that the melting point of Cs_3AlF_6 is $808^{\circ}C$. Beutrup [8] determined the structure of $CsAlF_4$, but did not study the AlF_3 -CsF system completely. We have examined the phase diagram in great details and determined the structures of intermediate compounds formed in the AlF_3 -CsF system in our research.

2. Experimental

2.1. Preparation of fluorides

CsF (purity > 99.5%, Beijing Chem. Works) was dehydrated at 400°C for 3 h; AlF₃·3.5H₂O (A.R., Tianjin Chem. Works) was heated in a N₂ plus HF atmosphere at 600°C for 2 h. The product was identified as anhydrous AlF₃ by XRD. All fluorides were kept in a desiccator.

^{*}Corresponding author. Fax: +86(10)6275-1496; e-mail: qyzh@chemms.chem.pku.edu.cn

^{0040-6031/97/\$17.00 (© 1997} Published by Elsevier Science B.V. All rights reserved *P11* \$0040-6031(97)00236-0

2.2. Preparation of samples

We prepared 25 samples by reacting mixtures of anhydrous AlF₃ with solutions of CsF in HF. The samples were placed in Pt crucibles and heated until dry at 200°C, then annealed for 48 h at a higher temperature such that no melting of any phase could occur, e.g. for AlF₃ of < 25 mol% at 600°C; between 25–66 mol% at 400°C and > 66 mol% at 470°C. During the annealing process, grinding and mixing of the samples were repeatedly carried out in order to obtain homogeneous and equilibrium samples.

2.3. Differential thermal analysis

CR–G-type high-temperature DTA equipment (Beijing Optical Instrument) was employed and calibrated by standard substances with known melting points (calibrating both, the heating and cooling curves). Al₂O₃ was used as a reference substance. The heating rate was 15°C/min. Liquidus temperature was determined from the cooling curve, and the other temperatures were determined by extrapolating initial temperatures of the peaks in the heating curve. Experiments were carried out in dry air (relative humidity < 30%) in the static state. The error in measuring temperature was $\pm 3^{\circ}$ C.

2.4. X-ray powder diffraction analysis

The intermediate compounds in the system were determined by a Rigaku Dmax 2400 X-ray diffractometer (Radiation Cu $K_{\alpha} - \lambda = 1.5409$, Filter Ni). Quenching technique was used for determining the structures of high-temperature phases. Si powder was added as a cross reference for fine-tuning the results of determination.

2.5. Measurement of infrared absorption spectra

Far-infrared absorption spectra were recorded at room temperature with Nicolet Magna IR-750 II type spectrometer (700–50 cm⁻¹) on Nujol mulls; The sample was dispersed in Nujol mull and inserted between thin polyethylene films.

3. Results and discussion

Phase diagram of the AlF_3 -CsF system, based on the results of DTA (as shown in Table 1) is displayed in Fig. 1. Invariant points can be seen in Table 2.

Fig. 1 reveals four intermediate compounds formed in the system:

- 1. Cs_3AlF_6 congruently melts at 790°C, and reacts with CsF to form eutectic E_1 at 654°C in the location of 10.0 mol% AlF₃;
- 2. Peritectic reaction of CsF·3AlF₃ takes place at 653° C, and decomposes into AlF₃ and P₂ liquid phase at which it contains 52.5 mol% of AlF₃; and
- 3. CsF·2AlF₃ incongruently decomposes into CsF·3AlF₃ and P_1 liquid phase at 508°C, and reacts with Cs₃AlF₆ to form another eutectic E_2 at 471°C, and 42.0 mol% AlF₃.

In the eutectic, compound CsAlF₄ formed in the solid phase while being cooled below 443°C. CsAlF₄ has α and β forms, transformation of which takes place reversibly at 422°C. The existence of Cs₃AlF₆, CsAlF₄, CsF·2AlF₃ and CsF·3AlF₃ as well as their structures have been confirmed by X-ray powder diffraction analysis.

The structure of Cs₃AlF₆ has not been reported so far. XRD data on Cs₃AlF₆ are presented in Table 3. Analytical results indicated that Cs₃AlF₆ is cubic, the cell parameter being $a = 9.212 \pm 0.004$ Å (Table 4).

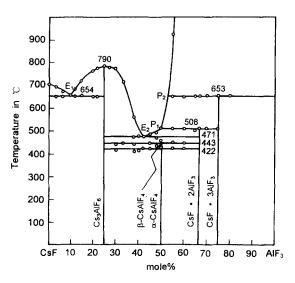


Fig. 1. The phase diagram of the AlF₃-CsF system.

Table 1 Results of DTA for the AlF₃-CsF system

AlF ₃ /	Liquidus temperature/	E_1 , temperature/	E_2 , temperature/	Reaction in E_2 , temperature/	Incongr. 1, melt/	Incongr. 2, melt/	Polymorphic. 1, trans./
mol%	°C	°C	°C	°Ĉ	°C	°C	°C
0.0	706						
3.0	684	650	_		_	_	_
6.0	670	650	_		_	_	_
10.0		662	_		_	_	_
12.0	675	647	_		_	_	_
15.0	722	652	_	<u> </u>		_	
20.0	758	650					
22.0	770	646	_			_	
25.0	790	_	_				_
27.0	776			~	_		_
30.0	772	_	_	430			413
33.0	717			450	_		<u> </u>
38.0	559		472	447	_	_	408
40.0		_	476		_	_	408
42.0	_	_	470		_	_	428
45.0	486	_	_	438			428
48.0	488		465	438	_	_	
50.0	507		_	451		_	435
55.0	923	_	_	444	650	508	428
60.0		_	_	442	650	512	428
65.0		_	_	-	656	495	-
66.7	_				650	513	
70.0		_	_		655	514	
75.0		_	_		656	507	
80.0		_	_	-	652	_	

Table 2 Invariants of the AlF₃-CsF system

Invariant point	Temperature/(°C)	mol% AlF ₃
$\overline{E_1}$	654	10.0
E_2	471	42.0
P_{\perp}	508	50.0
P_2	653	52.5
m.p. (Cs ₃ AlF ₆)	790	25.0

In this paper, the existence of the compounds $CsF\cdot 2AlF_3$ and $CsF\cdot 3AlF_3$ has been reported for the first time. XRD data for these compounds are presented in Tables 5 and 6, respectively. The compound $CsF\cdot 2AlF_3$ is hexagonal, with $a = 9.455 \pm 0.003$ and $c = 3.703 \pm 0.003$ Å; The compound $CsF\cdot 3AlF_3$ is orthorhombic, with $a = 10.86 \pm 0.01$, $b = 9.33 \pm 0.02$ and $c = 7.54 \pm 0.01$ Å.

For XRD data determination, the sample of $CsAlF_4$ was thoroughly ground and heated up to $450^{\circ}C$ in an

Table 3 Cs₃AlF₆. Cubic, $a = 9.212 \pm 0.004$ Å

$d_{\rm obs}/{\rm \AA}$	$d_{ m calc}/{ m \AA}$	I/I_0	h	k	l
5.336	5.336	2	1	1	1
3.252	3.264	100	2	2	0
2.657	2.665	15	2	2	2
2.460	2.466	2	3	2	1
2.302	2.307	24	4	0	0
2.120	2.116	2	3	3	1
2.061	2.061	5	4	2	0
1.883	1.883	21	4	2	2
1.806	1.809	5	5	1	0
1.630	1.630	8	4	4	0
1.536	1.536	3	6	0	0
1.460	1.458	4	6	2	0

HF atmosphere, then slowly cooled to 350° C and annealed at this temperature for a period of one week, so as to obtain reliable α -CsAlF₄. A part of the α -CsAlF₄ was sealed in a small quartz tube and annealed

Table 4 CsF·2AlF₃. Hexagonal, $a = 9.455 \pm 0.003$ and $c = 3.703 \pm 0.003$ Å

COI 2/111 3.	. Henugonai, a	=) ±	0.000 und e	- 5.105 -	20.0001
$d_{\rm obs}/{ m \AA}$	$d_{ m calc}/{ m \AA}$	I/I_0	h	k	l
4.736	4.741	85	1	1	0
4.103	4.111	100	2	0	0
3.101	3.110	82	2	1	0
2.919	2.921	39	1	1	1
2.751	2.755	48	2	0	1
	2.738	_	3	0	0
2.379	2.378	38	2	1	1
_	2.372		2	2	0
2.277	2.279	95	3	1	0
1.997	1.996	9	2	2	1
1.940	1.940	26	3	1	1
1.853	1.854	8	0	0	2
_	1.796		4	0	1
1.792	1.792	6	4	1	0
1.726	1.726	5	1	1	2
1.688	1.687	5	2	0	2
1.679	1.679	11	3	2	1
1.613	1.614	14	4	1	1
1.591	1.591	9	2	1	2
1.580	1.581	17	3	3	0
1.475	1.474	5	5	1	0
1.454	1.454	7	3	3	1
1.438	1.438	13	3	1	2
1.431	1.432	8	4	2	1
1.370	1.370	14	5	1	1
_	1.369	—	6	0	0
1.240	1.239	8	5	2	1
1.173	1.173	6	7	0	0
1.139	1.139	5	6	2	0
1.119	1.119	5	7	0	1

at 440 ± 5°C for 5 h, followed by quenching in an icewater bath; thus, β -CsAlF₄ sample was obtained. The XRD data for both these are listed in Tables 6 and 7. α -CsAlF₄ is hexagonal with $a = 9.494 \pm 0.002$ and $c = 3.703 \pm 0.001$ Å; β -CsAlF₄ is orthorhombic, the cell parameters being $a = 10.081 \pm 0.006$, $b = 6.730 \pm 0.004$ and $c = 3.937 \pm 0.003$ Å.

The existence of the two forms of CsAlF₄ have been confirmed by the results from XRD. The DTA data further identified that the polymorphic reaction $\alpha \rightleftharpoons \beta$ -CsAlF₄ at 422°C is reversible. This is because of DTA peak of $\alpha \rightleftharpoons \beta$ at 422°C always appearing on the heating and re-heating curves. The conclusion did not coincide with the results reported by Beutrup et al. [7]. They prepared three types of CsAlF₄ from dehydration of Cs[AlF₄(H₂O)] and also determined the crystal structures of β -CsAlF₄ and γ -CsAlF₄. The

Table 5	
CsF·3AlF ₃ . Orthorhombic, $a = 10.86 \pm 0.01$, $b = 9.33 \pm 0.02$ at	nd
$c = 7.54 \pm 0.01$ Å	

$c = 7.54 \pm$					
$\frac{d_{\rm obs}/{\rm \AA}}{}$	$d_{\rm calc}/{ m \AA}$	I/I_0	h	k	1
7.531	7.493	9	0	0	1
4.235	4.247	12	1	2	0
3.973	3.966	17	2	1	1
3.770	3.751	100	0	0	2
3.696	3.705	13	1	2	1
3.515	3.517	14	2	2	0
3.393	3.361	40	3	1	0
3.243	3.252	34	3	0	1
2.516	2.526	27	2	3	1
	2.506	—	3	1	2
2.449	2.460	44	4	1	1
	2.336	_	4	2	0
2.330	2.325	31	1	3	2
2.114	2.111	12	5	1	0
2.056	2.056	50	3	0	3
	1.760	_	4	4	0
1.756	1.757	13	6	0	1
	1.639	_	3	1	4
1.635	1.638	9	5	0	3
	1.600		6	1	2
1.599	1.601	9	0	3	4
1.543	1.545	11	5	2	3
	1.543	_	0	6	0
	1.542		4	0	4
1.514	1.515	12	7	0	1
	1.498	_	4	5	1
	1.497		1	6	1
1.496	1.496	10	7	1	1
	1.418		5	0	4
1.416	1.415	18	4	5	2
	1.414	-	1	2	5
	1.414	_	1	6	2
	1.413	_	7	1	2
	1.326	-	3	2	5
1.326	1.326	11	3	6	2
	1.288		5	3	4
	1.287		6	1	4
1.287	1.286	11	7	4	0
	1.227	_	5	5	3
1.226	1.225	6	2	4	5
	1.224		3	7	1

report considered that β -CsAlF₄ is tetragonal (a = 11.8101, c = 13.3741 Å) and isomorphous with β -RbAlF₄. However, the transformation $\beta \rightarrow \gamma$ is irreversible.

In order to compare the structural characteristics of α -CsAlF₄, α -RbAlF₄ and KAlF₄, far-infrared spectra measurements were carried out. The results are shown

Table 6 α -CsAlF₄. Hexagonal, $a = 9.493 \pm 0.002$ and $c = 3.703 \pm 0.001$ Å

$d_{\rm obs}/{ m \AA}$	$d_{ m calc}/{ m \AA}$	I/I_0	h	k	l
4.741	4.741	68	1	1	0
4.112	4.111	67	2	0	0
3.373	3.373	20	1	0	1
3.108	3.108	95	2	1	0
2.928	2.928	64	1	1	1
2.753	2.753	72	2	0	1
	2.744		3	0	0
	2.384		2	1	1
2.378	2.372	56	2	2	0
2.279	2.279	100	3	1	0
1.996	2.000	7	2	2	1
1.943	1.943	35	3	1	1
1.850	1.854	10	0	0	2
1.688	1.687	1	2	0	2
1.679	1.682	9	3	2	1
1.646	1.646	15	5	0	0
1.617	1.614	15	4	1	1
1.594	1.591	10	2	1	2
1.581	1.584	17	3	3	0
1.502	1.504	1	5	0	1
1.478	1.478	1	5	1	0
1.456	1.455	4	3	3	1
1.440	1.438	17	3	1	2

Table 7 β -CsAlF₄. Orthorhombic, $a = 10.081 \pm 0.006$, $b = 6.730 \pm 0.004$ and $c = 3.937 \pm 0.003$ Å

$d_{\rm obs}/{\rm \AA}$	$d_{ m calc}/{ m \AA}$	I/I_0	h	k	l
4.040	4.037	73	2	1	0
	3.367		0	2	0
3.361	3.361	100	3	0	0
3.097	3.108	77	2	0	1
2.996	3.005	70	3	1	0
2.241	2.241	50	0	3	0
1.955	1.947	18	0	3	1
1.916	1.912	7	1	3	1
1.864	1.864	20	3	3	0
1.833	1.833	9	2	0	2
1.735	1.735	2	5	1	1
1.729	1.729	8	5	2	0
1.702	1.700	9	0	2	2
	1.699	_	3	0	2

in Fig. 2. α -RbAlF₄ is isostructural to KAlF₄. This agrees with the results reported by Soga et al. [9]. They measured the infrared absorption spectra of α -RbAlF₄ and KAlF₄. Both the intermolecular vibrations such as the Al-F bond stretching and the F-Al-F bending

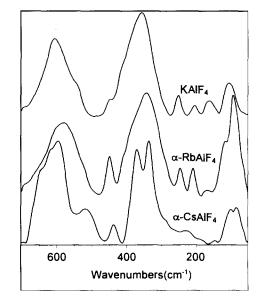


Fig. 2. Far-IR spectra of $MAlF_4$ (M = K, Rb, Cs).

vibrations and the lattice vibrations due to the interaction between the inner complex and the outer ions have been observed in the frequency regions of 800- 160 cm^{-1} and below 160 cm^{-1} , respectively. A normal coordinate analysis of the crystal as a whole has been carried out on the basis of a simple valence force field by these authors. IR spectral forms of both α -RbAlF₄ and KAlF₄ are about the same. IR bands of α -RbAlF₄ moved toward low wave numbers only because the ionic radius of Rb⁺ is different from that of K⁺. IR spectra of α -RbAlF₄ and KAlF₄ determined by us agree exactly with those obtained by Soga. However, IR spectrum of α -CsAlF₄ is quite different from that of α -RbAlF₄ and KAlF₄. Hence the conclusion that α -CsAlF₄ is not isostructural to α -RbAlF₄ and KAlF₄, i.e. the former is not tetragonal.

We can hardly confirm whether the $CsAlF_4$, synthesized by Beutrup, and by us are exactly the same. This needs further investigation.

The phase diagram of the AlF_3 -MF system (M = Li, Na, K, Rb, Cs) have been thoroughly investigated. A summary is given in Table 8.

Table 8 reveals that the compound M_3AlF_6 (M = Li, Na, K, Rb, Cs) exists in all components of the AlF₃-MF system. The crystal symmetry of M_3AlF_6 (M = Na, K, Rb, Cs) increases as the ionic radius of M⁺ increases (e.g. Na₃AlF₆ at room temperature is monoclinic) [10]; α -K₃AlF₆ is tetragonal

Table 8	
Data related with the AlF ₃ -MF system (M = Li, Na, K, Rb, Cs)	

AlF ₃ –MF	MF/ m.p. (°C)	<i>E</i> ₁/ °C	M3AlF6/ m.p. (°C)	<i>E</i> ₂ (°C)	3AlF-5MF	MAIF ₄	3AlF ₃ -MF	2AlF ₃ -F
AlF ₃ ·LiF[1]	848	710	785	709	No	No	No	No
AlF ₃ ·NaF[2]	995	888	1010	695	734	Metastable	No	No
				α , Mono.	Incongr.			
AlF ₃ ·KF[3]	862	820	1000	560	No	575	No	No
				α , Tetrag.		Incongr.		
AlF ₃ ·RbF[4]	781	729	878	486	No	473	745	No
				α , cubic		formed in eutectic	Incongr.	
AlF ₃ ·CsF	706	654	790	471	No	443	653	508
-				α , cubic		formed in eutectic	Incongr.	Incongr.

[3]. (The data included by JCPDS [11] mentions the cubic form, a = 8.49 Å. But Jenssen [3] reported that K_3AlF_6 is tetragonal, a = 5.94 and c = 8.46. We repeatedly calculated the data of [11], the result showed that K_3AlF_6 is tetragonal, a = 5.98 and c = 8.60 Å, thus confirming the result cited by Jenssen. The calculation of [11] is incorrect.) In fact, α -Rb₃AlF₆ is in the cubic form [4], a = 7.612 Å; α -Cs₃AlF₆ is also cubic, a = 9.212 Å. In addition, the melting points of all compounds of peritectic temperatures in the system decrease as the ionic radii of M^+ increase. A contradiction is observed in the AlF₃-LiF system, e.g. Li₃AlF₆ (at room temperature) is orthorhombic [3] with a melting point of 785°C. This fact coincides with the unusual characteristics of Li⁺ in the periodic table. The regularity mentioned above is also reflected on E_1 and E_2 by both sides near M_3AlF_6 .

Although Garton [12] synthesized LiAlF₄ and determined its structure, LiAlF₄ did not exist in the high-temperature region in the phase diagram of LiF–AlF₃. The debate on whether NaAlF₄ exists in the phase diagram at lower temperatures has lasted more than 60 years. However, the metastable hypothesis by Holms [2] seems to be more reasonable. The existence of MAlF₄ in the MF–AlF₃ system is increasingly evident as the ionic radius of M⁺ increases, but the decomposing temperature of the incongruent compound dropped down.

 $3AlF_3 \cdot MF$ could be observed in both the AlF_3 -RbF and AlF_3 -CsF systems, whereas $2AlF_3 \cdot MF$ was only found in the AlF_3 -CsF system. This only indicates that the larger M⁺ ion is advantageous for the formation of complex ions in the systems. $3AlF_3 \cdot 5NaF$ (Na₅Al₃F₁₄), formed in the AlF₃-NaF system, is the only exception. A compound similar to $3AlF_3 \cdot 5NaF$ did not exist in other systems. We have closely examined the XRD spectra of samples between Rb₃AlF₆ and RbAlF₄ and also between Cs₃AlF₆ and CsAlF₄. No evidence was found about the formation of any intermediate phases.

Acknowledgements

The authors wish to acknowledge support from the Beijing Science Fund.

References

- [1] J.L. Holm, B.J. Holm, Thermochim. Acta, 6(4) (1973) 375.
- [2] J.L. Holm, Thermodynamic Properties of Molten Cryolite and other Fluoride Mixtures, Inst. Inorg. Chem., Univ. Trondheim NTH, Norway, 1971, pp. 73–75.
- [3] B. Jenssen, Phase and Structure Determination of New Complex Alkali Aluminum Fluorides, Inst. Inorg. Chem. Norwegian Techical Univ., Trondheim, 1969, pp. 36–43.
- [4] R. Chen, Q.Y. Zhang, Thermochim. Acta, 297 (1997) 125.
- [5] K. Suzuki, F. Miura and F. Shimizu, PCT/JP85/00705, WO86/04007.
- [6] N. Puschin, A. Baskow, Z. Anorg. Chem., 81 (1913) 336.
- [7] E.P. Dergunov, Dokl. Akad. Nauk, SSSR, 50 (1948) 1185.
- [8] U. Beutrup, A. Le Bail, H. Duroy, J.L. Fourquet, Eur. J. Solid State Inorg. Chem., 29(2) (1992) 371.
- [9] T. Soga, K. Ohwada, M. Iwasaki, J. Chem. Phys., 61(5) (1974) 1990.
- [10] Powder Diffraction File, JCPDS, 25-0772.
- [11] Powder Diffraction File, JCPDS, 3-0615.
- [12] G. Garton, B.M. Wanklyn, J. Inorg. Nucl. Chem., 27(11) (1965) 2461.