

Thermochimica Acta 308 (1998) 183-188

thermochimica acta

Synthesis of chloropinnoite and phase interaction with water at high temperatures¹

Lu Wu^{a,*}, Gao Shiyang^a, Xia Shoping^a, V.M. Valyashko^b, M.A. Urusova^b

^a Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China ^b Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Moscow, 117907, Russia

Accepted 15 July 1997

Abstract

A new magnesium-borate double salt which was nominated as chloropinnoite was synthesized and the phase interaction with water at 478 ± 5 K and 553 ± 5 K studied. The results suggest that certain pure magnesium-borates can be synthesized from chloropinnoite-water system under different conditions, and the physico-chemical data of these borates can be obtained. \bigcirc 1998 Published by Elsevier Science B.V.

1. Introduction

The brine of Dachadam Salt Lake, which belongs to borate salt lake of the MgSO₄-subtype, mainly contains chlorides, sulphates, and borates of sodium, potassium, magnesium and lithium. It has been of geological, mineralogical, chemical and commercial interest since its discovery in 1957 [1]. When the brine was evaporated and concentrated in a solar pond, the boron concentration increased up to 2.5% B₂O₃. At the same time, from MgSO₄-saturated brine in which mirabilite has been dissolved beforehand, we obtained the eutectic concentrated borate brine, containing 7.5% MgB₄O, 20.08% MgCl₂, 5.78% MgSO₄. 2.08% KCl and 0.5% NaCl [1]. Gao Shiyang [2] obtained two kinds of borates from the concentrated brine, one of them being $MgO \cdot 3B_2O_3 \cdot 7H_2O$ and the other - a new borate

double salt which was given the nomenclature chloropinnoite, 2MgO·2B₂O₃·MgCl₂·14H₂O. It is similar to the "eutectic borate", which is written as $XMgO \cdot YB_2O_4 \cdot MgCl_2 \cdot ZH_2O$ [3], obtained by M.G. Valyashko from Inder Salt Lake brine. The new borate double salt is a small pillared crystal, when seen under the microscope. These authors [3] recorded the X-ray powder diffraction spectra, IR spectra and thermal analysis of the borate, and observed double exothermal peaks. These peaks were similar to those in the DTA curve of pinnoite (MgO \cdot B₂O₃ \cdot H₂O). Therefore, the borate was named as chloropinnoite [2]. In this paper, a new synthetic method for preparing chloropinnoite and its phase interaction with water at high temperatures $(478\pm5 \text{ K}, 553\pm5 \text{ K})$ have been reported.

2. The synthesis and identification of chloropinnoite

The weighed amounts of $MgCl_2 \cdot 6H_2O$ (A.R.), H_3BO_3 (A.R.) and MgO (obtained by the decomposi-

^{*}Corresponding author.

¹Presented at the 14th IUPAC Conference on Chemical Thermodynamics, held in Osaka, Japan, 15–30 August, 1996.

^{0040-6031/98/\$19.00 © 1998} Published by Elsevier Science B.V. All rights reserved *P11* \$0040-6031(97)00347-X

Run	Composition (wt%)				Molar ratio			
	B ₂ O ₃	MgO	MgCl ₂	H ₂ O	B_2O_3	MgO	MgCl ₂	H ₂ O
1	24.57	14.32	16.82	44.29	2.00	2.01	1.00	13.92
2	24.65	14.30	16.79	44.26	2.01	2.01	1.00	13.94
3	24.09	14.24	16.78	44.89	1.96	2.00	1.00	14.15

Table 1 The chemical analysis results of synthesized 2MgO·2B₂O₃·MgCl₂·14H₂O

tion of $Mg(OH)_2$ ·4MgCO₃·6H₂O at 873 K for ca. 3 h) were dissolved in double distilled water (stirring and heating until all the solids disappeared). The solution was filtered and the obtained clear solution (composition - 2.00% H₃BO₃, 0.65% MgO, 32.00% MgCl₂ and 65.35% H₂O) was put in a crystallizer which was thermostated at 313 K, and some seeds of chloropinnoite were added. When a lot of crystals crystallized out, the solid was separated from the solution and washed with absolute ethyl alcohol until there was almost no Cl⁻ in the mother liquor. Thereafter, the solid was washed again with ether. The obtained solid was dried in a vacuum dryer to a constant weight at room temperature. The results of chemical analysis (Table 1), X-ray powder diffraction (Fig. 1). IR spectra (Fig. 2) and thermal analysis (Fig. 3) showed that all the synthesized $2MgO \cdot 2B_2O_3 \cdot MgCl_2 \cdot 14H_2O$ samples were pure compounds and suitable for the following experiments.

Fig. 1. The X-ray powder diffraction result of synthesized chloropinnoite.

3. Experimental

3.1. The phase interaction of chloropinnoite with water

The two-chamber pressure vessel for hydrothermal solubility determination (Fig. 4) [4] was used for investigation of chloropinnoite interaction with water at 478 K, 553 K and vapour pressures. The weighed quantities of chloropinnoite and distilled water were placed in chamber 1. The vessel was kept closed and placed in a rocking furnace. For each equilibrium, the mixture was stirred by rocking and the temperature maintained during 5–8 h, with an accuracy of ± 5 K.

Wave Number / cm⁻¹

Fig. 2. The IR spectrum of synthesized chloropinnoite.

Fig. 3. The thermal analytic curve of synthesized chloropinnoite.

Fig. 4. Two-chamber pressure vessel for solubility determination: 1 - pressure vessel where the charge is placed; 2 - thermocouplewell; 3 - filter made of pressed, fine silver wire; 4 - channelbetween two chambers; 5 - sampler; 6 - needle valve; 7 - valvepacking; (Teflon, asbestos with graphate); 8 - screw; and 9 - metallic cup for sampling.

Then the vessel was turned over, the valve opened, a liquid phase was pressed through the filter 3 into an empty sampler 5, and the value closed again. After cooling down to room temperature, the

Table 2 Chemical composition of liquid and solid phases

metallic cup 9, with a sample, was removed from the sampler and weighed for determination of sample quantity. The composition of the solution was determined by EDTA titration for Mg^{2+} , by $Ba(OH)_2$ solution for B_2O_3 and by $AgNO_3$ solution for Cl^- . At the same time, the separated solid phase taken from the chamber 1 was identified by X-ray powder diffraction, IR spectrum, and chemical analysis, respectively.

4. Results

The chemical compositions of the equilibrium solid and liquid phases at 478 ± 5 K and 553 ± 5 K are listed in Table 2. A part of the X-ray powder diffraction and IR spectra of the solid phases are shown in Figs. 5 and 6. The X-ray diffraction and IR data are listed in Tables 3 and 4. From a comparison with the literature results [4,5], we could conclude that the equilibrium solid phase was asharite $(2MgO \cdot B_2O \cdot (1-2)H_2O)$ (asharite which formed at high temperature would not change to other compound(s) and it could not be formed at low temperatures).

4.1. The phase interaction mechanism of chloropinnoite with water

Run	Charged mixture					Equilibrium liquid phase				Solid phase	
	T(K)	B ₂ O ₃ wt.%	MgO wt.%	MgCl ₂ wt.%	H ₂ O wt.%	B ₂ O ₃ wt.%	MgO wt.%	MgCl ₂ wt.%	H ₂ O wt.%	MgO : B ₂ O ₃ mole ratio	
1	478±5	0.43	0.23	0.29	99.05	0.25	0.02	0.29	99.44	2.005 ^a	No b
2	478 ± 5	0.93	0.49	0.62	97.96	0.55		0.62	98.83	2.200	2.025
3	478±5	1.20	0.63	0.80	97.37	0.67		0.80	98.53	2.027	2.007
4	478±5	1.63	0.85	1.08	96.44	0.91	_	1.08	98.01	2.047	2.054
5	478 ± 5	2.32	1.21	1.55	94.92	1.26		1.55	97.19	1.985	2.078
6	553 ± 5	1.18	0.61	0.78	97.43	0.64	_	0.78	98.58	1.971	2.100
7	553±5	1.74	0.91	1.16	96.18	0.96		1.16	97.88	2.000	1.995
8	553±5	2.21	1.16	1.48	95.15	1.20		1.48	97.32	1.985	2.001
9	553±5	2.25	1.18	1.50	95.07	1.34	0.04	1.50	97.12	2.150	2.098

^a Calculated as a difference between the compositions of initial mixture and equilibrium liquid phase from solution.^b Determined from residue solid phase by chemical analysis.

Fig. 5. The X-ray powder diffraction of some residual solids.

Fig. 6. The IR spectra of some residual solids.

 $2[MgB_2O(OH)_6 \cdot H_2O \cdot H_2O][Mg(6H_2O)Cl_2]$. While it dissolved in water, a complicated multi-step process is possible. The dissolution reaction mechanism may be written as follows:

 Table 3

 X-ray powder diffraction results of some solid phases

The first step is

$$2MgO \cdot 2B_2O_3 \cdot MgCl_2 \cdot 14H_2O + nH_2O$$

= 2[MgB_2O(OH)_6 \cdot H_2O] + [Mg(6H_2O)Cl_2]
+ nH_2O = 2[MgB_2(OH)_6 \cdot H_2O] + Mg^{2+}
+ 2Cl + (n + 6)H_2O

as the constituent $[Mg(6H_2O)Cl_2]$ is a highly soluble component and it is easy to dissolve in water. The other constituent $MgB_2O(OH)_6$ ·H₂O may be an insoluble component and it remains as an amorphous intermediate product at room temperature [6].

The second step, the dissociation and transformation of the intermediate product may be given as:

$$\begin{split} & 2[B_2O(OH)_6]^{2-}[B_4O_5(OH)_4]^{2-} + 3H_2O + 2OH^{-} \\ & 3[B_4O_5(OH)_4]^{2-} + 2H_2O4[B_3O_3(OH)_4] + 2OH^{-} \\ & 2[B_3O_3(OH)_4]^{-} + 2OH^{-}[B_6O_7(OH)_8]^{4-} + H_2O \end{split}$$

The polyborate anion $(B_6O-(OH)_3]^{4-}$ in aqueous solution with Mg²⁺ at 283–323 K forms inderite.

$$\begin{split} \left[B_6 O_7 (OH)_8 \right]^{4-} &+ 2e M g^{2+} \\ &+ 11 H_2 OM g_2 [B_6 O_7 (OH)_8] \cdot 11 H_2 O \end{split}$$

the polyborate anion $[B_2O(OH)_6]^{2-}$ combined Mg²⁺ directly and formed pinnoite at ca. 333 K [6].

$$[B_2O(OH)_5]^{2-} + Mg^{2+}Mg[B_2O(OH)_6]$$

when the temperature is at 473–553 K, a phase interaction might be carried out in the high temperature solution, two $[MgB_2O(OH)_6 \cdot H_2O]$ molecules were

No.	Run 3			No.	Run 6		
	2 θ°	θ°	d/Å		2θ°	θ°	d/Å
1	14.0	7.0	6.3255	1	14.0	7.0	6.3255
2	17.2	8.6	5.1552	2	17.3	8.65	5.1257
3	22.3	11.15	3.9864	3	23.0	11.5	3.8667
4	26.8	13.4	3.3264	4	26.8	13.4	3.3264
5	30.0	15.0	2.9785	5	30.0	15.0	2.9785
6	33.6	16.8	2.6671	6	34.0	17.0	2.6367
7	39.0	19.5	2.3094	7	39.0	19.5	2.3094
8	40.8	20.4	2.2116	8	40.8	20.4	2.2116
9	46.2	21.6	2.0941	9	43.5	21.75	2.0804
10	45.5	26.5	1.7277	10	45.7	22.85	1.9852
11	53.0	26.5	1.7277	11	53.0	26.5	1.7277
12	59.5	29.75	1.5535	_	_	_	_

Table 4 The IR frequencies (in cm^{-1}) of some solid phases

Run 3	Run 4	Run 5	Run 6	Run 9	Chloropinnoite
405m	407m	408m	407m	430w	401w
495m	495m	495m	490m	490m	420w
540m	540m	540m	540m	540m	515w
565m	570m	570m	568m	568m	625b,w
630s	630vs	630s	629s	630s	725b,w
650w	685w	685w	681m	682w	810s
710vs	710vs	710s	710vs	710vs	952m
		830w	780w	830w	1045m
845m	840m	845m	845m	845m	1055m
930s	930s	935m	930s	930s	1135s
985m	985m	990w	985m	985m	1250m
1020m	1021m	1020m	1020m	1020m	1300w
1085w	1090w	1090w		-	1430w
1220m	1220m	1220m	1220m	1220m	1675m
1290m	12890m	1290m	1287m	1290m	1700w
1380s	1380s	1380s	1380s	1380m	2950w
1480w	1480w	1500w	1495m	1495w	3025w
1650w	1640w	1680w	1650m	1650m	3420s
	1730w	1855w	1815w	1950w	3465s
2390m	2380m		2540w	2530b,m	3530w
3430b,m	3455b	3430b,m	3440b,m	3430b,m	3475w
3565m	3560m	3560m	3560b,m	3560b,m	

"hydrothermally calcined" and formed a asharite molecule to crystallize out, at the same time a molecule of B_2O_3 was given out and entered into solution as H_3BO_3 :

 $2[MgB_2O(OH)_6] \cdot H_2O2MgO \cdot B_2O_3 \cdot H_2O$ $+ B_2O_3 + H_2O$ $B_2O_3 + H_2OH_3BO_3$

4.2. The possibility to synthesise a series of borates from chloropinnoite

As already mentioned, we have obtained hydrated magnesium borates from the phase interaction of chloropinnoite with water under different experimental conditions: inderite $(Mg_2[B_6O_7(OH)_6\cdot11H_2O$ (the mole ratio MgO/B₂O₃ is 2 : 3) at 283–323 K; pinnoite $(Mg[B_2(OH)_6], MgO/B_2O_3=1:1)$ at ca. 333 K, asharite $(Mg_2B_2O_4\cdot(1-2)H_2O, MgO/B_2O_3=2:1)$ at $478\pm5-553\pm5$ K. It is obvious that the MgO : B_2O_3 molar ratio of the phase interaction products increases as the temperature increases. Recently, Ishihara et al.

[3] studied the rapid exchanges of B^* between B(OH)₄ with ¹¹B NMR and suggested that there might exist a diborate anion as an intermediate product during this process. The intermediate product could be transformed into different borates. Comparing with our results, it is reasonable to think that some magnesium borates with different MgO : B₂O₃ molar ratios would be synthesized by the phase interaction of chloropinnoite with water in a different temperature range.

5. Conclusions

- 1. MgCl₂ is leaching from chloropinnoite in hydrothermal conditions.
- 2. The asharite arises as a main equilibrium solid phase in the interaction of chloropinnoite with water at $(478-553)\pm 5$ K and vapor pressures.
- 3. It is possible to synthesize different magnesium borates by the phase interaction of chloropinnoite with water under different conditions.

References

- [1] Sh.Y. Gao, J.Q. Chen, M.P. Zheng, Advances in Science of China, Chemistry, (4) (1992) 163.
- [2] Sh.Y. Gao, Zh.G. Chen, J.N. Feng, Inorg. Chem. 2(1) (1986) 40.
- [3] M.G. Valyashko, Geology of saline deposits, Proceedings of the Hanover Symposium, 15–21 May 1968, Paris, 289–311, UNESCO, 1972.
- [4] M.I. Ravich, Water-Salt Systems at Elevated Temperatures and Pressures, Nauka, Moscow, 1979.
- [5] Zh. Peng, Y.W. Chan, B.X. Cheng, Scientia Scinica, 12(11) (1963).
- [6] Sh.P. Xia, Zh.H. Liu, Sh.Y. Gao, Acta Inorg. Chem. 9(3) (1993) 279.