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Abstract

The concept of activity is discussed brie¯y. Emphasis is placed on the principles of activity measurement and recent

experimental developments as well as on temperature and concentration dependences, thermodynamic modeling, and modern

thermodynamic evaluation. The activities as well as mixing properties of all types of alloys, even including metallic melts

showing short-range ordering, can be represented algebraically by means of a simple concept. Using just one common set of

parameters allows a straightforward description of combined temperature and concentration dependences. An extended

temperature dependence of the excess Gibbs energy, as necessary for this purpose, has been derived. The presented concept

makes possible putting together all activity measurements of a multicomponent alloy system for performing one algebraic

overall best-®t. In connection with a personal computer this forms a very convenient, interactive evaluation tool yielding a

considerable reduction of both, the experimental work and the time spent on evaluation. # 1998 Elsevier Science B.V.
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1. Introduction

Metallurgical thermodynamics is concerned with

the equilibrium states of existence available to alloys,

and with the effects of external in¯uences on the

equilibrium state. The most common molar thermo-

dynamic functions of alloy systems are the Gibbs

energy G, the enthalpy H and the entropy S which

are connected by the well-known relation

G�x;T� � H�x; T� ÿ TS�x; T� (1)

where x is the mole fraction, and T the temperature in

K. The molar functions Z (Z�G, H, S) of alloy systems

are characterized by means of the contributions made

by the alloy constituents k which are called partial

molar functions Zk (K being the number of compo-

nents):

Z�x; T� �
XK

k�1

xkZk�xk; T�: (2)

Thermodynamics has been developed without

knowledge of the atomistic structure of matter. It is

a macroscopic theory, and even in Boltzmann statis-

tical mechanics `̀ particles'' are classical particles, that

means geometrical ®gures only, despite the fact that

they are now named `̀ molecules''. The physical prop-

erties are only linked to them by `̀ imagination''.

Think of the laminar ¯ow of ¯uids: the classical

particles are producing parallel ¯ow lines, whereas

the real molecules are following the Brownian move-

ment. It is not surprising, therefore, that no theory has

been developed to explain all the observed thermo-
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dynamic mixing behavior of alloy systems. We are

forced to determine the accurate thermodynamic data

from experimental investigations, and to employ

pseudo-theoretical expressions for the molar func-

tions.

By common modeling, the difference between the

molar quantities Z of alloys, and the contributions of

the pure constituents, Z0(x,T), are de®ned as molar

properties of mixing ZM(x,T),

ZM�x; T� :� Z�x; T� ÿ Z0�x; T�: (3)

If the mixing process does not involve a change in

enthalpy, then the partial pressures of the alloy con-

stituents k, pid
k �xk; T�, are simply the products of the

vapor pressures of pure species k, p0
k�T�, and of the

corresponding mole fractions xk:

pid
k �xk; T� � p0

k�T�xk: (4)

Eq. (4) is an expression of Raoult's law and metal

alloys, conforming with this behavior, are said to

exhibit Raoultian ideal behavior. The quantities of

mixing ZM(x,T) which do not exhibit this computable

Raoultian ideal behavior are dealt with by introducing

the concept of activity.

2. The concept of activity

The thermodynamic activity ak of an alloy consti-

tuent k is de®ned as the ratio of its partial vapor

pressure pk to the vapor pressure of pure species k, p0
k ,

ak�xk; T� � pk�xk; T�=p0
k�T� (5)

where xk is the mole fraction of the species k. We

notice from Eq. (4) that, in case of ideal mixing

behavior, the activity ak becomes identical with the

mole fraction xk.

Practically speaking, the introduction of the concept

of activity has the advantage that, if we substitute for

the mole fractions xk in the thermodynamic equations

of ideal systems, the activities ak, these equations are

valid for real systems. In other words, all the devia-

tions from the ideal behavior can be lumped into a

single factor which is called the activity coef®cient fk,

de®ned as the ratio of this activity ak to the corre-

sponding mole fraction xk,

fk�xk; T� :� ak�xk; T�=xk � pk�xk; T�=�p0
k�T�xk�;

(6)

and, in the characterization of real metal alloys, our

attention is focused on it and its dependence on

composition and temperature.

Although activities are thermodynamic functions

of state, their magnitudes are assumed to be deter-

mined by the interactions among the constituent

`̀ particles'' of the system which, in turn, determine

bond energies and in¯uence the spatial con®gura-

tions assumed by the `̀ particles''. Thus, measurement

of activities within a class of similar simpler systems

can be expected to provide, at least, a basis for

correlation of the behavior, which can then be used

for extrapolation of the behavior of more complex

systems.

2.1. Gibbs energy of mixing and activity

The activities ak, are connected with the partial

Gibbs energies of mixing GM
k (or, chemical potential

of mixing �M
k ) by Eqs. (7a) and (7b) (R is the gas

constant)

GM
k �xk; T� :� �M

k �xk; T� � RT ln ak�xk; T�;
(7a)

ak�xk; T� � exp �GM
k �xk; T�=RT�: (7b)

Combining Eq. (7a) and Eq. (2) makes it possible to

determine the molar Gibbs energy of mixing GM(x,T)

from activity measurement:

GM�x; T� �
XK

k�1

xkGM
k �xk; T� � RT

XK

k�1

xkln ak:

(8)

As the various phase equilibria occurring in a

materials systems are determined by the variations,

with composition, temperature and pressure, of the

relative Gibbs energies of the various phases, such

equilibria can be most precisely determined by accu-

rate measurement of activity. Also, the activity of a

component in the solution is a measure of the mini-

mum Gibbs energy required to convert the component

from its state in solution to the pure state in any

proposed extraction or re®ning process.

In the majority of experimental methods, the activ-

ity of only one component is measured. In such cases,

the activities of the other components can be obtained

by means of the Gibbs±Duhem equation. For constant
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temperature and total pressure, this expression is

RT
XK

k�1

xk d ln ak �
XK

k�1

xkdGM
k � 0: (9)

2.2. Enthalpy of mixing, entropy of mixing, and

activity

The relationship between the activity and the molar

Gibbs energy of mixing, GM, also allows to determine

the enthalpy of mixing, HM, and the entropy of mix-

ing, SM, from activity measurements: Differentiation

of Eq. (1), in terms of the molar mixing quantities ZM,

with respect to the inverse temperature 1/T1 yields for

the molar enthalpy of mixing HM (or heat of mixing):

HM�x; T� � @�GM�x; T�=T�=@�1=T�; (10)

and, with respect to the temperature T for the molar

entropy of mixing SM,

SM�x; T� � ÿ@GM�x; T�=@T : (11)

3. Experimental determination of activity

The activities of an alloy system can be determined

by measuring the partial vapor pressures either by

means of electrochemical measurements, or by deter-

mining the chemical equilibria. Concerning activity

measurements by studying chemical equilibria, the

review articles by Richardson and Alcock [1], as well

as the articles by Grieveson, Lange and Schenck, and

Schwerdtfeger and Turkdogan (all in Ref. [2]) should

be consulted. Several effective experimental ways are

known for investigating at temperatures lower than

1000 K, but there is a tremendous lack of convenient

methods applicable at higher temperatures: The

experimental dif®culties increase considerably with

the temperature of the condensed samples, e.g. at

temperatures higher than 1500 K materials are limited

to make inert, but still compact cell liners. Also

applicable sensors are rare, as well as suitable materi-

als for supporting-, handling-, and protecting-systems.

For general information on experimental techni-

ques, the book by Kubaschewski et al. [3], the pro-

ceedings of the NATO Advanced Study Institute on

Thermochemistry of Alloys [4] and the review articles

by Kubaschewski [5] and Predel [6] are recom-

mended. A brief overview on recent experimental

developments has been given by Komarek [7].

3.1. Determination of activity by vapor-pressure

measurement

Alloy systems show at actual temperatures `̀ small''

vapor pressures (<20 Pa) which will not obey any

more the laws of hydromechanics, but must be

described by the kinetic theory. The measurement

of low vapor pressures requires, therefore, techniques

entirely different to those employed for determining

`̀ common'' vapor pressures. One of the few methods,

still applicable at temperatures >1500 K, is that of

molecular effusion after Knudsen, which has been

dominant in the study of vapor pressures.

In this way, low vapor pressures are determined by

means of the effusion of vaporized sample out of an

isothermal vessel which is called the `̀ Knudsen cell''.

This is a (cylindrical) crucible with a small knife-edge

shaped ori®ce (0.5±1.5 mm diameter) in the lid. If,

inside the Knudsen cell, thermodynamic equilibrium

is established between the condensed sample and its

vapor phase, then the pressure of the escaping mole-

cular beam can be calculated from the equation for

steady-state effusion of dilute gases,

pk�xk; T� � dmk=dt Aÿ1
0 �2kBT=Mk�1=2

(12)

where dmk/dt is the mass rate of effusion, A0 and kB the

ori®ce area and the Boltzmann's constant, respec-

tively, and Mk is the mass of a molecule of the species

k (see Ref. [8]). A block diagram of the variants, as

have been proposed in literature as well as a brief

review of modern Knudsen techniques, is given in Ref.

[9]. In the last two decades, the PENKER technique

(Pendulum electronically balanced Knudsen-effusion

recoil) [8] has been introduced as a new automatic

null-method based on the recoil technique. Further

advancement was less due to radically new techniques

and more to automated control, data acquisition, and

processing.

A particularly powerful tool is the Knudsen-cell

mass spectrometry [9±11]. Following this method, the

Knudsen cell is employed as the `̀ gas source'' of a

high-temperature mass spectrometer, and the effusing

vapor beam is directed into the ionization chamber of
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the mass spectrometer. The ion-current intensities J
j
k

of the characteristic isotopes `j' of the appropriate

vapor species k are connected with the partial pressure

by

pk�xk; T� � J
j
k�xk; T�T=�Dj

kDI� (13)

where D
j
k is an isotope speci®c constant (see Refs.

[10,11]). The instrument-geometry constant sensitiv-

ity factor DI in Eq. (13) depends strongly on the actual

position of the Knudsen cell with respect to the ion

source. This precludes the accurate determination of

activity by measuring the vapor pressures in two

different experiments, one with the alloy and the other

with the pure component. For an overview on the

various methods to overcome this dif®culty, the article

by Neckel [10] should be consulted. Following the

variants of the `̀ algebraic-intensity ratio'' (AIR) tech-

nique [10,12], it is possible to determine the excess

chemical potential of two alloy components without

any additional effort. Many alloy systems have been

investigated already by means of these techniques

(compare [12,13]). The most recent review of mass

spectrometric studies of metallurgical systems has

been published by Kato [11].

3.2. Electrochemical measurement of activity

Performing a reaction in an electrolytic cell under

reversible conditions at constant temperature, the

electromotive force (emf) it produces can be related

to the Gibbs energy; e.g. in case of symmetrical cells,

which contain the component under investigation as

the pure element in one and as an alloy in the other

electrode, the measured emf is equal to the decrease in

Gibbs energy for the cell reaction per unit charge:

GM
k �xk; T� � �M

k �xk; T� � RT ln ak�xk; T�
� ÿnkF Ek�xk; T� (14)

where nk is charge number, F the Faraday constant,

and Ek the measured reversible cell voltage Ek of the

formation cell. Thus, the activity ak(xk,T) is given by

ak�xk; T� � exp �ÿnkEk�xk; T�F=RT�: (15)

Both, liquid and solid electrolytes are frequently

used to determine thermodynamic properties of alloys.

Of most importance for all types of emf measurements

in alloys are the criteria for reversibility, because an

emf cell will give correct results only if it operates

reversibly, i.e. if it does not show drift or polarization

effects. More and more solid electrolytes are used, and

the reliability of such emf cells has increased con-

siderably [7,14]. Experimental aspects and limiting

factors are discussed by Schaller [14]. Various aspects

of electrolytes are discussed also in a book edited by

Geller [15].

The emf measurement for determining the activity

also covers a wide ®eld of application. An overview is

given by Komarek [16]. Concerning hot corrosion of

metals by fused salts, the article of Rapp [17] should

be consulted.

4. Short-range ordering in liquid alloys

In a number of metallic melts it has been observed

that the molar mixing properties show some anomalies

in the concentration dependence: peculiarities in the

shapes of the activity curves for dilute liquid alloys as

well as a temperature dependence and/or a more or

less distinct triangular shape of the molar enthalpy of

mixing, HM. The origin of abnormal mixing behavior,

occurring in metallic melts, will be assumed com-

monly in short-range order effects. The concept of

something like associates as complex, hypothetical

molecule-like particles in metallic melts, has existed

in chemical thermodynamics since the beginning of

the twentieth century [18], and Wagner was the ®rst to

discuss the thermodynamics of such a behavior.

Nevertheless their basic ideas have been applied to

the thermodynamics of liquid alloys only in the last

twenty-®ve years (compare Ref. [19]).

While direct evidence for these `̀ compounds'' is

lacking, several authors reported successful use of

such solution models which account for compound

formation for representing various molar functions.

Compound stoichiometry can be inferred from an

examination of phase diagrams, chemically similar

systems, thermodynamic and transport properties.

However, the various models of short-range ordering

in the liquid phase (compare Refs. [18,20,21]) yield

extensive expressions for the mixing properties which

cannot be transformed to formulas used commonly in

mixing thermodynamics. An additional disadvantage

may be that emphasis is seen on modeling the enthalpy

of mixing [22].
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It is also not possible to incorporate these repre-

sentations into reasonable descriptions of multicom-

ponent liquid alloys, because the results would be

confusing. On the other hand, the interest on multi-

component metallic melts has increased considerably.

At least with respect to a uniform description of

multicomponent liquid alloys, it would be preferable

to describe the mixing behavior of melts showing

anomalies in the concentration dependence by means

of simpler formulas than the above-mentioned ones

[23].

5. Excess mixing behavior and activity coefficient

All deviations from the ideal behavior of alloy

systems are lumped into the activity factor as de®ned

in Eq. (6), and the characterization of real alloys as

required in praxis is focused on it and its dependence

on composition, and temperature. As the properties of

mixing of ideal alloys are computable, it is common to

de®ne the deviations of the functions of mixing Z M of

real alloy systems from the ideal quantities Z id as the

molar excess functions, Z E, which describe directly

the contributions of the intermolecular forces:

ZE�x; T� � ZM�x; T� ÿ Z id�x; T�: (16)

The partial excess Gibbs energy (chemical excess

potential �E
k ) is connected with the activity coef®cient

fk in a manner similar to the relation between the GM
k

and the activity ak, Eqs. (7a) and (7b),

GE
k �xk; T� :� �E

k �xk; T� � RT ln fk�xk; T�; (17)

The excess Gibbs energy GE(x,T), the right form of the

Gibbs±Duhem equation, and the excess entropy SE are

obtained by corresponding substitution in Eqs. (8),(9)

and (11), respectively. As the ideal enthalpy of mixing

H id is zero, the enthalpy of mixing is identical with H E.

The models, as suggested in literature for describing

the concentration dependence of the excess mixing

behavior of alloys, may be divided into pure algebraic

formulas, and into equations based on a pseudo-

theoretical background [24].

5.1. Pseudo-theoretical modeling

The various authors preferably introduced terms

like `̀ effective molar volumes'', and/or `̀ effective

volumetric fractions'' of the alloy species. However,

none of these models offers any additional advantage

over pure algebraic formulas either with respect to

representing the molar mixing properties or for pre-

diction purposes [24,25]. On the contrary, for an

evaluation of experimental investigations on more

complex alloy systems, the ¯exibility of these

pseudo-theoretical equations is not suf®ciently high

[24].

The proposed variety of different expressions for

the molar excess quantities often renders dif®cult

the application and/or compilation of literature data.

Altogether, it seems less meaningful, therefore, to

employ any of these equations in metallurgical

thermodynamics.

5.2. Algebraic formulas

Margules [26] was the ®rst to propose a compre-

hensive, very ef®cient, yet still simple expression for

the concentration dependence of the partial pressures

of a binary mixture. He used a separate set of para-

meters for the description of the partial pressure of

each component of binary alloys with the consequence

of introducing a separate set of parameters for each

alloy constituent. It has been shown recently [27], that

the Margules concept can be uni®ed to a common set

of parameters for representing all component proper-

ties by approximating the excess Gibbs energy GE

instead of the partial vapor pressures.

In mathematics, the quality of polynomial approxi-

mations depends only on the powers of the variables

employed, and not on any special combinations or

splitting of variables. This follows simply from the

validity of the associative law of addition of real

numbers [25]. Thus, all polynomial series complying

with the thermodynamic boundary conditions of

alloys, as proposed in literature, are mathematically

equivalent for representing the binary excess quanti-

ties [25]. e.g. no best ®t based upon any polynomial of

power n in (2xÿ1) can yield results differing from the

best ®t curves obtained by means of the corresponding

power series of the same power n in x.

Mathematical clarity can be enhanced and compu-

tational effort saved by using the simplest of all

possible polynomials. In the late seventies and begin-

ning of the eighties, the present author proposed the

expansion after Redlich±Kister for this purpose. This
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yielded the broad application of this expansion, espe-

cially for phase-diagram calculations. However, some

years later, it has been proved [28] that the simplest

possible polynomial is the `̀ thermodynamic adapted

power'' (TAP) series. In [13], it is demonstrated that

the use of TAP series, instead of the Redlich±Kister

expansion, yields considerably reduced computational

effort in case of ternary alloys.

6. The multicomponent TAP series concept of
excess quantities

6.1. Concentration dependence

6.1.1. Binary alloys

The binary excess functions j,kZE (j,k components)

are represented by (N is the number of adjustable

parameters j,kCn) [28]:

j;kZE�x� � xj

XN

n�1

j;kCnxn
k : (18a)

j;kZE
j �xj� � x2

k

XN

n�1

j;kCnxnÿ2
k �1ÿ n� nxk�;

(18b)

j;kZE
k �xk� � x2

j

XN

n�1

j;kCnxnÿ1
k n: (18c)

The customary classi®cation of binary alloys with

respect to the complexity of their excess properties

may be performed with more clarity: The TAP para-

meter j,kC1 and j,kC2 characterize the regular and

subregular solution contributions as pointed out in

Ref. [27]. Interchange of the components, as well

as conversion among various literature proposals for

polynomial represention of the j,kZE(x) may be per-

formed by means of a simple modular procedure

developed in Ref. [25].

6.1.2. Ternary and multicomponent alloys

All prediction techniques as proposed in literature

are based upon the assumption of ternary regular

solution, where the excess quantities are geometry-

dependent functions of the concentrations xk, and of

the excess properties of the three binary boundary

systems j±k ( j,k�1,2,3). LuÈck et al. [29] presented a

survey of the most common algorithms to extrapolate

the binary into ternary properties. None of these

algorithms yields better prediction data for the ternary

alloys than the simple sum of the binary boundary

systems, BBSZE [23],

BBSZE�x� � 1;2ZE�x� � 2;3ZE�x� � 3;1ZE�x�:
(19a)

Extrapolation for alloys containing K components are

performed after [27] by:

�Kÿ1�BSZE�x� �
X
�all ZE ÿ terms with

�K ÿ 1� components�: (19b)

Following [27], the ternary interaction is described by

a polynomial in all mole fractions xk,

tZE�x� � x1x2x3�C1 � �tC2x1

�tC3x2 �tC4x3� � . . .�; (20a)

where tCn are adjustable parameters (n�1,2,. . .). The

general K-component interaction term is then:

KZE�x� � x1 . . . xK �KC1 � �KC2x1 � . . .

�KCK�1xK� � . . .�; �K � 3; 4; . . .�:
(20b)

Combining the extrapolation formulas Eqs. (19a) and

(19b), with Eqs. (20a) and (20b) yields, ®nally, for the

molar ternary excess functions

ZE�x� � x1x2x3�tC1 � . . .�

� x1

XN1

n�1

1;2Cnxn
2 � x2

XN2

n�1

2;3Cnxn
3

� x3

XN3

n�1

3;1Cnxn
1; (21a)

and for the general form of the molar excess quantities

of K-component alloys:

ZE�x��KZ E�x���Kÿ1�BSZ E�x�; �K � 3; 4; . . .�
(21b)

6.2. Temperature dependence

Within temperature ranges, in which the logarithms

of the partial pressures of all constituents can be

assumed to be proportional to the inverse temperature,
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the enthalpy of mixing as well as the excess entropy

turn out to be temperature-independent. According

to Eq. (1), the temperature dependence of the TAP

parameters of the excess Gibbs energy is given by

Eq. (22)

CG
n �T� � CH

n ÿ TCS
n �n � 1; 2; . . . N� (22)

which is equivalent to the assumption of vanishing

molar excess heat capacity (�Cp�0), expressed by the

rule of Neumann and Kopp, according to which the

difference between the heat capacity of an alloy and

the heat capacities of the corresponding amounts of

the pure species at the same temperature is zero.

The temperature dependence of the enthalpy of

mixing is given generally by means of a composite

exponential function [30]. In metallic melts, this

temperature dependence will be determined in relative

small intervals, only. For this purpose the general

formula can be substituted by a polynomial in the

inverse temperature [30],

HE � H0 � D1Tÿ1 � D2Tÿ2 � . . . ; (23)

with the temperature-independent adjustable para-

meters H0 and Di (i�1,2,. . .). Substituting in

Eq. (10), and performing the integration yields a

formula for an extended temperature dependence of

the excess Gibbs energy of alloys,

GE�T� � H0 ÿ TS0 � �D1=2�Tÿ1

� �D2=3�Tÿ2 � . . . : (24a)

The corresponding relation for the TAP parameters is:

CG
n �T� � CH

n ÿ TCS
n � �D1;n=2�Tÿ1

� �D2;n=3�Tÿ2 . . . �n � 1; 2; . . . N�
(24b)

6.3. Combination of temperature and concentration

dependence

Substituting all TAP parameters, Cn, in

Eqs. (18a),(18b),(18c),(19a),(20a),(21a) and (21b)

by the corresponding temperature-dependent TAP

parameters Eq. (22) or Eq. (24b) yields the desired

straightforward description of combined temperature

and concentration dependence of the molar excess

quantities of multicomponent alloys. With the addi-

tional advantage of necessary consistency between

the excess properties as required by the

Eqs. (1),(2),(10),(11) and (16). This TAP concept is

applicable for all types of alloys, including metallic

melts showing short-range ordering (compare Refs.

[22,23,30]).

7. Algebraic evaluation of activity measurement

The activities ak(xk,T) and/or the chemical excess

potentials �E
k �xk; T� of the investigated components k

are obtained by regression of the experimental data.

Following traditional evaluation techniques, the tem-

perature dependence is determined by linear best ®t,

and in a second step the concentration dependence is

determined graphically. The activities of the other

alloy constituents are then obtained by graphical

integration of the corresponding Gibbs±Duhem equa-

tions (Eq. (9)). Concerning multicomponent alloys,

this restricts the evaluation to investigations along

sections with constant ratios of the mole fractions

of two components.

Thus, the traditional evaluation techniques are not

only time consuming with respect to the graphical

integration, and beset with problems relating to con-

sistency of the determined data. No overall descrip-

tions of the ternary or more component mixing

behavior can be obtained, and the necessary experi-

mental work, even for ternary alloys, is so extensive

that it is rarely undertaken.

These dif®culties can be solved by using the TAP

series concept: Representing the excess Gibbs energy

by means of a TAP series makes possible the sub-

stitution of each excess function of an alloy system by

means of one common set of parameters. The TAP

parameters will be considered to be adjusted by

algebraic best ®t of suitable experimental measure-

ments. The required regression formulas are obtained

by the simple substitution of the chemical excess

potentials by the corresponding TAP expressions;

e.g. in case of binary alloys the TAP parameters are

obtained from EMF measurement by substituting from

Eq. (18c) and (6) in Eq. (14)

�E
k �xk; T� � x2

j

XN

n�1

CG
n �T�xnÿ1

k

� ÿnkFEk�xk; T� ÿ RT ln xk: (25)
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Following the AIR technique, the TAP parameters

will be determined from the mass spectrometric

measurements by means of the ratio of the chemical

excess potentials of the two alloy constituent:

Employing Eqs. (6),(7a),(13),(18b) and (18c), and

combining all isotope speci®c factors in one additional

adjustable parameter C0(T) yields the required best ®t

formula:

�E
k �xk; T�=�E

j �xj; T�

�
XN

n�1

CG
n �T�xnÿ1

k �nÿ xk�1� n�� � C0�T�

� RT ln �Ji
k�xk; T��=Jl

j�xj; T��ÿRT ln �xk=xj�:
(26)

Considering ternary alloys, the total activity

measurements along all investigated constant-ratio

sections can then be evaluated together by one

algebraic overall best ®t of the concentration depen-

dence. All parameters in the right-hand side of

Eq. (21a) ± the ternary interaction terms tCn as well

as the binary j,kCn parameters ± can be assumed

as adjustable best-®t parameters. However, at least

two of the three binary boundary systems should be

already investigated to obtain accurate ternary data

[23]. If the mixing behavior of all binary boundary

alloys are well known, then it is only necessary to

perform the best ®t for the ternary interaction para-

meter tCn:

��E
k �xk; T� ÿ BBS�E

k �xk; T��
� x1x2x3�tCG

1 �T� � . . .�: (27)

Employing the temperature-dependent TAP

parameters CG(T), Eqs. (22) and (24b), respec-

tively as adjustable parameters makes it possible

to perform an overall best ®t of both the tempera-

ture and the concentration dependence of the

chemical excess potentials; e.g. the adjustable

parameters of the best-®t formulas (25) to (27)

must be substituted from Eqs. (22) and (24b), res-

pectively. Then, all experimental data at each

temperature and composition of an alloy system

can be utilized in one overall best ®t. Details

concerning the reliability, and powerfulness of the

overall best-®t techniques are given in Refs. [13,22,

27,30,31].

8. Discussion and conclusion

The activity measurement makes possible the deter-

mination of the thermodynamic mixing behavior of

alloys: The Gibbs energy of mixing is related directly

to the activity. The enthalpy and entropy of mixing can

be determined from its temperature dependence. And

®nally, the thermochemical equilibrium conditions

enable computing the phase equilibria from the

chemical potentials.

Thus, the main task in alloy thermodynamics is the

determination of the activity of the alloy constituents.

In recent years, the technique of computational deter-

mination of Gibbs energy data suitable for generating

phase equilibria boundaries has become so convenient

that more and more authors produce their own sets of

assessed data, and ignore experimental investigations.

As the phase-diagram calculations require only the

differences among the chemical potentials of the

involved phases, this technique may also produce

arti®cial activity data.

And indeed, the discrepancies between experimen-

tal data and calculations of the phase equilibria of

more component alloys can be increasingly tracked

back to assessments of lower order systems based on

those non-realistic thermodynamic data. Thus, it

seems to be meaningful to base compilations of

thermodynamic-mixing behavior on accurate activity

measurement. This technique yields a more effective

algebraic description of the ternary-mixing behavior

than the results of pure phase equilibria analysis [13].

The TAP series concept makes possible the alge-

braic representation of the activity as well as all

mixing properties of all types of alloys, including

metallic melts showing short-range ordering by the

same algorithm. Best-®t formulas as well as extra-

polation from lower component alloys are incorpo-

rated. Using only one common set of parameters

makes possible straightforward description of com-

bined temperature and concentration dependence.

An extended temperature dependence of the excess

Gibbs energy as necessary for this purpose has been

derived.

The new concept allows putting together all activity

measurements of a multicomponent alloy system for

performing one algebraic overall best-®t. In connec-

tion with a personal computer a very convenient,

interactive evaluation tool yielding a considerable
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reduction both of the experimental work, and of the

time spent on evaluation.
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