

Thermochimica Acta 311 (1998) 205-211

Solid-solid interactions in pure and Na₂O-doped MoO₃/Al₂O₃ system

G.A. El-Shobaky^{*}, G.A. Fagal, N.A. Hassan

Department of Physical Chemistry, National Research Centre, Dokki, Cairo, Egypt

Received 6 March 1997; received in revised form 20 July 1997; accepted 22 September 1997

Abstract

The effects of sodium oxide doping (2-10 mol%) on solid-solid interactions and phase transformation in MoO₃/Al₂O₃ system were investigated using X-ray diffraction technique. The proportions of molybdena were 12.4, 22 and 41.4 wt.% MoO₃ and the various mixed solids were calcined in air in the 500-900°C temperature range. The results obtained revealed that MoO₃ interacts with Al₂O₃ at temperatures starting from 500°C to produce orthorhombic Al₂(MoO₄)₃, and the completion of this reaction requires the heating of mixed oxide solids at temperatures >500°C or doping with suitable amount of sodium oxide, followed by heating at 500°C. The stimulation effect of Na₂O in aluminium molybdate formation was attributed to a possible increase in the mobility of hexavalent molybdenum ions in MoO₃ lattice. The heating of different pure and doped mixed solids (2 mol% Na₂O) at 700°C resulted in a complete conversion of MoO₃ into aluminium molybdate and a mixture of γ -, θ - and κ -aluminas. The increase in the amount of dopant to 4–10 mol% brought about the conversion of aluminium molybdate into sodium molybdate, having the formulae Na2Mo3O8, Na2Mo2O7, Na2Mo4O13, Na2Mo3O4 and Na2MoO4. The abundance of each compound depends, mainly, on the dopant concentration and MoO₃ content present in each mixed solids specimen. Heating of pure and mixed solid sample doped with 2 mol% Na2O at 900°C led to a complete thermal decomposition of $Al_2(MoO_4)_3$ into α -Al₂O₃ (corundum) and MoO₃, a portion of which sublimes and the other portion dissolves in the alumina matrix forming MoO₃-Al₂O₃ solid solution. MoO₃ much enhances the crystallization of alumina into the α -phase by heating at 900°C instead of 1400°C in the case of pure Al₂O₃. The doping of different MoO₃/Al₂O₃ specimens with 4 or 10 mol% Na₂O and heating at 900°C increases the thermal stability of MoO₃ and aluminium molybdate even by heating at 900°C. © 1998 Elsevier Science B.V.

Keywords: Aluminium molybdate mobility; Doping; Sodium molybdates; Solid-solid interactions; Thermal stability

1. Introduction

The heating of a physical mixture of crystalline MoO_3 and γ -Al₂O₃ at 400°C for ca. 24 h brought about the disappearance of all X-ray diffraction lines of MoO_3 due to the formation of two-dimensional Al₂(MoO_4)₃ film covering the surfaces of Al₂O₃ particles [1–3]. The reported monolayer dispersion capa-

city (MLDC) of γ -Al₂O₃ towards MoO₃ is 0.116 g/ 100 m² of the alumina surface [1,4]. This value suggests a cross-sectional area of 20.6 Å² per each molybdate species [5]. The increase in calcination temperature of MoO₃/Al₂O₃ to \geq 500°C enhances the surface and bulk mobilities of MoO₃, leading to the formation of well-crystallized Al₂(MoO₄)₃ phase [4,6].

The metal–support interactions in the MoO_3/Al_2O_3 system could be influenced by doping with certain

^{*}Corresponding author. Fax: 00 20 3370931.

^{0040-6031/98/\$19.00 © 1998} Elsevier Science B.V. All rights reserved *P11* S0040-6031(97)00410-3

foreign cations such as Li^+ , Zn^{2+} , Ga^{3+} and Ge^{4+} [5,7,8]. This influence may result from modification in the mobility of Mo⁶⁺ ions in MoO₃ lattice. The possible induced increase in the mobility of Mo⁶⁺ ions due to doping with Li₂O enhances metal–support interactions producing Al₂(MoO₄)₃ phase. MoO₃ dissolves in Al₂O₃ matrix forming MoO₃-Al₂O₃ solid solution which remains thermally stable even on heating at 800–900°C. The doping of MoO₃/Al₂O₃ with Li₂O has been found to increase the mobility of Mo⁶⁺ ions and decrease the solubility of MoO₃ in the alumina matrix [4,5].

The present work reports a study on the effect of Na_2O -doping on solid–solid interactions using X-ray powder diffractometry technique. This technique enabled us to identify the different crystalline phases present in the calcination products of pure and doped mixed solids, precalcined in air at temperatures between 500 and 900°C.

2. Experimental

2.1. Materials

A known mass of Al(OH)₃, analytical grade supplied by Prolabo, was impregnated with ammonium paramolybdate (BDH) solutions containing different proportions of (NH₄)₆MoO₇O₂₄·4H₂O. The proportions of ammonium molybdate were calculated so that the molar compositions of the calcined materials were MoO_3 : Al_2O_3 , 0.2 MoO_3 : Al_2O_3 and 0.5 0.1 MoO_3 : Al₂O₃. The impregnated materials were dried at 120° C, then calcined at 500° , 700° and 900° C. These mixed solid samples are designated below as AlMo-I, AlMo-II and AlMo-III and contain 12.4, 22 and 41.4 wt% MoO₃, respectively. The sodium-oxide doping was effected by treating the dried impregnated materials with an aqueous NaNO₃ solution prior to calcination. The time of heating of pure and doped materials was fixed at 5 h; and the amounts of sodium were 2, 4 and 10 mol% Na₂O (with respect to the sum of Al₂O₃ and MoO₃). The prepared doped mixed solid specimens are designated AlMo-I-2Na, AlMo-I-4Na, AlMo-I-10Na, AlMo-II-2Na, AlMo-II-4Na, AlMo-II-10Na, AlMo-III-2Na, AlMo-III-4Na and AlMo-III-10Na. Al(OH)₃ was used as a starting support material due to its decomposition during the thermal transformation of ammonium molybdate into molybdena, which may provide chances for solid–solid interactions that may not be attainable on using Al₂O₃ as a support.

2.2. Technique

An X-ray investigation of the thermal products of the different pure and doped mixed solids was carried out using a Philips diffractometer (type PW 1390). The patterns were run with Ni filtered CuK_{α} radiation $(\lambda=1.5405 \text{ Å})$ at 36 kV and 16 mA with a scanning speed of 2° min⁻¹.

3. Results and discussion

3.1. XRD analysis of calcination products of aluminium hydroxide and ammonium molybdate

Preliminary experiments showed that the calcination of Al(OH)₃ at 500–700°C was amorphous in nature, and consisted of a mixture of κ , θ and γ aluminas when calcined at 900°C. The thermal decomposition of ammonium molybdate in air at 500–700°C resulted in the formation of well-crystallized orthorhombic MoO₃ which sublimes completely on heating at 800°C.

3.2. XRD analysis of calcination products of pure and doped mixed solids

XR diffractograms of pure and doped mixed solids preheated in air at 500°, 700° and 900°C were measured. Table 1 lists the different phases identified in pure and sodium oxide-doped mixed solids precalcined in air at 500-900°C. The results obtained showed that pure and doped AlMo-I mixed solids preheated at 500°C were amorphous in nature. Fig. 1 shows the X-ray diffractograms of pure and doped AlMo-II and AlMo-III mixed solids preheated at 500°C. It is seen from Fig. 1 that pure mixed solid, (AlMo-II and AlMo-III) consist of a mixture of mostly MoO_3 and $Al_2(MoO_4)_3$ phase. The presence of 4 or 10 mol% Na₂O in AlMo-II resulted in a complete transformation of MoO_3 into $Al_2(MoO_4)_3$. These results clearly indicate the role of Na₂O-doping in stimulating the solid-solid interaction between MoO₃

Table 1						
Crystalline phas	e compositions	of the	calcined	products	detected	by XRD

Solid	Calcination Temp/°C	Crystalline composition	
AlMo-I	500	Amorphous	
AlMo-I-2%Na ₂ O	500	Amorphous	
AlMo-I-4%Na ₂ O	500	Amorphous	
AlMo-I-10%Na2O	500	Amorphous	
AlMo-II	500	MoO ₃ , Al ₂ (MoO ₄) ₃ and poorly crystalline κ -Al ₂ O ₃	
AlMo-II-2%Na ₂ O	500	$Al_2(MoO_4)_3$ and poorly crystalline κ - Al_2O_3	
AlMo-II-4%Na ₂ O	500	$Al_2(MoO_4)_3$	
AlMo-II-10%Na2O	500	Na ₂ Mo ₂ O ₇ , Al ₂ (MoO ₄) ₃ and poorly crystalline κ-Al ₂ O ₃	
AlMo-III	500	MoO ₃ , Al ₂ (MoO ₄) ₃ and poorly crystalline κ -Al ₂ O ₃	
AlMo-III-2%Na ₂ O	500	$Al_2(MoO_4)_3$ (major phase) MoO ₃ and poorly crystalline κ -Al ₂ O ₃	
AlMo-III-4%Na ₂ O	500	Al ₂ (MoO ₄) ₃ and MoO ₃	
AlMo-III-10%Na2O	500	$Al_2(MoO_4)_3$ (major phase) MoO_3 and α - Al_2O_3	
AlMo-I	700	Al ₂ (MoO ₄) ₃ , poorly crystalline κ -, θ - and γ -Al ₂ O ₃	
AlMo-I-2%Na ₂ O	700	Al ₂ (MoO ₄) ₃ , poorly crystalline κ -, θ - and γ -Al ₂ O ₃	
AlMo-I-4%Na ₂ O	700	Na ₂ Mo ₃ O ₈	
AlMo-I-10%Na2O	700	Na ₂ MoO ₄ and Na ₂ Mo ₃ O ₈	
AlMo-II	700	$Al_2(MoO_4)_3$ and κ - Al_2O_3	
AlMo-II-2%Na ₂ O	700	$Al_2(MoO_4)_3$ and κ - Al_2O_3	
AlMo-II-4%Na ₂ O	700	Al ₂ (MoO ₄) ₃ , Na ₂ MoO ₄ and κ-Al ₂ O ₃	
AlMo-II-10%Na2O	700	Na ₂ Mo ₄ O ₁₃ , Na ₂ Mo ₂ O ₇ and poorly crystalline κ-Al ₂ O ₃	
AlMo-III	700	$Al_2(MoO_4)_3$ and poorly crystalline κ - Al_2O_3	
AlMo-III-2%Na ₂ O	700	Al ₂ (MoO ₄) ₃ and poorly crystalline κ-Al ₂ O ₃	
AlMo-III-4%Na ₂ O	700	Al ₂ (MoO ₄) ₃ , poorly crystalline κ -, θ - and γ -Al ₂ O ₃	
AlMo-III-10%Na2O	700	Al ₂ (MoO ₄) ₃ , Na ₂ Mo ₂ O ₇ , Na ₂ Mo ₃ O ₈ and δ -Al ₂ O ₃	
AlMo-I-7.5AlMo-I-2%Na2O	900	α -Al ₂ O ₃ (very well crystallized)	
AlMo-I-4%Na ₂ O	900	α -Al ₂ O ₃ , Na ₂ Mo ₂ O ₇ , Na ₂ Mo ₃ O ₈ and Na ₂ Mo ₄ O ₁₃	
AlMo-I-10%Na2O	900	α -Al ₂ O ₃ and Na ₂ MoO ₄	
AlMo-II-AlMo-II-2%Na ₂ O	900	α -Al ₂ O ₃	
AlMo-II-10%Na2O	900	α -Al ₂ O ₃ , Na ₂ Mo ₄ O ₁₃ and Na ₂ Mo ₂ O ₇	
AlMo-III-AlMo-III-2% Na ₂ O	900	α -Al ₂ O ₃	
AlMo-III-4%Na ₂ O	900	α -Al ₂ O ₃ , Na ₂ Mo ₂ O ₇ , MoO ₃ and Al ₂ (MoO ₄) ₃	
AlMo-III-10%Na2O	900	α -Al ₂ O ₃ , Na ₂ Mo ₄ O ₁₃ , MoO ₃ and Al ₂ (MoO ₄) ₃	

and Al_2O_3 yielding aluminium molybdate according to

$$3MoO_3 + Al_2O_3 \xrightarrow{500^{\circ}C} Al_2(MoO_4)_3.$$

A complete conversion of MoO_3 into aluminium molybdate in the mixed oxide sample containing (22 wt% MoO_3) was achieved by the addition of a small amount of sodium oxide (4–10 mol%) and heating in air at 500°C for 5 h.

The stimulative effect of $Al_2(MoO_4)_3$ formation due to doping with sodium oxide at 500°C may reflect the role of Na₂O in increasing the mobility of molybdenum species (Mo⁶⁺) through the lattices of MoO₃ and Al_2O_3 . Similar results have been reported in the case of doping of MoO₃/Al₂O₃ with Li₂O [5]. The addition of 10 mol% Na₂O to AlMo-II and AlMo-III mixed solid samples and subsequent heating at 500°C resulted in the formation of Na₂Mo₂O₇, θ - and δ aluminas, besides the formation of Al₂(MoO₄)₃. The formation of sodium molybdate took place by solid– solid interaction between Na₂O and MoO₃ according to

$$2MoO_3 + Na_2O \xrightarrow{500^{\circ}C} Na_2Mo_2O_7.$$

This indicates that a portion of sodium oxide dissolves in MoO_3 lattice and increases the mobility of its molybdenum ions and the other portion undergoes a solid–solid interaction with MoO_3 to produce sodium

Fig. 1. XR-diffractograms of pure and doped mixed solids heated at 500°C. Peaks (1) refer to $Al_2(MoO_4)_3$; peaks (2) to MoO_3 ; peaks (3) to k- Al_2O_3 ; peaks (4) to δ - Al_2O_3 ; and peaks (5) to $Na_2Mo_2O_7$.

molybdate compound. Hence, the solubility of sodium oxide in MoO_3 lattice is limited and controlled by the chemical affinity towards formation of $Na_2Mo_2O_7$.

The crystallization of alumina into θ and δ phases in AlMo-III-10Na mixed solid sample preheated at 500°C indicates the role of both MoO₃ and Na₂O in catalyzing the phase transformation

$$\begin{split} & 2Al_2O_3(amorphous) \mathop{\to}\limits_{Na_2O,MoO_3}^{500^\circ C} \theta - Al_2O_3 \\ & +\gamma - Al_2O_3. \end{split}$$

Fig. 2 shows XR diffractograms of pure and doped AlMo-I, AlMo-II and AlMo-III mixed solids preheated in air at 700°C. Pure and 2 mol% doped Na₂O-AlMo-I consist of Al₂(MoO₄)₂ having an excellent crystallinity and a mixture of γ -, θ - and κ -aluminas of weak crystallinity. The increase of the amount of Na₂O to 4 mol% resulted in a complete disappearance of all diffraction lines of Al₂(MoO₄)₃ and led to the appearance of some diffraction lines of Na₂Mo₃O₈ of weak crystallinity. The disappearance of the diffraction lines of aluminium molybdate due to doping with 4 mol% Na₂O may be attributed to its conversion

Fig. 2. XR-diffractograms of pure and doped mixed solids precalcined at 700°C. Peaks (1) refer to $Al_2(MoO_4)_3$; peaks (2) to k- Al_2O_3 ; peaks (3) to δ - Al_2O_3 ; peaks (4) to Θ - Al_2O_3 ; peaks (5) to Na_2Mo_3O_8; peaks (6) to Na_2Mo_2O_7; peaks (7) to Na_2MOO_4; peaks (8) to Na_2Mo_4O_{13}; peaks (9) to Na_2Mo_2O_7; and peaks (10) to Al_2O_3 .

into an amorphous solid and/or its transformation into sodium molybdate according to:

$$\begin{split} Al_2(MoO_4)_3 + 2Na_2O & \stackrel{700^\circ C}{\rightarrow} 3/2Na_2MoO_4 \\ + 1/2Na_2Mo_3O_8 + Al_2O_3 + 1/2O_2. \end{split}$$

The treatment of Mo-II mixed solids with 2 mol% Na₂O and heating in air at 700°C did not modify the XRD patterns of mixed solids which show the presence of a well-crystallized $Al_2(MoO_4)_2$ together with a mixture of κ - and δ -aluminas with relatively weak crystallinity. The rise in the amount of dopant to 4 mol% Na₂O resulted in a considerable decrease in the intensity of all diffraction lines of Na₂Mo₃O₈. The further increase in the amount of Na₂O to 10 mol% resulted in a complete disappearance of all diffraction lines of aluminium molybdate with subsequent formation of sodium molybdate compounds in the form of Na₂Mo₄O₁₃ and Na₂Mo₂O₇. These compounds may result from solid-solid interaction between the dopant material and aluminium molybdate according to:

$$2\mathrm{Al}_{2}(\mathrm{MoO}_{4})_{3} + 2\mathrm{Na}_{2}\mathrm{O} \xrightarrow{700^{\circ}\mathrm{C}} \mathrm{Na}_{2}\mathrm{Mo}_{2}\mathrm{O}_{7}$$
$$+\mathrm{Na}_{2}\mathrm{Mo}_{4}\mathrm{O}_{13} + \mathrm{Al}_{2}\mathrm{O}_{3} + 3/2\,\mathrm{O}_{2}.$$

Sodium oxide doping (2–10 mol%) of AlMo-III mixed solid specimen at 700°C led to a complete conversion of MoO₃ into a well-crystallized Al₂(MoO₄)₃ besides the formation of κ - and δ -aluminas. However, the intensity of the diffraction lines of Al₂(MoO₄)₃ phase decreases regularly by increasing the amount of Na₂O in the 2–10 mol% range. This finding might reflect a possible decrease in the degree of ordering of aluminium molybdate phase due to sodium oxide doping and/or a possible formation of amorphous sodium molybdate compounds via solid– solid interaction between Al₂(MoO₄)₃ and Na₂O.

Fig. 3 shows XR diffractograms of pure and doped mixed solids preheated in air at 900°C. It is seen from Fig. 3 that the heating of pure mixed solids and those doped with 2 mol% Na₂O are composed of well-crystallized α -Al₂O₃ (corundum) which indicates the decomposition of Al₂(MoO₄)₃ into α -alumina and MoO₃, a portion of which dissolves in the α -alumina matrix forming MoO₃–Al₂O₃ solid solution [5] and the other portion volatilizes. The thermal decomposition of aluminium molybdate takes place according to:

$$Al_2(MoO_4)_3 \stackrel{900^{\circ}C}{\rightarrow} MoO_3 + Al_2O_3 \ (\alpha\text{-phase}).$$

The presence of well-crystallized α -Al₂O₃ (corundum) in the different investigated mixed solids (pure

Fig. 3. XR-diffractograms of pure and doped mixed solids precalcined at 900°C. Peaks (1) refer to \propto -Al₂O₃; peaks (2) to Na₂Mo₂O₇; peaks (3) to Na₂Mo₄O₁₃; peaks (4) to Na₂Mo₃O₈ peaks (5) to Na₂MoO₄; peaks (6) to NaAlO₂; peaks (7) to MoO₃; and peaks (8) refer to Al₂(MoO₄)₃.

and doped) preheated in air at 900°C clearly indicates the role of MoO₃ in enhancing the crystallization process of alumina in the α -phase. The crystallization of α -Al₂O₃ in the absence of MoO₃ requires a prolonged heating of Al_2O_3 at temperatures $\geq 1400^{\circ}C$ [9]. A similar effect had been reported in the case of NiO/ Al_2O_3 [10], CuO/Al_2O_3 [11] and V_2O_5/Al_2O_3 [12].

The doping of AlMo-I mixed solid sample with 4 mol% Na₂O at 900°C resulted in the formation of Na₂Mo₂O₇, Na₂Mo₄O₁₃ and Na₂Mo₃O₈ phases of relatively high degree of crystallinity. These compounds were produced via direct solid–solid interaction between Al₂(MoO₄)₃ and sodium oxide. These sodium molybdate compounds were entirely converted into Na₂MoO₄ in the presence of 10 mol% Na₂O. It seems that Na₂O, in the heavily doped solids, facilitates the phase transformation via interacting with different sodium molybdate compounds according to:

$$\begin{split} &Na_2Mo_2O_7 + Na_2Mo_4O_{13} + Na_2Mo_3O_8 \\ &+ 6Na_2O + O_2 \xrightarrow{900^\circ C} 9Na_2MoO_4. \end{split}$$

The treatment of AlMo-II mixed solid samples with 4 or 10 mol% Na₂O followed by heating in air at 900°C resulted in a complete disappearance of aluminium molybdate a portion of which decomposes into α -Al₂O₃ and minute amounts of γ -, δ -Al₂O₃ and MoO₃ while the other portion interacts readily with Na₂O producing Na₂Mo₄O₁₃, Na₂Mo₂O₇ and Na₂Mo₃O₈ phases.

The doping of AlMo-III mixed solid specimens with 4 or 10 mol% Na₂O and heating at 900°C brought about a partial decomposition of Al₂(MoO₄)₃ into MoO₃ and α -Al₂O₃, besides the formation of Na₂Mo₄O₁₃ and NaAlO₂. The coexistence of free MoO_3 and $Al_2(MoO_4)_3$ in the mixed solid specimens containing 41.4 wt.% MoO₃, doped with 4 or 10 mol% Na₂O and preheated in air at 900°C clearly indicates the role of soda in stabilizing MoO₃ which otherwise undergoes volatilization at 800-850°C and also shows the thermal stability of Al₂(MoO₄)₃ by suppressing its thermal decomposition. The mechanism of the observed induced increase in the thermal stability of MoO₃ and aluminium molybdate compounds due to doping with Na₂O needs further investigation. However, some kinds of solid solution of sodium oxide in the matrices of MoO₃ and Al₂(MoO₄)₃ might play a role in the observed increase in the thermal stability of molybdenum trioxide and aluminium molybdate. The fact that different phases of sodium molybdates were formed in different mixed solids

doped with Na₂O and preheated in air at 900°C suggests that the portion of sodium oxide involved in solid solutions is relatively small. So, other parameters may be responsible for increasing the thermal stability of MoO₃ and aluminium molybdate. The fact diffraction lines that the of Na-β-alumina $(NaAl_{11}O_{17})$ were not detected in the pattern of Na₂O-treated MoO₃/Al₂O₃ [13] preheated at 900°C might be attributed to favourable interactions between Na₂O and molybdenum species producing sodium molybdates and/or possible formation of very poorly crystalline Na-β-alumina.

4. Conclusions

The main conclusions that may be derived from the results are summarized as follows:

- 1. Solid–solid interactions between MoO_3 and its Al_2O_3 support yielding aluminium molybdate takes place at temperatures starting from 500°C, the complete conversion of MoO_3 into Al_2 - $(MoO_4)_3$ requires heating of MoO_3/Al_2O_3 mixed solids at temperatures >500°C or doping with suitable amount of Na₂O. The promotional effect of Na₂O in aluminium molybdate formation was tentatively attributed to an induced increase in the mobility of hexavalent molybdenum ions in MoO_3 lattice.
- The heating of different pure MoO₃/Al₂O₃ mixed solids in air at 700°C brought about a complete conversion of molybdenum trioxide into aluminium molybdate and a mixture of γ-, θ-, and κ-aluminas. Doping with Na₂O followed by heating in air at 700°C led to transformation of aluminium molybdate into some sodium molybdate compounds in the form of Na₂Mo₃O₈, Na₂Mo₂O₇, Na₂Mo₄O₁₃, Na₂Mo₃O₄ and Na₂MoO₄. The abundance of each sodium molybdate phase depends, mainly, on the dopant concentration and MoO₃ content in each MoO₃/Al₂O₃ mixed solid sample.

- 3. Heating of pure and 2% Na₂O-doped MoO₃/Al₂O₃ mixed solids in air at 900°C resulted in a complete thermal decomposition of Al₂(MoO₄)₃ into α -Al₂O₃ (corundum) and MoO₃ a portion of which sublimes and the other dissolves in the produced α -alumina matrix forming MoO₃-Al₂O₃ solid solutions. The transformation of different types of alumina into the α -form otherwise requires a prolonged heating of pure alumina specimen at temperatures \geq 1400°C.
- 4. Doping of different MoO₃/Al₂O₃ mixed solids with 4 or 10 mol% and heating at 900°C resulted in effecting a significant increase in the thermal stability of each of MoO₃ and Al₂(MoO₄)₃ even by heating at 900°C.

References

- J. Leyrer, B. Vielhaber, M.I. Zaki, Mater. Chem. Phys. 13 (1985) 301.
- [2] Y.J. Liu, Y.C. Xie, J. Ming, J. Liu, Y.Q. Tang, Cuihua Xuebao 3 (1982) 262.
- [3] Y.J. Liu, Y.C. Xie, Li.Z.Y. Zou, Q. Tang, Cuihua Xuebao 5 (1984) 262.
- [4] A.A. Ibrahim, G.A. El-Shobaky, Thermochim. Acta 147 (1989) 175.
- [5] G.A. El-Shobaky, F.H.A. Abdalla, A.M. Ghazza, K.A. Khalil, Thermochim. Acta 275 (1996) 235.
- [6] J. Grimblot, E. Payen, Surface Prop. and Catal. by Non-Metals 38 (1983) 189.
- [7] M. Lo Jacono, M. Schiavello, V.H.J. De Beer, G. Minelli, J. Phy. Chem. 81 (1977) 1583.
- [8] A. Lycourghiotis, D. Vattis, G. Karaiskakis, N. Katonas, L. Less-Common Metals 86 (1982) 137.
- [9] J. Zemlica, C. Barta, Cryst. Res. Technol. 7 (1972) 965.
- [10] G.A. El-Shobaky, K.A. El-Barawy, F.H.A. Abdalla, Thermochim. Acta 96 (1986) 181.
- [11] G.A. El-Shobaky, G.A. Fagal, N.H. Amin, Thermochim. Acta 141 (1989) 205.
- [12] G.A. El-Shobaky, Th. El-Nabarawy, G.A. Fagal, M. Mokhtar, J. Thermal Analy. 46 (1996) 1473.
- [13] G.A. El-Shobaky, Th. El-Nabarawy, G.A. Fagal, Thermochim. Acta 141 (1989) 195.